Spaces:
Running
Running
# modules/studentact/current_situation_interface.py | |
import streamlit as st | |
import logging | |
from ..utils.widget_utils import generate_unique_key | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from ..database.current_situation_mongo_db import store_current_situation_result | |
from .current_situation_analysis import ( | |
analyze_text_dimensions, | |
analyze_clarity, | |
analyze_vocabulary_diversity, | |
analyze_cohesion, | |
analyze_structure, | |
get_dependency_depths, | |
normalize_score, | |
generate_sentence_graphs, | |
generate_word_connections, | |
generate_connection_paths, | |
create_vocabulary_network, | |
create_syntax_complexity_graph, | |
create_cohesion_heatmap, | |
) | |
# Configuración del estilo de matplotlib para el gráfico de radar | |
plt.rcParams['font.family'] = 'sans-serif' | |
plt.rcParams['axes.grid'] = True | |
plt.rcParams['axes.spines.top'] = False | |
plt.rcParams['axes.spines.right'] = False | |
logger = logging.getLogger(__name__) | |
#################################### | |
TEXT_TYPES = { | |
'academic_article': { | |
'name': 'Artículo Académico', | |
'thresholds': { | |
'vocabulary': {'min': 0.70, 'target': 0.85}, | |
'structure': {'min': 0.75, 'target': 0.90}, | |
'cohesion': {'min': 0.65, 'target': 0.80}, | |
'clarity': {'min': 0.70, 'target': 0.85} | |
} | |
}, | |
'student_essay': { | |
'name': 'Trabajo Universitario', | |
'thresholds': { | |
'vocabulary': {'min': 0.60, 'target': 0.75}, | |
'structure': {'min': 0.65, 'target': 0.80}, | |
'cohesion': {'min': 0.55, 'target': 0.70}, | |
'clarity': {'min': 0.60, 'target': 0.75} | |
} | |
}, | |
'general_communication': { | |
'name': 'Comunicación General', | |
'thresholds': { | |
'vocabulary': {'min': 0.50, 'target': 0.65}, | |
'structure': {'min': 0.55, 'target': 0.70}, | |
'cohesion': {'min': 0.45, 'target': 0.60}, | |
'clarity': {'min': 0.50, 'target': 0.65} | |
} | |
} | |
} | |
#################################### | |
def display_current_situation_interface(lang_code, nlp_models, t): | |
""" | |
Interfaz simplificada con gráfico de radar para visualizar métricas. | |
""" | |
# Inicializar estados si no existen | |
if 'text_input' not in st.session_state: | |
st.session_state.text_input = "" | |
if 'text_area' not in st.session_state: # Añadir inicialización de text_area | |
st.session_state.text_area = "" | |
if 'show_results' not in st.session_state: | |
st.session_state.show_results = False | |
if 'current_doc' not in st.session_state: | |
st.session_state.current_doc = None | |
if 'current_metrics' not in st.session_state: | |
st.session_state.current_metrics = None | |
try: | |
# Container principal con dos columnas | |
with st.container(): | |
input_col, results_col = st.columns([1,2]) | |
with input_col: | |
# Text area con manejo de estado | |
text_input = st.text_area( | |
t.get('input_prompt', "Escribe o pega tu texto aquí:"), | |
height=400, | |
key="text_area", | |
value=st.session_state.text_input, | |
help="Este texto será analizado para darte recomendaciones personalizadas" | |
) | |
# Función para manejar cambios de texto | |
if text_input != st.session_state.text_input: | |
st.session_state.text_input = text_input | |
st.session_state.show_results = False | |
if st.button( | |
t.get('analyze_button', "Analizar mi escritura"), | |
type="primary", | |
disabled=not text_input.strip(), | |
use_container_width=True, | |
): | |
try: | |
with st.spinner(t.get('processing', "Analizando...")): | |
doc = nlp_models[lang_code](text_input) | |
metrics = analyze_text_dimensions(doc) | |
storage_success = store_current_situation_result( | |
username=st.session_state.username, | |
text=text_input, | |
metrics=metrics, | |
feedback=None | |
) | |
if not storage_success: | |
logger.warning("No se pudo guardar el análisis en la base de datos") | |
st.session_state.current_doc = doc | |
st.session_state.current_metrics = metrics | |
st.session_state.show_results = True | |
except Exception as e: | |
logger.error(f"Error en análisis: {str(e)}") | |
st.error(t.get('analysis_error', "Error al analizar el texto")) | |
# Mostrar resultados en la columna derecha | |
with results_col: | |
if st.session_state.show_results and st.session_state.current_metrics is not None: | |
# Primero los radio buttons para tipo de texto | |
st.markdown("### Tipo de texto") | |
text_type = st.radio( | |
"", | |
options=list(TEXT_TYPES.keys()), | |
format_func=lambda x: TEXT_TYPES[x]['name'], | |
horizontal=True, | |
key="text_type_radio", | |
