Spaces:
Running
Running
# modules/studentact/current_situation_interface.py | |
import streamlit as st | |
import logging | |
from ..utils.widget_utils import generate_unique_key | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from ..database.current_situation_mongo_db import store_current_situation_result | |
from ..database.writing_progress_mongo_db import ( | |
store_writing_baseline, | |
store_writing_progress, | |
get_writing_baseline, | |
get_writing_progress, | |
get_latest_writing_metrics | |
) | |
from .current_situation_analysis import ( | |
analyze_text_dimensions, | |
analyze_clarity, | |
analyze_vocabulary_diversity, | |
analyze_cohesion, | |
analyze_structure, | |
get_dependency_depths, | |
normalize_score, | |
generate_sentence_graphs, | |
generate_word_connections, | |
generate_connection_paths, | |
create_vocabulary_network, | |
create_syntax_complexity_graph, | |
create_cohesion_heatmap | |
) | |
# Configuración del estilo de matplotlib para el gráfico de radar | |
plt.rcParams['font.family'] = 'sans-serif' | |
plt.rcParams['axes.grid'] = True | |
plt.rcParams['axes.spines.top'] = False | |
plt.rcParams['axes.spines.right'] = False | |
logger = logging.getLogger(__name__) | |
#################################### | |
TEXT_TYPES = { | |
'academic_article': { | |
'name': 'Artículo Académico', | |
'thresholds': { | |
'vocabulary': {'min': 0.70, 'target': 0.85}, | |
'structure': {'min': 0.75, 'target': 0.90}, | |
'cohesion': {'min': 0.65, 'target': 0.80}, | |
'clarity': {'min': 0.70, 'target': 0.85} | |
} | |
}, | |
'student_essay': { | |
'name': 'Trabajo Universitario', | |
'thresholds': { | |
'vocabulary': {'min': 0.60, 'target': 0.75}, | |
'structure': {'min': 0.65, 'target': 0.80}, | |
'cohesion': {'min': 0.55, 'target': 0.70}, | |
'clarity': {'min': 0.60, 'target': 0.75} | |
} | |
}, | |
'general_communication': { | |
'name': 'Comunicación General', | |
'thresholds': { | |
'vocabulary': {'min': 0.50, 'target': 0.65}, | |
'structure': {'min': 0.55, 'target': 0.70}, | |
'cohesion': {'min': 0.45, 'target': 0.60}, | |
'clarity': {'min': 0.50, 'target': 0.65} | |
} | |
} | |
} | |
#################################### | |
ANALYSIS_DIMENSION_MAPPING = { | |
'morphosyntactic': { | |
'primary': ['vocabulary', 'clarity'], | |
'secondary': ['structure'], | |
'tools': ['arc_diagrams', 'word_repetition'] | |
}, | |
'semantic': { | |
'primary': ['cohesion', 'structure'], | |
'secondary': ['vocabulary'], | |
'tools': ['concept_graphs', 'semantic_networks'] | |
}, | |
'discourse': { | |
'primary': ['cohesion', 'structure'], | |
'secondary': ['clarity'], | |
'tools': ['comparative_analysis'] | |
} | |
} | |
#################################### | |
def display_current_situation_interface(lang_code, nlp_models, t): | |
""" | |
Interfaz con línea base y progreso lado a lado. | |
""" | |
# Inicialización de todos los estados necesarios | |
if 'baseline_text' not in st.session_state: | |
st.session_state.baseline_text = "" | |
if 'baseline_metrics' not in st.session_state: | |
st.session_state.baseline_metrics = None | |
if 'iteration_count' not in st.session_state: | |
st.session_state.iteration_count = 0 | |
# Intentar recuperar línea base guardada | |
try: | |
baseline = get_writing_baseline(st.session_state.username) | |
if baseline: | |
st.session_state.baseline_text = baseline['text'] | |
st.session_state.baseline_metrics = baseline['metrics'] | |
except Exception as e: | |
logger.warning(f"No se pudo recuperar la línea base: {str(e)}") | |
try: | |
