File size: 9,310 Bytes
c7330d5 d4a5717 c7330d5 19de296 c7330d5 d4a5717 c67983b 3f98e79 17a71b0 3f98e79 dd52ef3 a22a995 dd52ef3 ac689f1 dd52ef3 17a71b0 df3c320 17a71b0 ac689f1 17a71b0 ac689f1 17a71b0 ac689f1 17a71b0 df3c320 ac689f1 df3c320 17a71b0 ac689f1 17a71b0 ac689f1 17a71b0 ac689f1 17a71b0 d4a5717 17a71b0 d4a5717 17a71b0 ac689f1 17a71b0 ac689f1 17a71b0 d4a5717 17a71b0 dd52ef3 3f98e79 7e3e643 d4a5717 7e3e643 d4a5717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
#modules/semantic/semantic_interface.py
import streamlit as st
from streamlit_float import *
from streamlit_antd_components import *
from streamlit.components.v1 import html
import spacy_streamlit
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
import pandas as pd
import re
import logging
# Configuración del logger
logger = logging.getLogger(__name__)
# Importaciones locales
from .semantic_process import (
process_semantic_input,
format_semantic_results
)
from ..utils.widget_utils import generate_unique_key
from ..database.semantic_mongo_db import store_student_semantic_result
from ..database.semantic_export import export_user_interactions
def handle_file_upload(uploaded_file):
"""
Maneja la carga de archivos y mantiene el estado
Args:
uploaded_file: Archivo subido a través del file_uploader
"""
try:
if uploaded_file is not None:
content = uploaded_file.getvalue().decode('utf-8')
st.session_state.semantic_file_content = content
st.session_state.page = 'semantic' # Mantener en la página semántica
logger.info(f"Archivo cargado exitosamente: {uploaded_file.name}")
else:
st.session_state.semantic_file_content = None
logger.info("No se ha cargado ningún archivo")
except Exception as e:
logger.error(f"Error al cargar archivo: {str(e)}")
st.error("Error al cargar el archivo. Asegúrese de que es un archivo de texto válido.")
st.session_state.semantic_file_content = None
def display_semantic_interface(lang_code, nlp_models, semantic_t):
"""
Interfaz para el análisis semántico con controles alineados horizontalmente
"""
try:
# Inicializar estados
if 'semantic_analysis_counter' not in st.session_state:
st.session_state.semantic_analysis_counter = 0
if 'semantic_file_content' not in st.session_state:
st.session_state.semantic_file_content = None
if 'semantic_analysis_done' not in st.session_state:
st.session_state.semantic_analysis_done = False
# Contenedor principal para la fila de controles
with st.container():
# Crear una fila con cuatro columnas de igual ancho
col1, col2, col3, col4 = st.columns([3, 1, 1, 1])
# Columna 1: Carga de archivo
with col1:
uploaded_file = st.file_uploader(
semantic_t.get('file_uploader', 'Upload TXT file'),
type=['txt'],
key=f"semantic_file_uploader_{st.session_state.semantic_analysis_counter}",
on_change=lambda: handle_file_upload(uploaded_file)
)
# Columna 2: Botón de análisis
with col2:
analyze_button = st.button(
semantic_t.get('analyze_button', 'Analyze Text'),
disabled=not st.session_state.semantic_file_content,
use_container_width=True,
key="analyze_semantic"
)
# Columna 3: Botón de exportación
with col3:
export_button = st.button(
semantic_t.get('export_button', 'Export Analysis'),
disabled=not st.session_state.semantic_analysis_done,
use_container_width=True,
key="export_semantic"
)
# Columna 4: Botón de nuevo análisis
with col4:
new_analysis_button = st.button(
semantic_t.get('new_analysis_button', 'New Analysis'),
disabled=not st.session_state.semantic_analysis_done,
use_container_width=True,
key="new_semantic"
)
# Separador sutil
st.markdown("<hr style='margin: 1em 0; padding: 0; opacity: 0.3'>", unsafe_allow_html=True)
# Procesar análisis
if analyze_button and st.session_state.semantic_file_content:
try:
with st.spinner(semantic_t.get('processing', 'Processing...')):
analysis_result = process_semantic_input(
st.session_state.semantic_file_content,
lang_code,
nlp_models,
semantic_t
)
if analysis_result['success']:
st.session_state.semantic_result = analysis_result
st.session_state.semantic_analysis_done = True
st.session_state.semantic_analysis_counter += 1
# Guardar en la base de datos
if store_student_semantic_result(
st.session_state.username,
st.session_state.semantic_file_content,
analysis_result['analysis']
):
st.success(semantic_t.get('success_message', 'Analysis saved successfully'))
# Mostrar resultados
display_semantic_results(
analysis_result,
lang_code,
semantic_t
)
else:
st.error(semantic_t.get('error_message', 'Error saving analysis'))
else:
st.error(analysis_result['message'])
except Exception as e:
logger.error(f"Error en análisis semántico: {str(e)}")
st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
# Manejo de exportación
if export_button and st.session_state.semantic_analysis_done:
try:
pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
st.download_button(
label=semantic_t.get('download_pdf', 'Download PDF'),
data=pdf_buffer,
file_name="semantic_analysis.pdf",
mime="application/pdf",
key=f"semantic_download_{st.session_state.semantic_analysis_counter}"
)
except Exception as e:
st.error(f"Error exporting analysis: {str(e)}")
# Manejo de nuevo análisis
if new_analysis_button:
st.session_state.semantic_file_content = None
st.session_state.semantic_analysis_done = False
st.session_state.semantic_result = None
st.session_state.semantic_analysis_counter += 1
st.rerun()
# Mostrar resultados previos o mensaje inicial
elif st.session_state.semantic_analysis_done and 'semantic_result' in st.session_state:
display_semantic_results(
st.session_state.semantic_result,
lang_code,
semantic_t
)
elif not st.session_state.semantic_file_content:
st.info(semantic_t.get('initial_message', 'Upload a TXT file to begin analysis'))
except Exception as e:
logger.error(f"Error general en interfaz semántica: {str(e)}")
st.error("Se produjo un error. Por favor, intente de nuevo.")
def display_semantic_results(result, lang_code, semantic_t):
"""
Muestra los resultados del análisis semántico
"""
if result is None or not result['success']:
st.warning(semantic_t.get('no_results', 'No results available'))
return
analysis = result['analysis']
# Crear tabs para los resultados
tab1, tab2 = st.tabs([
semantic_t.get('concepts_tab', 'Key Concepts Analysis'),
semantic_t.get('entities_tab', 'Entities Analysis')
])
# Tab 1: Conceptos Clave
with tab1:
col1, col2 = st.columns(2)
# Columna 1: Lista de conceptos
with col1:
st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
concept_text = "\n".join([
f"• {concept} ({frequency:.2f})"
for concept, frequency in analysis['key_concepts']
])
st.markdown(concept_text)
# Columna 2: Gráfico de conceptos
with col2:
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
st.image(analysis['concept_graph'])
# Tab 2: Entidades
with tab2:
col1, col2 = st.columns(2)
# Columna 1: Lista de entidades
with col1:
st.subheader(semantic_t.get('identified_entities', 'Identified Entities'))
if 'entities' in analysis:
for entity_type, entities in analysis['entities'].items():
st.markdown(f"**{entity_type}**")
st.markdown("• " + "\n• ".join(entities))
# Columna 2: Gráfico de entidades
with col2:
st.subheader(semantic_t.get('entity_graph', 'Entities Graph'))
st.image(analysis['entity_graph']) |