File size: 8,238 Bytes
58e05a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443e21a
 
 
 
 
 
 
 
 
58e05a7
b9b66c8
443e21a
 
58e05a7
 
 
 
 
f15f421
 
 
 
 
58e05a7
 
 
 
 
 
f15f421
58e05a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f15f421
58e05a7
443e21a
 
 
 
f15f421
58e05a7
91b7854
58e05a7
 
91b7854
 
f15f421
 
 
 
 
 
 
 
91b7854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f15f421
 
 
 
 
 
 
91b7854
f15f421
 
 
 
 
 
 
 
 
 
91b7854
f15f421
 
 
 
 
91b7854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f15f421
 
 
 
58e05a7
 
f15f421
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# modules/studentact/current_situation_interface.py

import streamlit as st
import logging
from ..utils.widget_utils import generate_unique_key
import matplotlib.pyplot as plt
import numpy as np
from ..database.current_situation_mongo_db import store_current_situation_result

from .current_situation_analysis import (
    analyze_text_dimensions, 
    analyze_clarity,
    analyze_reference_clarity,
    analyze_vocabulary_diversity, 
    analyze_cohesion,
    analyze_structure,
    get_dependency_depths, 
    normalize_score, 
    generate_sentence_graphs, 
    generate_word_connections, 
    generate_connection_paths,
    create_vocabulary_network, 
    create_syntax_complexity_graph, 
    create_cohesion_heatmap,     
)

# Configuración del estilo de matplotlib para el gráfico de radar
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['axes.grid'] = True
plt.rcParams['axes.spines.top'] = False
plt.rcParams['axes.spines.right'] = False

logger = logging.getLogger(__name__)
####################################

def display_current_situation_interface(lang_code, nlp_models, t):
    """
    Interfaz simplificada con gráfico de radar para visualizar métricas.
    """
    # Inicializar estados si no existen
    if 'text_input' not in st.session_state:
        st.session_state.text_input = ""
    if 'show_results' not in st.session_state:
        st.session_state.show_results = False
    if 'current_doc' not in st.session_state:
        st.session_state.current_doc = None
    if 'current_metrics' not in st.session_state:
        st.session_state.current_metrics = None

    # st.markdown("## Análisis Inicial de Escritura")
    
    try:
        # Container principal con dos columnas
        with st.container():
            input_col, results_col = st.columns([1,2])
            
            with input_col:
                # Definir función para manejar cambios de texto
                def on_text_change():
                    st.session_state.text_input = st.session_state.text_area
                    st.session_state.show_results = False
                
                # Text area con manejo de estado
                text_input = st.text_area(
                    t.get('input_prompt', "Escribe o pega tu texto aquí:"),
                    height=400,
                    key="text_area",
                    value=st.session_state.text_input,
                    on_change=on_text_change,
                    help="Este texto será analizado para darte recomendaciones personalizadas"
                )
                
                if st.button(
                    t.get('analyze_button', "Analizar mi escritura"),
                    type="primary",
                    disabled=not text_input.strip(),
                    use_container_width=True,
                ):
                    try:
                        with st.spinner(t.get('processing', "Analizando...")):
                            doc = nlp_models[lang_code](text_input)
                            metrics = analyze_text_dimensions(doc)
                            
                            storage_success = store_current_situation_result(
                                username=st.session_state.username,
                                text=text_input,
                                metrics=metrics,
                                feedback=None
                            )
                            
                            if not storage_success:
                                logger.warning("No se pudo guardar el análisis en la base de datos")
                            
                            st.session_state.current_doc = doc
                            st.session_state.current_metrics = metrics
                            st.session_state.show_results = True
                            st.session_state.text_input = text_input
                            
                    except Exception as e:
                        logger.error(f"Error en análisis: {str(e)}")
                        st.error(t.get('analysis_error', "Error al analizar el texto"))
            
            # Mostrar resultados en la columna derecha
            with results_col:
                if st.session_state.show_results and st.session_state.current_metrics is not None:
                    display_results(st.session_state.current_metrics)

    except Exception as e:
        logger.error(f"Error en interfaz principal: {str(e)}")
        st.error("Ocurrió un error al cargar la interfaz")

def display_results(metrics):
    """
    Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
    """
    try:
        # Crear dos columnas para métricas y gráfico
        metrics_col, graph_col = st.columns([1, 1.5])
        
        metrics_config = [
            ("Vocabulario", metrics['vocabulary']['normalized_score'], "Riqueza y variedad del vocabulario"),
            ("Estructura", metrics['structure']['normalized_score'], "Organización y complejidad de oraciones"),
            ("Cohesión", metrics['cohesion']['normalized_score'], "Conexión y fluidez entre ideas"),
            ("Claridad", metrics['clarity']['normalized_score'], "Facilidad de comprensión del texto")
        ]

        # Mostrar métricas verticalmente
        with metrics_col:
            # Contenedor con bordes para las métricas
            st.markdown("""
                <style>
                .metric-container {
                    background-color: #ffffff;
                    padding: 1rem;
                    border-radius: 0.5rem;
                    box-shadow: 0 1px 3px rgba(0,0,0,0.1);
                    margin-bottom: 0.5rem;
                }
                </style>
            """, unsafe_allow_html=True)
            
            for label, value, help_text in metrics_config:
                with st.container():
                    st.metric(
                        label,
                        f"{value:.2f}",
                        "Meta: 1.00",
                        delta_color="off",
                        help=help_text
                    )
                    st.markdown("<div style='margin-bottom: 1rem;'></div>", unsafe_allow_html=True)

        # Gráfico radar en la columna derecha
        with graph_col:
            # Preparar datos para el gráfico
            categories = [m[0] for m in metrics_config]
            values_user = [m[1] for m in metrics_config]
            values_pattern = [1.0] * len(categories)

            # Crear y configurar gráfico
            fig = plt.figure(figsize=(8, 8))  # Aumentado el tamaño
            ax = fig.add_subplot(111, projection='polar')

            # Configurar gráfico radar
            angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))]
            angles += angles[:1]
            values_user += values_user[:1]
            values_pattern += values_pattern[:1]

            # Configurar ejes
            ax.set_xticks(angles[:-1])
            ax.set_xticklabels(categories, fontsize=10)  # Aumentado el tamaño de fuente
            circle_ticks = np.arange(0, 1.1, 0.2)
            ax.set_yticks(circle_ticks)
            ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
            ax.set_ylim(0, 1)

            # Dibujar gráfico con colores mejorados
            ax.plot(angles, values_pattern, '#2ecc71', linestyle='--', linewidth=1, label='Patrón', alpha=0.5)
            ax.fill(angles, values_pattern, '#2ecc71', alpha=0.1)
            ax.plot(angles, values_user, '#3498db', linewidth=2, label='Tu escritura')
            ax.fill(angles, values_user, '#3498db', alpha=0.2)
            
            # Ajustar leyenda
            ax.legend(
                loc='upper right', 
                bbox_to_anchor=(0.1, 0.1), 
                fontsize=10,
                frameon=True,
                facecolor='white',
                edgecolor='none',
                shadow=True
            )

            plt.tight_layout()
            st.pyplot(fig)
            plt.close()

    except Exception as e:
        logger.error(f"Error mostrando resultados: {str(e)}")
        st.error("Error al mostrar los resultados")