Spaces:
Running
Running
#v3/modules/studentact/current_situation_analysis.py | |
import streamlit as st | |
import matplotlib.pyplot as plt | |
import networkx as nx | |
import seaborn as sns | |
from collections import Counter | |
from itertools import combinations | |
import numpy as np | |
import matplotlib.patches as patches | |
import logging | |
# 2. Configuraci贸n b谩sica del logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.StreamHandler(), | |
logging.FileHandler('app.log') | |
] | |
) | |
# 3. Obtener el logger espec铆fico para este m贸dulo | |
logger = logging.getLogger(__name__) | |
######################################################################### | |
def correlate_metrics(scores): | |
""" | |
Ajusta los scores para mantener correlaciones l贸gicas entre m茅tricas. | |
Args: | |
scores: dict con scores iniciales de vocabulario, estructura, cohesi贸n y claridad | |
Returns: | |
dict con scores ajustados | |
""" | |
try: | |
# 1. Correlaci贸n estructura-cohesi贸n | |
# La cohesi贸n no puede ser menor que estructura * 0.7 | |
min_cohesion = scores['structure']['normalized_score'] * 0.7 | |
if scores['cohesion']['normalized_score'] < min_cohesion: | |
scores['cohesion']['normalized_score'] = min_cohesion | |
# 2. Correlaci贸n vocabulario-cohesi贸n | |
# La cohesi贸n l茅xica depende del vocabulario | |
vocab_influence = scores['vocabulary']['normalized_score'] * 0.6 | |
scores['cohesion']['normalized_score'] = max( | |
scores['cohesion']['normalized_score'], | |
vocab_influence | |
) | |
# 3. Correlaci贸n cohesi贸n-claridad | |
# La claridad no puede superar cohesi贸n * 1.2 | |
max_clarity = scores['cohesion']['normalized_score'] * 1.2 | |
if scores['clarity']['normalized_score'] > max_clarity: | |
scores['clarity']['normalized_score'] = max_clarity | |
# 4. Correlaci贸n estructura-claridad | |
# La claridad no puede superar estructura * 1.1 | |
struct_max_clarity = scores['structure']['normalized_score'] * 1.1 | |
scores['clarity']['normalized_score'] = min( | |
scores['clarity']['normalized_score'], | |
struct_max_clarity | |
) | |
# Normalizar todos los scores entre 0 y 1 | |
for metric in scores: | |
scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score'])) | |
return scores | |
except Exception as e: | |
logger.error(f"Error en correlate_metrics: {str(e)}") | |
return scores | |
########################################################################## | |
def analyze_text_dimensions(doc): | |
""" | |
Analiza las dimensiones principales del texto manteniendo correlaciones l贸gicas. | |
""" | |
try: | |
# Obtener scores iniciales | |
vocab_score, vocab_details = analyze_vocabulary_diversity(doc) | |
struct_score = analyze_structure(doc) | |
cohesion_score = analyze_cohesion(doc) | |
clarity_score, clarity_details = analyze_clarity(doc) | |
# Crear diccionario de scores inicial | |
scores = { | |
'vocabulary': { | |
'normalized_score': vocab_score, | |
'details': vocab_details | |
}, | |
'structure': { | |
'normalized_score': struct_score, | |
'details': None | |
}, | |
'cohesion': { | |
'normalized_score': cohesion_score, | |
'details': None | |
}, | |
'clarity': { | |
'normalized_score': clarity_score, | |
'details': clarity_details | |
} | |
} | |
# Ajustar correlaciones entre m茅tricas | |
adjusted_scores = correlate_metrics(scores) | |
# Logging para diagn贸stico | |
logger.info(f""" | |
Scores originales vs ajustados: | |
Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f} | |
Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f} | |
Cohesi贸n: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f} | |
Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f} | |
""") | |
return adjusted_scores | |
except Exception as e: | |
logger.error(f"Error en analyze_text_dimensions: {str(e)}") | |
return { | |
'vocabulary': {'normalized_score': 0.0, 'details': {}}, | |
'structure': {'normalized_score': 0.0, 'details': {}}, | |
