File size: 10,871 Bytes
58e05a7 67201f6 58e05a7 67201f6 58e05a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# modules/studentact/current_situation_interface.py
import streamlit as st
import logging
from ..utils.widget_utils import generate_unique_key
import matplotlib.pyplot as plt
import numpy as np
from ..database.current_situation_mongo_db import store_current_situation_result
from .current_situation_analysis import (
analyze_text_dimensions,
analyze_clarity,
analyze_reference_clarity,
analyze_vocabulary_diversity,
analyze_cohesion,
analyze_structure,
get_dependency_depths,
normalize_score,
generate_sentence_graphs,
generate_word_connections,
generate_connection_paths,
create_vocabulary_network,
create_syntax_complexity_graph,
create_cohesion_heatmap,
)
# Configuraci贸n del estilo de matplotlib para el gr谩fico de radar
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['axes.grid'] = True
plt.rcParams['axes.spines.top'] = False
plt.rcParams['axes.spines.right'] = False
logger = logging.getLogger(__name__)
####################################
def display_current_situation_interface(lang_code, nlp_models, t):
"""
Interfaz simplificada con gr谩fico de radar para visualizar m茅tricas.
"""
try:
# Inicializar estados si no existen
if 'text_input' not in st.session_state:
st.session_state.text_input = ""
if 'show_results' not in st.session_state:
st.session_state.show_results = False
if 'current_doc' not in st.session_state:
st.session_state.current_doc = None
if 'current_metrics' not in st.session_state:
st.session_state.current_metrics = None
# Estilos CSS para mejorar la presentaci贸n
st.markdown("""
<style>
.main-title {
margin-bottom: 2rem;
}
.stTextArea textarea {
border-radius: 0.5rem;
}
div[data-testid="column"] {
background-color: transparent;
}
.metric-container {
background-color: #f8f9fa;
padding: 1rem;
border-radius: 0.5rem;
margin-bottom: 1rem;
}
</style>
""", unsafe_allow_html=True)
st.markdown('<h2 class="main-title">An谩lisis Inicial de Escritura</h2>', unsafe_allow_html=True)
# Container principal con dos columnas
with st.container():
input_col, results_col = st.columns([1,2])
with input_col:
# Funci贸n para manejar cambios en el texto
def on_text_change():
st.session_state.text_input = st.session_state.text_area
st.session_state.show_results = False
# Text area con manejo de estado
text_input = st.text_area(
t.get('input_prompt', "Escribe o pega tu texto aqu铆:"),
height=400,
key="text_area",
value=st.session_state.text_input,
on_change=on_text_change,
help="Este texto ser谩 analizado para darte recomendaciones personalizadas"
)
if st.button(
t.get('analyze_button', "Analizar mi escritura"),
type="primary",
disabled=not text_input.strip(),
use_container_width=True,
):
try:
with st.spinner(t.get('processing', "Analizando...")):
doc = nlp_models[lang_code](text_input)
metrics = analyze_text_dimensions(doc)
# Guardar en MongoDB
storage_success = store_current_situation_result(
username=st.session_state.username,
text=text_input,
metrics=metrics,
feedback=None
)
if not storage_success:
logger.warning("No se pudo guardar el an谩lisis en la base de datos")
st.session_state.current_doc = doc
st.session_state.current_metrics = metrics
st.session_state.show_results = True
st.session_state.text_input = text_input
except Exception as e:
logger.error(f"Error en an谩lisis: {str(e)}")
st.error(t.get('analysis_error', "Error al analizar el texto"))
# Mostrar resultados en la columna derecha
with results_col:
if st.session_state.show_results and st.session_state.current_metrics is not None:
# Container para los resultados
with st.container():
st.markdown('<div class="metric-container">', unsafe_allow_html=True)
# Crear columnas para las m茅tricas con espaciado uniforme
c1, c2, c3, c4 = st.columns([1.2, 1.2, 1.2, 1.2])
with c1:
st.metric(
"Vocabulario",
f"{st.session_state.current_metrics['vocabulary']['normalized_score']:.2f}",
"Meta: 1.00",
delta_color="off",
help="Riqueza y variedad del vocabulario utilizado"
)
with c2:
st.metric(
"Estructura",
f"{st.session_state.current_metrics['structure']['normalized_score']:.2f}",
"Meta: 1.00",
delta_color="off",
help="Organizaci贸n y complejidad de las oraciones"
)
with c3:
st.metric(
"Cohesi贸n",
f"{st.session_state.current_metrics['cohesion']['normalized_score']:.2f}",
"Meta: 1.00",
delta_color="off",
help="Conexi贸n y fluidez entre ideas"
)
with c4:
st.metric(
"Claridad",
f"{st.session_state.current_metrics['clarity']['normalized_score']:.2f}",
"Meta: 1.00",
delta_color="off",
help="Facilidad de comprensi贸n del texto"
)
st.markdown('</div>', unsafe_allow_html=True)
# Mostrar el gr谩fico de radar
display_radar_chart(st.session_state.current_metrics)
except Exception as e:
logger.error(f"Error en interfaz: {str(e)}")
st.error("Ocurri贸 un error. Por favor, intente de nuevo.")
def display_radar_chart(metrics):
"""
Muestra un gr谩fico de radar con las m茅tricas del usuario y el patr贸n ideal.
"""
try:
# Container con proporci贸n reducida
with st.container():
# M茅tricas en la parte superior
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Vocabulario", f"{metrics['vocabulary']['normalized_score']:.2f}", "1.00")
with col2:
st.metric("Estructura", f"{metrics['structure']['normalized_score']:.2f}", "1.00")
with col3:
st.metric("Cohesi贸n", f"{metrics['cohesion']['normalized_score']:.2f}", "1.00")
with col4:
st.metric("Claridad", f"{metrics['clarity']['normalized_score']:.2f}", "1.00")
# Contenedor para el gr谩fico con ancho controlado
_, graph_col, _ = st.columns([1,2,1])
with graph_col:
# Preparar datos
categories = ['Vocabulario', 'Estructura', 'Cohesi贸n', 'Claridad']
values_user = [
metrics['vocabulary']['normalized_score'],
metrics['structure']['normalized_score'],
metrics['cohesion']['normalized_score'],
metrics['clarity']['normalized_score']
]
values_pattern = [1.0, 1.0, 1.0, 1.0] # Patr贸n ideal
# Crear figura m谩s compacta
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(111, projection='polar')
# N煤mero de variables
num_vars = len(categories)
# Calcular 谩ngulos
angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)]
angles += angles[:1]
# Extender valores para cerrar pol铆gonos
values_user += values_user[:1]
values_pattern += values_pattern[:1]
# Configurar ejes y etiquetas
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories, fontsize=8)
# C铆rculos conc茅ntricos y etiquetas
circle_ticks = np.arange(0, 1.1, 0.2) # Reducido a 5 niveles
ax.set_yticks(circle_ticks)
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
ax.set_ylim(0, 1)
# Dibujar patr贸n ideal
ax.plot(angles, values_pattern, 'g--', linewidth=1, label='Patr贸n', alpha=0.5)
ax.fill(angles, values_pattern, 'g', alpha=0.1)
# Dibujar valores del usuario
ax.plot(angles, values_user, 'b-', linewidth=2, label='Tu escritura')
ax.fill(angles, values_user, 'b', alpha=0.2)
# Leyenda
ax.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1), fontsize=8)
# Ajustes finales
plt.tight_layout()
st.pyplot(fig)
plt.close()
except Exception as e:
logger.error(f"Error generando gr谩fico de radar: {str(e)}")
st.error("Error al generar la visualizaci贸n") |