# st.title("Análisis de Escritura") | |
# Crear dos columnas principales | |
col1, col2 = st.columns(2) | |
# Columna izquierda: Línea Base | |
with col1: | |
st.markdown("### Línea Base") | |
# Text area para línea base | |
baseline_text = st.text_area( | |
"Texto base", | |
value=st.session_state.baseline_text, | |
height=200, | |
key="baseline_area", | |
help="Este texto servirá como punto de referencia" | |
) | |
baseline_button = st.button( | |
"Establecer Línea Base", | |
type="primary", | |
use_container_width=True | |
) | |
# Análisis y métricas de línea base | |
if baseline_button: | |
with st.spinner("Analizando línea base..."): | |
doc = nlp_models[lang_code](baseline_text) | |
metrics = analyze_text_dimensions(doc) | |
success = store_writing_baseline( | |
username=st.session_state.username, | |
metrics=metrics, | |
text=baseline_text | |
) | |
if success: | |
st.session_state.baseline_text = baseline_text | |
st.session_state.baseline_metrics = metrics | |
st.success("Línea base establecida") | |
# Métricas justo debajo del text area | |
display_metrics_column(metrics, "Línea Base") | |
# Columna derecha: Progreso | |
with col2: | |
st.markdown(f"### Iteración #{st.session_state.iteration_count + 1}") | |
# Text area para iteración | |
current_text = st.text_area( | |
"Texto actual", | |
height=200, | |
key="current_area", | |
help="Escribe la nueva versión de tu texto" | |
) | |
progress_button = st.button( | |
"Analizar Progreso", | |
type="primary", | |
use_container_width=True | |
) | |
# Análisis y métricas de progreso | |
if progress_button: | |
if not st.session_state.baseline_metrics: | |
st.error("Primero debes establecer una línea base") | |
return | |
with st.spinner("Analizando progreso..."): | |
doc = nlp_models[lang_code](current_text) | |
current_metrics = analyze_text_dimensions(doc) | |
st.session_state.iteration_count += 1 | |
store_writing_progress( | |
username=st.session_state.username, | |
metrics=current_metrics, | |
text=current_text | |
) | |
# Métricas justo debajo del text area | |
display_metrics_column(current_metrics, f"Iteración #{st.session_state.iteration_count}") | |
# Expander con gráfico radar al final | |
with st.expander("Ver Comparación Visual", expanded=False): | |
if st.session_state.baseline_metrics and 'current_metrics' in locals(): | |
baseline_config = prepare_metrics_config(st.session_state.baseline_metrics) | |
current_config = prepare_metrics_config(current_metrics) | |
display_radar_chart( | |
metrics_config=current_config, | |
thresholds=TEXT_TYPES['student_essay']['thresholds'], | |
baseline_metrics=st.session_state.baseline_metrics | |
) | |
except Exception as e: | |
logger.error(f"Error en interfaz: {str(e)}") | |
st.error("Error al cargar la interfaz") | |
finally: | |
# Limpiar recursos si es necesario | |
plt.close('all') | |
################################### | |
def display_metrics_column(metrics, title): | |
"""Muestra columna de métricas con formato consistente""" | |
# st.markdown(f"#### Métricas {title}") | |
for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']: | |
value = metrics[dimension]['normalized_score'] | |
if value < 0.6: | |
status = "⚠️ Por mejorar" | |
color = "inverse" | |
elif value < 0.8: | |
status = "📈 Aceptable" | |
color = "off" | |
else: | |
status = "✅ Óptimo" | |
color = "normal" | |
st.metric( | |
dimension.title(), | |
f"{value:.2f}", | |
status, | |
delta_color=color | |
) | |
################################### | |
def display_baseline_interface(lang_code, nlp_models, t): | |
"""Interfaz para establecer línea base""" | |
try: | |