help="Selecciona el tipo de texto para ajustar los criterios de evaluación" | |
) | |
st.session_state.current_text_type = text_type | |
# Luego mostrar los resultados | |
display_results( | |
metrics=st.session_state.current_metrics, | |
text_type=text_type | |
) | |
except Exception as e: | |
logger.error(f"Error en interfaz principal: {str(e)}") | |
st.error("Ocurrió un error al cargar la interfaz") | |
###################################3333 | |
def display_results(metrics, text_type=None): | |
""" | |
Muestra los resultados del análisis: métricas verticalmente y gráfico radar. | |
""" | |
try: | |
# Usar valor por defecto si no se especifica tipo | |
text_type = text_type or 'student_essay' | |
# Obtener umbrales según el tipo de texto | |
thresholds = TEXT_TYPES[text_type]['thresholds'] | |
# Crear dos columnas para las métricas y el gráfico | |
metrics_col, graph_col = st.columns([1, 1.5]) | |
# Columna de métricas | |
with metrics_col: | |
metrics_config = [ | |
{ | |
'label': "Vocabulario", | |
'key': 'vocabulary', | |
'value': metrics['vocabulary']['normalized_score'], | |
'help': "Riqueza y variedad del vocabulario", | |
'thresholds': thresholds['vocabulary'] | |
}, | |
{ | |
'label': "Estructura", | |
'key': 'structure', | |
'value': metrics['structure']['normalized_score'], | |
'help': "Organización y complejidad de oraciones", | |
'thresholds': thresholds['structure'] | |
}, | |
{ | |
'label': "Cohesión", | |
'key': 'cohesion', | |
'value': metrics['cohesion']['normalized_score'], | |
'help': "Conexión y fluidez entre ideas", | |
'thresholds': thresholds['cohesion'] | |
}, | |
{ | |
'label': "Claridad", | |
'key': 'clarity', | |
'value': metrics['clarity']['normalized_score'], | |
'help': "Facilidad de comprensión del texto", | |
'thresholds': thresholds['clarity'] | |
} | |
] | |
# Mostrar métricas | |
for metric in metrics_config: | |
value = metric['value'] | |
if value < metric['thresholds']['min']: | |
status = "⚠️ Por mejorar" | |
color = "inverse" | |
elif value < metric['thresholds']['target']: | |
status = "📈 Aceptable" | |
color = "off" | |
else: | |
status = "✅ Óptimo" | |
color = "normal" | |
st.metric( | |
metric['label'], | |
f"{value:.2f}", | |
f"{status} (Meta: {metric['thresholds']['target']:.2f})", | |
delta_color=color, | |
help=metric['help'] | |
) | |
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True) | |
# Gráfico radar en la columna derecha | |
with graph_col: | |
display_radar_chart(metrics_config, thresholds) | |
except Exception as e: | |
logger.error(f"Error mostrando resultados: {str(e)}") | |
st.error("Error al mostrar los resultados") | |
###################################### | |
def display_radar_chart(metrics_config, thresholds): | |
""" | |
Muestra el gráfico radar con los resultados. | |
""" | |
try: | |
# Preparar datos para el gráfico | |
categories = [m['label'] for m in metrics_config] | |
values_user = [m['value'] for m in metrics_config] | |
min_values = [m['thresholds']['min'] for m in metrics_config] | |
target_values = [m['thresholds']['target'] for m in metrics_config] | |
# Crear y configurar gráfico | |
fig = plt.figure(figsize=(8, 8)) | |
ax = fig.add_subplot(111, projection='polar') | |
# Configurar radar | |
angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] | |
angles += angles[:1] | |
values_user += values_user[:1] | |
min_values += min_values[:1] | |
target_values += target_values[:1] | |
# Configurar ejes | |
ax.set_xticks(angles[:-1]) | |
ax.set_xticklabels(categories, fontsize=10) | |
circle_ticks = np.arange(0, 1.1, 0.2) | |
ax.set_yticks(circle_ticks) | |
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) | |
ax.set_ylim(0, 1) | |
# Dibujar áreas de umbrales | |
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label='Mínimo', alpha=0.5) | |
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label='Meta', alpha=0.5) | |
ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1) | |
ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1) | |
# Dibujar valores del usuario | |
ax.plot(angles, values_user, '#3498db', linewidth=2, label='Tu escritura') | |
ax.fill(angles, values_user, '#3498db', alpha=0.2) | |
# Ajustar leyenda | |
ax.legend( | |
loc='upper right', | |
bbox_to_anchor=(0.1, 0.1), | |
fontsize=10, | |
frameon=True, | |
facecolor='white', | |
edgecolor='none', | |
shadow=True | |
) | |
plt.tight_layout() | |
st.pyplot(fig) | |
plt.close() | |
except Exception as e: | |
logger.error(f"Error mostrando gráfico radar: {str(e)}") | |
st.error("Error al mostrar el gráfico") | |
####################################### |