'cohesion': {'normalized_score': 0.0, 'details': {}}, | |
'clarity': {'normalized_score': 0.0, 'details': {}} | |
} | |
############################################################################################# | |
def analyze_clarity(doc): | |
""" | |
Analiza la claridad del texto considerando m煤ltiples factores. | |
""" | |
try: | |
sentences = list(doc.sents) | |
if not sentences: | |
return 0.0, {} | |
# 1. Longitud de oraciones | |
sentence_lengths = [len(sent) for sent in sentences] | |
avg_length = sum(sentence_lengths) / len(sentences) | |
# Normalizar usando los umbrales definidos para clarity | |
length_score = normalize_score( | |
value=avg_length, | |
metric_type='clarity', | |
optimal_length=20, # Una oraci贸n ideal tiene ~20 palabras | |
min_threshold=0.60, # Consistente con METRIC_THRESHOLDS | |
target_threshold=0.75 # Consistente con METRIC_THRESHOLDS | |
) | |
# 2. An谩lisis de conectores | |
connector_count = 0 | |
connector_weights = { | |
'CCONJ': 1.0, # Coordinantes | |
'SCONJ': 1.2, # Subordinantes | |
'ADV': 0.8 # Adverbios conectivos | |
} | |
for token in doc: | |
if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']: | |
connector_count += connector_weights[token.pos_] | |
# Normalizar conectores por oraci贸n | |
connectors_per_sentence = connector_count / len(sentences) if sentences else 0 | |
connector_score = normalize_score( | |
value=connectors_per_sentence, | |
metric_type='clarity', | |
optimal_connections=1.5, # ~1.5 conectores por oraci贸n es 贸ptimo | |
min_threshold=0.60, | |
target_threshold=0.75 | |
) | |
# 3. Complejidad estructural | |
clause_count = 0 | |
for sent in sentences: | |
verbs = [token for token in sent if token.pos_ == 'VERB'] | |
clause_count += len(verbs) | |
complexity_raw = clause_count / len(sentences) if sentences else 0 | |
complexity_score = normalize_score( | |
value=complexity_raw, | |
metric_type='clarity', | |
optimal_depth=2.0, # ~2 cl谩usulas por oraci贸n es 贸ptimo | |
min_threshold=0.60, | |
target_threshold=0.75 | |
) | |
# 4. Densidad l茅xica | |
content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']]) | |
total_words = len([token for token in doc if token.is_alpha]) | |
density = content_words / total_words if total_words > 0 else 0 | |
density_score = normalize_score( | |
value=density, | |
metric_type='clarity', | |
optimal_connections=0.6, # 60% de palabras de contenido es 贸ptimo | |
min_threshold=0.60, | |
target_threshold=0.75 | |
) | |
# Score final ponderado | |
weights = { | |
'length': 0.3, | |
'connectors': 0.3, | |
'complexity': 0.2, | |
'density': 0.2 | |
} | |
clarity_score = ( | |
weights['length'] * length_score + | |
weights['connectors'] * connector_score + | |
weights['complexity'] * complexity_score + | |
weights['density'] * density_score | |
) | |
details = { | |
'length_score': length_score, | |
'connector_score': connector_score, | |
'complexity_score': complexity_score, | |
'density_score': density_score, | |
'avg_sentence_length': avg_length, | |
'connectors_per_sentence': connectors_per_sentence, | |
'density': density | |
} | |
# Agregar logging para diagn贸stico | |
logger.info(f""" | |
Scores de Claridad: | |
- Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras) | |
- Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oraci贸n) | |
- Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cl谩usulas) | |
- Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido) | |
- Score Final: {clarity_score:.2f} | |
""") | |
return clarity_score, details | |
except Exception as e: | |
logger.error(f"Error en analyze_clarity: {str(e)}") | |
return 0.0, {} | |
def analyze_vocabulary_diversity(doc): | |
"""An谩lisis mejorado de la diversidad y calidad del vocabulario""" | |
try: | |
# 1. An谩lisis b谩sico de diversidad | |
unique_lemmas = {token.lemma_ for token in doc if token.is_alpha} | |
total_words = len([token for token in doc if token.is_alpha]) | |
basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0 | |
# 2. An谩lisis de registro | |
academic_words = 0 | |
narrative_words = 0 | |
technical_terms = 0 | |
# Clasificar palabras por registro | |
for token in doc: | |
if token.is_alpha: | |
# Detectar t茅rminos acad茅micos/t茅cnicos | |
if token.pos_ in ['NOUN', 'VERB', 'ADJ']: | |
if any(parent.pos_ == 'NOUN' for parent in token.ancestors): | |
technical_terms += 1 | |
# Detectar palabras narrativas | |
if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']: | |
narrative_words += 1 | |
# 3. An谩lisis de complejidad sint谩ctica | |
avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents)) | |
# 4. Calcular score ponderado | |
weights = { | |
'diversity': 0.3, | |
'technical': 0.3, | |
'narrative': 0.2, | |
'complexity': 0.2 | |
} | |
scores = { | |
'diversity': basic_diversity, | |
'technical': technical_terms / total_words if total_words > 0 else 0, | |
'narrative': narrative_words / total_words if total_words > 0 else 0, | |
'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras | |
} | |
# Score final ponderado | |
final_score = sum(weights[key] * scores[key] for key in weights) | |
# Informaci贸n adicional para diagn贸stico | |
details = { | |
'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic', | |
'scores': scores | |
} | |
return final_score, details | |
except Exception as e: | |
logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}") | |
return 0.0, {} | |
def analyze_cohesion(doc): | |
"""Analiza la cohesi贸n textual""" | |
try: | |
sentences = list(doc.sents) | |
if len(sentences) < 2: | |
logger.warning("Texto demasiado corto para an谩lisis de cohesi贸n") | |
return 0.0 | |
# 1. An谩lisis de conexiones l茅xicas | |
lexical_connections = 0 | |
total_possible_connections = 0 | |
for i in range(len(sentences)-1): | |
# Obtener lemmas significativos (no stopwords) | |
sent1_words = {token.lemma_ for token in sentences[i] | |
if token.is_alpha and not token.is_stop} | |
sent2_words = {token.lemma_ for token in sentences[i+1] | |
if token.is_alpha and not token.is_stop} | |
if sent1_words and sent2_words: # Verificar que ambos conjuntos no est茅n vac铆os | |
intersection = len(sent1_words.intersection(sent2_words)) | |
total_possible = min(len(sent1_words), len(sent2_words)) | |
if total_possible > 0: | |
lexical_score = intersection / total_possible | |
lexical_connections += lexical_score | |
total_possible_connections += 1 | |
# 2. An谩lisis de conectores | |
connector_count = 0 | |
connector_types = { | |
'CCONJ': 1.0, # Coordinantes | |
'SCONJ': 1.2, # Subordinantes | |
'ADV': 0.8 # Adverbios conectivos | |
} | |
for token in doc: | |
if (token.pos_ in connector_types and | |
token.dep_ in ['cc', 'mark', 'advmod'] and | |
not token.is_stop): | |
connector_count += connector_types[token.pos_] | |
# 3. C谩lculo de scores normalizados | |
if total_possible_connections > 0: | |
lexical_cohesion = lexical_connections / total_possible_connections | |
else: | |
lexical_cohesion = 0 | |
if len(sentences) > 1: | |
connector_cohesion = min(1.0, connector_count / (len(sentences) - 1)) | |
else: | |
connector_cohesion = 0 | |
# 4. Score final ponderado | |
weights = { | |
'lexical': 0.7, | |
'connectors': 0.3 | |
} | |
cohesion_score = ( | |
weights['lexical'] * lexical_cohesion + | |
weights['connectors'] * connector_cohesion | |
) | |
# 5. Logging para diagn贸stico | |
logger.info(f""" | |
An谩lisis de Cohesi贸n: | |
- Conexiones l茅xicas encontradas: {lexical_connections} | |
- Conexiones posibles: {total_possible_connections} | |
- Lexical cohesion score: {lexical_cohesion} | |
- Conectores encontrados: {connector_count} | |
- Connector cohesion score: {connector_cohesion} | |
- Score final: {cohesion_score} | |
""") | |
return cohesion_score | |
except Exception as e: | |
logger.error(f"Error en analyze_cohesion: {str(e)}") | |
return 0.0 | |
def analyze_structure(doc): | |
try: | |