st.markdown("### Establecer Línea Base") | |
text_input = st.text_area( | |
"Texto para línea base", | |
height=300, | |
help="Este texto servirá como punto de referencia para medir tu progreso" | |
) | |
if st.button("Establecer como línea base", type="primary"): | |
with st.spinner("Analizando texto base..."): | |
# Analizar el texto | |
doc = nlp_models[lang_code](text_input) | |
metrics = analyze_text_dimensions(doc) | |
# Guardar como línea base | |
success = store_writing_baseline( | |
username=st.session_state.username, | |
metrics=metrics, | |
text=text_input | |
) | |
if success: | |
st.success("Línea base establecida con éxito") | |
# Mostrar el gráfico radar inicial | |
metrics_config = prepare_metrics_config(metrics) | |
display_radar_chart(metrics_config, TEXT_TYPES['student_essay']['thresholds']) | |
else: | |
st.error("Error al guardar la línea base") | |
except Exception as e: | |
logger.error(f"Error en interfaz de línea base: {str(e)}") | |
st.error("Error al establecer línea base") | |
################################### | |
def display_comparison_interface(lang_code, nlp_models, t): | |
"""Interfaz para comparar progreso""" | |
try: | |
# Obtener línea base | |
baseline = get_writing_baseline(st.session_state.username) | |
if not baseline: | |
st.warning("Primero debes establecer una línea base") | |
return | |
# Crear dos columnas | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown("### Línea Base") | |
st.text_area( | |
"Texto original", | |
value=baseline['text'], | |
disabled=True, | |
height=200 | |
) | |
with col2: | |
st.markdown("### Nuevo Texto") | |
current_text = st.text_area( | |
"Ingresa el nuevo texto a comparar", | |
height=200 | |
) | |
if st.button("Analizar progreso", type="primary"): | |
with st.spinner("Analizando progreso..."): | |
# Analizar texto actual | |
doc = nlp_models[lang_code](current_text) | |
current_metrics = analyze_text_dimensions(doc) | |
# Mostrar comparación | |
display_comparison_results( | |
baseline_metrics=baseline['metrics'], | |
current_metrics=current_metrics | |
) | |
# Opción para guardar progreso | |
if st.button("Guardar este progreso"): | |
success = store_writing_progress( | |
username=st.session_state.username, | |
metrics=current_metrics, | |
text=current_text | |
) | |
if success: | |
st.success("Progreso guardado exitosamente") | |
else: | |
st.error("Error al guardar el progreso") | |
except Exception as e: | |
logger.error(f"Error en interfaz de comparación: {str(e)}") | |
st.error("Error al mostrar comparación") | |
################################### | |
def display_comparison_results(baseline_metrics, current_metrics): | |
"""Muestra comparación entre línea base y métricas actuales""" | |
# Crear columnas para métricas y gráfico | |
metrics_col, graph_col = st.columns([1, 1.5]) | |
with metrics_col: | |
for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']: | |
baseline = baseline_metrics[dimension]['normalized_score'] | |
current = current_metrics[dimension]['normalized_score'] | |
delta = current - baseline | |
st.metric( | |
dimension.title(), | |
f"{current:.2f}", | |
f"{delta:+.2f}", | |
delta_color="normal" if delta >= 0 else "inverse" | |
) | |
# Sugerir herramientas de mejora | |
if delta < 0: | |
suggest_improvement_tools(dimension) | |
with graph_col: | |
display_radar_chart_comparison( | |
baseline_metrics, | |
current_metrics | |
) | |
################################### | |
def suggest_improvement_tools(dimension): | |
"""Sugiere herramientas basadas en la dimensión""" | |
suggestions = [] | |
