Spaces:
Running
Running
# modules/studentact/current_situation_interface.py | |
import streamlit as st | |
import logging | |
from ..utils.widget_utils import generate_unique_key | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from ..database.current_situation_mongo_db import store_current_situation_result | |
from .current_situation_analysis import ( | |
analyze_text_dimensions, | |
analyze_clarity, | |
analyze_reference_clarity, | |
analyze_vocabulary_diversity, | |
analyze_cohesion, | |
analyze_structure, | |
get_dependency_depths, | |
normalize_score, | |
generate_sentence_graphs, | |
generate_word_connections, | |
generate_connection_paths, | |
create_vocabulary_network, | |
create_syntax_complexity_graph, | |
create_cohesion_heatmap, | |
) | |
# Configuraci贸n del estilo de matplotlib para el gr谩fico de radar | |
plt.rcParams['font.family'] = 'sans-serif' | |
plt.rcParams['axes.grid'] = True | |
plt.rcParams['axes.spines.top'] = False | |
plt.rcParams['axes.spines.right'] = False | |
logger = logging.getLogger(__name__) | |
#################################### | |
def display_current_situation_interface(lang_code, nlp_models, t): | |
""" | |
Interfaz simplificada con gr谩fico de radar para visualizar m茅tricas. | |
""" | |
try: | |
# Inicializar estados si no existen | |
if 'text_input' not in st.session_state: | |
st.session_state.text_input = "" | |
if 'show_results' not in st.session_state: | |
st.session_state.show_results = False | |
if 'current_doc' not in st.session_state: | |
st.session_state.current_doc = None | |
if 'current_metrics' not in st.session_state: | |
st.session_state.current_metrics = None | |
# Estilos CSS para mejorar la presentaci贸n | |
st.markdown(""" | |
<style> | |
.main-title { | |
margin-bottom: 2rem; | |
} | |
.stTextArea textarea { | |
border-radius: 0.5rem; | |
} | |
div[data-testid="column"] { | |
background-color: transparent; | |
} | |
.metric-container { | |
background-color: #f8f9fa; | |
padding: 1rem; | |
border-radius: 0.5rem; | |
margin-bottom: 1rem; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
st.markdown('<h2 class="main-title">An谩lisis Inicial de Escritura</h2>', unsafe_allow_html=True) | |
# Container principal con dos columnas | |
with st.container(): | |
input_col, results_col = st.columns([1,2]) | |
with input_col: | |
# Funci贸n para manejar cambios en el texto | |
def on_text_change(): | |
st.session_state.text_input = st.session_state.text_area | |
st.session_state.show_results = False | |
# Text area con manejo de estado | |
text_input = st.text_area( | |
t.get('input_prompt', "Escribe o pega tu texto aqu铆:"), | |
height=400, | |
key="text_area", | |
value=st.session_state.text_input, | |
on_change=on_text_change, | |
help="Este texto ser谩 analizado para darte recomendaciones personalizadas" | |
) | |
if st.button( | |
t.get('analyze_button', "Analizar mi escritura"), | |
type="primary", | |
disabled=not text_input.strip(), | |
use_container_width=True, | |
): | |
try: | |
with st.spinner(t.get('processing', "Analizando...")): | |
doc = nlp_models[lang_code](text_input) | |
metrics = analyze_text_dimensions(doc) | |
# Guardar en MongoDB | |
storage_success = store_current_situation_result( | |
username=st.session_state.username, | |
text=text_input, | |
metrics=metrics, | |
feedback=None | |
) | |
if not storage_success: | |
logger.warning("No se pudo guardar el an谩lisis en la base de datos") | |
st.session_state.current_doc = doc | |
st.session_state.current_metrics = metrics | |
st.session_state.show_results = True | |
st.session_state.text_input = text_input | |
except Exception as e: | |
logger.error(f"Error en an谩lisis: {str(e)}") | |
st.error(t.get('analysis_error', "Error al analizar el texto")) | |
# Mostrar resultados en la columna derecha | |
with results_col: | |
if st.session_state.show_results and st.session_state.current_metrics is not None: | |