if len(doc) == 0: | |
return 0.0 | |
structure_scores = [] | |
for token in doc: | |
if token.dep_ == 'ROOT': | |
result = get_dependency_depths(token) | |
structure_scores.append(result['final_score']) | |
if not structure_scores: | |
return 0.0 | |
return min(1.0, sum(structure_scores) / len(structure_scores)) | |
except Exception as e: | |
logger.error(f"Error en analyze_structure: {str(e)}") | |
return 0.0 | |
# Funciones auxiliares de an谩lisis | |
def get_dependency_depths(token, depth=0, analyzed_tokens=None): | |
""" | |
Analiza la profundidad y calidad de las relaciones de dependencia. | |
Args: | |
token: Token a analizar | |
depth: Profundidad actual en el 谩rbol | |
analyzed_tokens: Set para evitar ciclos en el an谩lisis | |
Returns: | |
dict: Informaci贸n detallada sobre las dependencias | |
- depths: Lista de profundidades | |
- relations: Diccionario con tipos de relaciones encontradas | |
- complexity_score: Puntuaci贸n de complejidad | |
""" | |
if analyzed_tokens is None: | |
analyzed_tokens = set() | |
# Evitar ciclos | |
if token.i in analyzed_tokens: | |
return { | |
'depths': [], | |
'relations': {}, | |
'complexity_score': 0 | |
} | |
analyzed_tokens.add(token.i) | |
# Pesos para diferentes tipos de dependencias | |
dependency_weights = { | |
# Dependencias principales | |
'nsubj': 1.2, # Sujeto nominal | |
'obj': 1.1, # Objeto directo | |
'iobj': 1.1, # Objeto indirecto | |
'ROOT': 1.3, # Ra铆z | |
# Modificadores | |
'amod': 0.8, # Modificador adjetival | |
'advmod': 0.8, # Modificador adverbial | |
'nmod': 0.9, # Modificador nominal | |
# Estructuras complejas | |
'csubj': 1.4, # Cl谩usula como sujeto | |
'ccomp': 1.3, # Complemento clausal | |
'xcomp': 1.2, # Complemento clausal abierto | |
'advcl': 1.2, # Cl谩usula adverbial | |
# Coordinaci贸n y subordinaci贸n | |
'conj': 1.1, # Conjunci贸n | |
'cc': 0.7, # Coordinaci贸n | |
'mark': 0.8, # Marcador | |
# Otros | |
'det': 0.5, # Determinante | |
'case': 0.5, # Caso | |
'punct': 0.1 # Puntuaci贸n | |
} | |
# Inicializar resultados | |
current_result = { | |
'depths': [depth], | |
'relations': {token.dep_: 1}, | |
'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1) | |
} | |
# Analizar hijos recursivamente | |
for child in token.children: | |
child_result = get_dependency_depths(child, depth + 1, analyzed_tokens) | |
# Combinar profundidades | |
current_result['depths'].extend(child_result['depths']) | |
# Combinar relaciones | |
for rel, count in child_result['relations'].items(): | |
current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count | |
# Acumular score de complejidad | |
current_result['complexity_score'] += child_result['complexity_score'] | |
# Calcular m茅tricas adicionales | |
current_result['max_depth'] = max(current_result['depths']) | |
current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths']) | |
current_result['relation_diversity'] = len(current_result['relations']) | |
# Calcular score ponderado por tipo de estructura | |
structure_bonus = 0 | |
# Bonus por estructuras complejas | |
if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']: | |
structure_bonus += 0.3 | |
# Bonus por coordinaci贸n balanceada | |
if 'conj' in current_result['relations'] and 'cc' in current_result['relations']: | |
structure_bonus += 0.2 | |
# Bonus por modificaci贸n rica | |
if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2: | |
structure_bonus += 0.2 | |
current_result['final_score'] = ( | |
current_result['complexity_score'] * (1 + structure_bonus) | |
) | |
return current_result | |
def normalize_score(value, metric_type, | |
min_threshold=0.0, target_threshold=1.0, | |
range_factor=2.0, optimal_length=None, | |
optimal_connections=None, optimal_depth=None): | |
""" | |
Normaliza un valor considerando umbrales espec铆ficos por tipo de m茅trica. | |
Args: | |
value: Valor a normalizar | |
metric_type: Tipo de m茅trica ('vocabulary', 'structure', 'cohesion', 'clarity') | |