for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items(): | |
if dimension in mapping['primary']: | |
suggestions.extend(mapping['tools']) | |
st.info(f"Herramientas sugeridas para mejorar {dimension}:") | |
for tool in suggestions: | |
st.write(f"- {tool}") | |
################################### | |
def prepare_metrics_config(metrics, text_type='student_essay'): | |
""" | |
Prepara la configuración de métricas en el mismo formato que display_results. | |
Args: | |
metrics: Diccionario con las métricas analizadas | |
text_type: Tipo de texto para los umbrales | |
Returns: | |
list: Lista de configuraciones de métricas | |
""" | |
# Obtener umbrales según el tipo de texto | |
thresholds = TEXT_TYPES[text_type]['thresholds'] | |
# Usar la misma estructura que en display_results | |
return [ | |
{ | |
'label': "Vocabulario", | |
'key': 'vocabulary', | |
'value': metrics['vocabulary']['normalized_score'], | |
'help': "Riqueza y variedad del vocabulario", | |
'thresholds': thresholds['vocabulary'] | |
}, | |
{ | |
'label': "Estructura", | |
'key': 'structure', | |
'value': metrics['structure']['normalized_score'], | |
'help': "Organización y complejidad de oraciones", | |
'thresholds': thresholds['structure'] | |
}, | |
{ | |
'label': "Cohesión", | |
'key': 'cohesion', | |
'value': metrics['cohesion']['normalized_score'], | |
'help': "Conexión y fluidez entre ideas", | |
'thresholds': thresholds['cohesion'] | |
}, | |
{ | |
'label': "Claridad", | |
'key': 'clarity', | |
'value': metrics['clarity']['normalized_score'], | |
'help': "Facilidad de comprensión del texto", | |
'thresholds': thresholds['clarity'] | |
} | |
] | |
################################### | |
def display_results(metrics, text_type=None): | |
""" | |
Muestra los resultados del análisis: métricas verticalmente y gráfico radar. | |
""" | |
try: | |
# Usar valor por defecto si no se especifica tipo | |
text_type = text_type or 'student_essay' | |
# Obtener umbrales según el tipo de texto | |
thresholds = TEXT_TYPES[text_type]['thresholds'] | |
# Crear dos columnas para las métricas y el gráfico | |
metrics_col, graph_col = st.columns([1, 1.5]) | |
# Columna de métricas | |
with metrics_col: | |
metrics_config = [ | |
{ | |
'label': "Vocabulario", | |
'key': 'vocabulary', | |
'value': metrics['vocabulary']['normalized_score'], | |
'help': "Riqueza y variedad del vocabulario", | |
'thresholds': thresholds['vocabulary'] | |
}, | |
{ | |
'label': "Estructura", | |
'key': 'structure', | |
'value': metrics['structure']['normalized_score'], | |
'help': "Organización y complejidad de oraciones", | |
'thresholds': thresholds['structure'] | |
}, | |
{ | |
'label': "Cohesión", | |
'key': 'cohesion', | |
'value': metrics['cohesion']['normalized_score'], | |
'help': "Conexión y fluidez entre ideas", | |
'thresholds': thresholds['cohesion'] | |
}, | |
{ | |
'label': "Claridad", | |
'key': 'clarity', | |
'value': metrics['clarity']['normalized_score'], | |
'help': "Facilidad de comprensión del texto", | |
'thresholds': thresholds['clarity'] | |
} | |
] | |
# Mostrar métricas | |
for metric in metrics_config: | |
value = metric['value'] | |
if value < metric['thresholds']['min']: | |
status = "⚠️ Por mejorar" | |
color = "inverse" | |
elif value < metric['thresholds']['target']: | |
status = "📈 Aceptable" | |
color = "off" | |
else: | |
status = "✅ Óptimo" | |
color = "normal" | |
st.metric( | |
metric['label'], | |
f"{value:.2f}", | |
f"{status} (Meta: {metric['thresholds']['target']:.2f})", | |
delta_color=color, | |
help=metric['help'] | |