# Container para los resultados | |
with st.container(): | |
st.markdown('<div class="metric-container">', unsafe_allow_html=True) | |
# Crear columnas para las m茅tricas con espaciado uniforme | |
c1, c2, c3, c4 = st.columns([1.2, 1.2, 1.2, 1.2]) | |
with c1: | |
st.metric( | |
"Vocabulario", | |
f"{st.session_state.current_metrics['vocabulary']['normalized_score']:.2f}", | |
"Meta: 1.00", | |
delta_color="off", | |
help="Riqueza y variedad del vocabulario utilizado" | |
) | |
with c2: | |
st.metric( | |
"Estructura", | |
f"{st.session_state.current_metrics['structure']['normalized_score']:.2f}", | |
"Meta: 1.00", | |
delta_color="off", | |
help="Organizaci贸n y complejidad de las oraciones" | |
) | |
with c3: | |
st.metric( | |
"Cohesi贸n", | |
f"{st.session_state.current_metrics['cohesion']['normalized_score']:.2f}", | |
"Meta: 1.00", | |
delta_color="off", | |
help="Conexi贸n y fluidez entre ideas" | |
) | |
with c4: | |
st.metric( | |
"Claridad", | |
f"{st.session_state.current_metrics['clarity']['normalized_score']:.2f}", | |
"Meta: 1.00", | |
delta_color="off", | |
help="Facilidad de comprensi贸n del texto" | |
) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Mostrar el gr谩fico de radar | |
display_radar_chart(st.session_state.current_metrics) | |
except Exception as e: | |
logger.error(f"Error en interfaz: {str(e)}") | |
st.error("Ocurri贸 un error. Por favor, intente de nuevo.") | |
def display_radar_chart(metrics): | |
""" | |
Muestra un gr谩fico de radar con las m茅tricas del usuario y el patr贸n ideal. | |
""" | |
try: | |
# Container con proporci贸n reducida | |
with st.container(): | |
# M茅tricas en la parte superior | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
st.metric("Vocabulario", f"{metrics['vocabulary']['normalized_score']:.2f}", "1.00") | |
with col2: | |
st.metric("Estructura", f"{metrics['structure']['normalized_score']:.2f}", "1.00") | |
with col3: | |
st.metric("Cohesi贸n", f"{metrics['cohesion']['normalized_score']:.2f}", "1.00") | |
with col4: | |
st.metric("Claridad", f"{metrics['clarity']['normalized_score']:.2f}", "1.00") | |
# Contenedor para el gr谩fico con ancho controlado | |
_, graph_col, _ = st.columns([1,2,1]) | |
with graph_col: | |
# Preparar datos | |
categories = ['Vocabulario', 'Estructura', 'Cohesi贸n', 'Claridad'] | |
values_user = [ | |
metrics['vocabulary']['normalized_score'], | |
metrics['structure']['normalized_score'], | |
metrics['cohesion']['normalized_score'], | |
metrics['clarity']['normalized_score'] | |
] | |
values_pattern = [1.0, 1.0, 1.0, 1.0] # Patr贸n ideal | |
# Crear figura m谩s compacta | |
fig = plt.figure(figsize=(6, 6)) | |
ax = fig.add_subplot(111, projection='polar') | |
# N煤mero de variables | |
num_vars = len(categories) | |
# Calcular 谩ngulos | |
angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)] | |
angles += angles[:1] | |
# Extender valores para cerrar pol铆gonos | |
values_user += values_user[:1] | |
values_pattern += values_pattern[:1] | |
# Configurar ejes y etiquetas | |
ax.set_xticks(angles[:-1]) | |
ax.set_xticklabels(categories, fontsize=8) | |
# C铆rculos conc茅ntricos y etiquetas | |
circle_ticks = np.arange(0, 1.1, 0.2) # Reducido a 5 niveles | |
ax.set_yticks(circle_ticks) | |
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) | |
ax.set_ylim(0, 1) | |
# Dibujar patr贸n ideal | |
ax.plot(angles, values_pattern, 'g--', linewidth=1, label='Patr贸n', alpha=0.5) | |
ax.fill(angles, values_pattern, 'g', alpha=0.1) | |
# Dibujar valores del usuario | |
ax.plot(angles, values_user, 'b-', linewidth=2, label='Tu escritura') | |
ax.fill(angles, values_user, 'b', alpha=0.2) | |
# Leyenda | |
ax.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1), fontsize=8) | |
# Ajustes finales | |
plt.tight_layout() | |
st.pyplot(fig) | |
plt.close() | |
except Exception as e: | |
logger.error(f"Error generando gr谩fico de radar: {str(e)}") | |
st.error("Error al generar la visualizaci贸n") |