min_threshold: Valor m铆nimo aceptable | |
target_threshold: Valor objetivo | |
range_factor: Factor para ajustar el rango | |
optimal_length: Longitud 贸ptima (opcional) | |
optimal_connections: N煤mero 贸ptimo de conexiones (opcional) | |
optimal_depth: Profundidad 贸ptima de estructura (opcional) | |
Returns: | |
float: Valor normalizado entre 0 y 1 | |
""" | |
try: | |
# Definir umbrales por tipo de m茅trica | |
METRIC_THRESHOLDS = { | |
'vocabulary': { | |
'min': 0.60, | |
'target': 0.75, | |
'range_factor': 1.5 | |
}, | |
'structure': { | |
'min': 0.65, | |
'target': 0.80, | |
'range_factor': 1.8 | |
}, | |
'cohesion': { | |
'min': 0.55, | |
'target': 0.70, | |
'range_factor': 1.6 | |
}, | |
'clarity': { | |
'min': 0.60, | |
'target': 0.75, | |
'range_factor': 1.7 | |
} | |
} | |
# Validar valores negativos o cero | |
if value < 0: | |
logger.warning(f"Valor negativo recibido: {value}") | |
return 0.0 | |
# Manejar caso donde el valor es cero | |
if value == 0: | |
logger.warning("Valor cero recibido") | |
return 0.0 | |
# Obtener umbrales espec铆ficos para el tipo de m茅trica | |
thresholds = METRIC_THRESHOLDS.get(metric_type, { | |
'min': min_threshold, | |
'target': target_threshold, | |
'range_factor': range_factor | |
}) | |
# Identificar el valor de referencia a usar | |
if optimal_depth is not None: | |
reference = optimal_depth | |
elif optimal_connections is not None: | |
reference = optimal_connections | |
elif optimal_length is not None: | |
reference = optimal_length | |
else: | |
reference = thresholds['target'] | |
# Validar valor de referencia | |
if reference <= 0: | |
logger.warning(f"Valor de referencia inv谩lido: {reference}") | |
return 0.0 | |
# Calcular score basado en umbrales | |
if value < thresholds['min']: | |
# Valor por debajo del m铆nimo | |
score = (value / thresholds['min']) * 0.5 # M谩ximo 0.5 para valores bajo el m铆nimo | |
elif value < thresholds['target']: | |
# Valor entre m铆nimo y objetivo | |
range_size = thresholds['target'] - thresholds['min'] | |
progress = (value - thresholds['min']) / range_size | |
score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0 | |
else: | |
# Valor alcanza o supera el objetivo | |
score = 1.0 | |
# Penalizar valores muy por encima del objetivo | |
if value > (thresholds['target'] * thresholds['range_factor']): | |
excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor']) | |
score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos | |
# Asegurar que el resultado est茅 entre 0 y 1 | |
return max(0.0, min(1.0, score)) | |
except Exception as e: | |
logger.error(f"Error en normalize_score: {str(e)}") | |
return 0.0 | |
# Funciones de generaci贸n de gr谩ficos | |
def generate_sentence_graphs(doc): | |
"""Genera visualizaciones de estructura de oraciones""" | |
fig, ax = plt.subplots(figsize=(10, 6)) | |
# Implementar visualizaci贸n | |
plt.close() | |
return fig | |
def generate_word_connections(doc): | |
"""Genera red de conexiones de palabras""" | |
fig, ax = plt.subplots(figsize=(10, 6)) | |
# Implementar visualizaci贸n | |
plt.close() | |
return fig | |
def generate_connection_paths(doc): | |
"""Genera patrones de conexi贸n""" | |
fig, ax = plt.subplots(figsize=(10, 6)) | |
# Implementar visualizaci贸n | |
plt.close() | |
return fig | |
def create_vocabulary_network(doc): | |
""" | |
Genera el grafo de red de vocabulario. | |
""" | |
G = nx.Graph() | |
# Crear nodos para palabras significativas | |
words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop] | |
word_freq = Counter(words) | |
# A帽adir nodos con tama帽o basado en frecuencia | |
for word, freq in word_freq.items(): | |
G.add_node(word, size=freq) | |
# Crear conexiones basadas en co-ocurrencia | |
window_size = 5 | |
for i in range(len(words) - window_size): | |
window = words[i:i+window_size] | |
for w1, w2 in combinations(set(window), 2): | |
if G.has_edge(w1, w2): | |