) | |
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True) | |
# Gráfico radar en la columna derecha | |
with graph_col: | |
display_radar_chart(metrics_config, thresholds) | |
except Exception as e: | |
logger.error(f"Error mostrando resultados: {str(e)}") | |
st.error("Error al mostrar los resultados") | |
###################################### | |
def display_radar_chart(metrics_config, thresholds, baseline_metrics=None): | |
""" | |
Muestra el gráfico radar con los resultados. | |
Args: | |
metrics_config: Configuración actual de métricas | |
thresholds: Umbrales para las métricas | |
baseline_metrics: Métricas de línea base (opcional) | |
""" | |
try: | |
# Preparar datos para el gráfico | |
categories = [m['label'] for m in metrics_config] | |
values_current = [m['value'] for m in metrics_config] | |
min_values = [m['thresholds']['min'] for m in metrics_config] | |
target_values = [m['thresholds']['target'] for m in metrics_config] | |
# Crear y configurar gráfico | |
fig = plt.figure(figsize=(8, 8)) | |
ax = fig.add_subplot(111, projection='polar') | |
# Configurar radar | |
angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] | |
angles += angles[:1] | |
values_current += values_current[:1] | |
min_values += min_values[:1] | |
target_values += target_values[:1] | |
# Configurar ejes | |
ax.set_xticks(angles[:-1]) | |
ax.set_xticklabels(categories, fontsize=10) | |
circle_ticks = np.arange(0, 1.1, 0.2) | |
ax.set_yticks(circle_ticks) | |
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) | |
ax.set_ylim(0, 1) | |
# Dibujar áreas de umbrales | |
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, | |
label='Mínimo', alpha=0.5) | |
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, | |
label='Meta', alpha=0.5) | |
ax.fill_between(angles, target_values, [1]*len(angles), | |
color='#2ecc71', alpha=0.1) | |
ax.fill_between(angles, [0]*len(angles), min_values, | |
color='#e74c3c', alpha=0.1) | |
# Si hay línea base, dibujarla primero | |
if baseline_metrics is not None: | |
values_baseline = [baseline_metrics[m['key']]['normalized_score'] | |
for m in metrics_config] | |
values_baseline += values_baseline[:1] | |
ax.plot(angles, values_baseline, '#888888', linewidth=2, | |
label='Línea base', linestyle='--') | |
ax.fill(angles, values_baseline, '#888888', alpha=0.1) | |
# Dibujar valores actuales | |
label = 'Actual' if baseline_metrics else 'Tu escritura' | |
color = '#3498db' if baseline_metrics else '#3498db' | |
ax.plot(angles, values_current, color, linewidth=2, label=label) | |
ax.fill(angles, values_current, color, alpha=0.2) | |
# Ajustar leyenda | |
legend_handles = [] | |
if baseline_metrics: | |
legend_handles.extend([ | |
plt.Line2D([], [], color='#888888', linestyle='--', | |
label='Línea base'), | |
plt.Line2D([], [], color='#3498db', label='Actual') | |
]) | |
else: | |
legend_handles.extend([ | |
plt.Line2D([], [], color='#3498db', label='Tu escritura') | |
]) | |
legend_handles.extend([ | |
plt.Line2D([], [], color='#e74c3c', linestyle='--', label='Mínimo'), | |
plt.Line2D([], [], color='#2ecc71', linestyle='--', label='Meta') | |
]) | |
ax.legend( | |
handles=legend_handles, | |
loc='upper right', | |
bbox_to_anchor=(1.3, 1.1), | |
fontsize=10, | |
frameon=True, | |
facecolor='white', | |
edgecolor='none', | |
shadow=True | |
) | |
plt.tight_layout() | |
st.pyplot(fig) | |
plt.close() | |
except Exception as e: | |
logger.error(f"Error mostrando gráfico radar: {str(e)}") | |
st.error("Error al mostrar el gráfico") | |
####################################### |