G[w1][w2]['weight'] += 1 | |
else: | |
G.add_edge(w1, w2, weight=1) | |
# Crear visualizaci贸n | |
fig, ax = plt.subplots(figsize=(12, 8)) | |
pos = nx.spring_layout(G) | |
# Dibujar nodos | |
nx.draw_networkx_nodes(G, pos, | |
node_size=[G.nodes[node]['size']*100 for node in G.nodes], | |
node_color='lightblue', | |
alpha=0.7) | |
# Dibujar conexiones | |
nx.draw_networkx_edges(G, pos, | |
width=[G[u][v]['weight']*0.5 for u,v in G.edges], | |
alpha=0.5) | |
# A帽adir etiquetas | |
nx.draw_networkx_labels(G, pos) | |
plt.title("Red de Vocabulario") | |
plt.axis('off') | |
return fig | |
def create_syntax_complexity_graph(doc): | |
""" | |
Genera el diagrama de arco de complejidad sint谩ctica. | |
Muestra la estructura de dependencias con colores basados en la complejidad. | |
""" | |
try: | |
# Preparar datos para la visualizaci贸n | |
sentences = list(doc.sents) | |
if not sentences: | |
return None | |
# Crear figura para el gr谩fico | |
fig, ax = plt.subplots(figsize=(12, len(sentences) * 2)) | |
# Colores para diferentes niveles de profundidad | |
depth_colors = plt.cm.viridis(np.linspace(0, 1, 6)) | |
y_offset = 0 | |
max_x = 0 | |
for sent in sentences: | |
words = [token.text for token in sent] | |
x_positions = range(len(words)) | |
max_x = max(max_x, len(words)) | |
# Dibujar palabras | |
plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2) | |
plt.scatter(x_positions, [y_offset] * len(words), alpha=0) | |
# A帽adir texto | |
for i, word in enumerate(words): | |
plt.annotate(word, (i, y_offset), xytext=(0, -10), | |
textcoords='offset points', ha='center') | |
# Dibujar arcos de dependencia | |
for token in sent: | |
if token.dep_ != "ROOT": | |
# Calcular profundidad de dependencia | |
depth = 0 | |
current = token | |
while current.head != current: | |
depth += 1 | |
current = current.head | |
# Determinar posiciones para el arco | |
start = token.i - sent[0].i | |
end = token.head.i - sent[0].i | |
# Altura del arco basada en la distancia entre palabras | |
height = 0.5 * abs(end - start) | |
# Color basado en la profundidad | |
color = depth_colors[min(depth, len(depth_colors)-1)] | |
# Crear arco | |
arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset), | |
width=abs(end - start), | |
height=height, | |
angle=0, | |
theta1=0, | |
theta2=180, | |
color=color, | |
alpha=0.6) | |
ax.add_patch(arc) | |
y_offset -= 2 | |
# Configurar el gr谩fico | |
plt.xlim(-1, max_x) | |
plt.ylim(y_offset - 1, 1) | |
plt.axis('off') | |
plt.title("Complejidad Sint谩ctica") | |
return fig | |
except Exception as e: | |
logger.error(f"Error en create_syntax_complexity_graph: {str(e)}") | |
return None | |
def create_cohesion_heatmap(doc): | |
"""Genera un mapa de calor que muestra la cohesi贸n entre p谩rrafos/oraciones.""" | |
try: | |
sentences = list(doc.sents) | |
n_sentences = len(sentences) | |
if n_sentences < 2: | |
return None | |
similarity_matrix = np.zeros((n_sentences, n_sentences)) | |
for i in range(n_sentences): | |
for j in range(n_sentences): | |
sent1_lemmas = {token.lemma_ for token in sentences[i] | |
if token.is_alpha and not token.is_stop} | |
sent2_lemmas = {token.lemma_ for token in sentences[j] | |
if token.is_alpha and not token.is_stop} | |
if sent1_lemmas and sent2_lemmas: | |
intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aqu铆 | |
union = len(sent1_lemmas | sent2_lemmas) # Y aqu铆 | |
similarity_matrix[i, j] = intersection / union if union > 0 else 0 | |
# Crear visualizaci贸n | |
fig, ax = plt.subplots(figsize=(10, 8)) | |
sns.heatmap(similarity_matrix, | |
cmap='YlOrRd', | |
square=True, | |
xticklabels=False, | |
yticklabels=False, | |
cbar_kws={'label': 'Cohesi贸n'}, | |
ax=ax) | |
plt.title("Mapa de Cohesi贸n Textual") | |
plt.xlabel("Oraciones") | |
plt.ylabel("Oraciones") | |
plt.tight_layout() | |
return fig | |
except Exception as e: | |
logger.error(f"Error en create_cohesion_heatmap: {str(e)}") | |
return None | |