Spaces:
Running
Running
# modules/discourse/discourse/discourse_interface.py | |
import streamlit as st | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import plotly.graph_objects as go | |
import logging | |
import io # <-- Añade esta importación | |
from ..utils.widget_utils import generate_unique_key | |
from .discourse_process import perform_discourse_analysis | |
from ..database.chat_mongo_db import store_chat_history | |
from ..database.discourse_mongo_db import store_student_discourse_result | |
logger = logging.getLogger(__name__) | |
############################################################################################# | |
def display_discourse_interface(lang_code, nlp_models, discourse_t): | |
""" | |
Interfaz para el análisis del discurso | |
Args: | |
lang_code: Código del idioma actual | |
nlp_models: Modelos de spaCy cargados | |
discourse_t: Diccionario de traducciones | |
""" | |
try: | |
# 1. Inicializar estado si no existe | |
if 'discourse_state' not in st.session_state: | |
st.session_state.discourse_state = { | |
'analysis_count': 0, | |
'last_analysis': None, | |
'current_files': None | |
} | |
# 2. Título y descripción | |
# st.subheader(discourse_t.get('discourse_title', 'Análisis del Discurso')) | |
st.info(discourse_t.get('initial_instruction', | |
'Cargue dos archivos de texto para realizar un análisis comparativo del discurso.')) | |
# 3. Área de carga de archivos | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown(discourse_t.get('file1_label', "**Documento 1 (Patrón)**")) | |
uploaded_file1 = st.file_uploader( | |
discourse_t.get('file_uploader1', "Cargar archivo 1"), | |
type=['txt'], | |
key=f"discourse_file1_{st.session_state.discourse_state['analysis_count']}" | |
) | |
with col2: | |
st.markdown(discourse_t.get('file2_label', "**Documento 2 (Comparación)**")) | |
uploaded_file2 = st.file_uploader( | |
discourse_t.get('file_uploader2', "Cargar archivo 2"), | |
type=['txt'], | |
key=f"discourse_file2_{st.session_state.discourse_state['analysis_count']}" | |
) | |
# 4. Botón de análisis | |
col1, col2, col3 = st.columns([1,2,1]) | |
with col1: | |
analyze_button = st.button( | |
discourse_t.get('discourse_analyze_button', 'Comparar textos'), | |
key=generate_unique_key("discourse", "analyze_button"), | |
type="primary", | |
icon="🔍", | |
disabled=not (uploaded_file1 and uploaded_file2), | |
use_container_width=True | |
) | |
# 5. Proceso de análisis | |
if analyze_button and uploaded_file1 and uploaded_file2: | |
try: | |
with st.spinner(discourse_t.get('processing', 'Procesando análisis...')): | |
# Leer contenido de archivos | |
text1 = uploaded_file1.getvalue().decode('utf-8') | |
text2 = uploaded_file2.getvalue().decode('utf-8') | |
# Realizar análisis | |
result = perform_discourse_analysis( | |
text1, | |
text2, | |
nlp_models[lang_code], | |
lang_code | |
) | |
if result['success']: | |
# Guardar estado | |
st.session_state.discourse_result = result | |
st.session_state.discourse_state['analysis_count'] += 1 | |
st.session_state.discourse_state['current_files'] = ( | |
uploaded_file1.name, | |
uploaded_file2.name | |
) | |
# Guardar en base de datos | |
if store_student_discourse_result( | |
st.session_state.username, | |
text1, | |
text2, | |
result | |
): | |
st.success(discourse_t.get('success_message', 'Análisis guardado correctamente')) | |
# Mostrar resultados | |
display_discourse_results(result, lang_code, discourse_t) | |
else: | |
st.error(discourse_t.get('error_message', 'Error al guardar el análisis')) | |
else: | |
st.error(discourse_t.get('analysis_error', 'Error en el análisis')) | |
except Exception as e: | |
logger.error(f"Error en análisis del discurso: {str(e)}") | |
st.error(discourse_t.get('error_processing', f'Error procesando archivos: {str(e)}')) | |
# 6. Mostrar resultados previos | |
elif 'discourse_result' in st.session_state and st.session_state.discourse_result is not None: | |
if st.session_state.discourse_state.get('current_files'): | |
st.info( | |
discourse_t.get('current_analysis_message', 'Mostrando análisis de los archivos: {} y {}') | |
.format(*st.session_state.discourse_state['current_files']) | |
) | |
display_discourse_results( | |
st.session_state.discourse_result, | |
lang_code, | |
discourse_t | |
) | |
except Exception as e: | |
logger.error(f"Error general en interfaz del discurso: {str(e)}") | |
st.error(discourse_t.get('general_error', 'Se produjo un error. Por favor, intente de nuevo.')) | |
##################################################################################################################### | |
def display_discourse_results(result, lang_code, discourse_t): | |
""" | |
Muestra los resultados del análisis del discurso | |
Versión actualizada con: | |
- Un solo expander para interpretación | |
- Botón de descarga combinado | |
- Sin mensaje de "próxima actualización" | |
- Estilo consistente con semantic_interface | |
""" | |
if not result.get('success'): | |
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles')) | |
return | |
# Estilo CSS unificado | |
st.markdown(""" | |
<style> | |
.concept-table { | |
display: flex; | |
flex-wrap: wrap; | |
gap: 10px; | |
margin-bottom: 20px; | |
} | |
.concept-item { | |
background-color: #f0f2f6; | |
border-radius: 5px; | |
padding: 8px 12px; | |
display: flex; | |
align-items: center; | |
gap: 8px; | |
} | |
.concept-name { | |
font-weight: bold; | |
} | |
.concept-freq { | |
color: #666; | |
font-size: 0.9em; | |
} | |
.download-btn-container { | |
display: flex; | |
justify-content: center; | |
margin-top: 15px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Mostrar conceptos clave para ambos documentos | |
col1, col2 = st.columns(2) | |
# Documento 1 | |
with col1: | |
st.subheader(discourse_t.get('compare_doc1_title', 'Documento 1')) | |
if 'key_concepts1' in result: | |
df1 = pd.DataFrame( | |
result['key_concepts1'], | |
columns=[discourse_t.get('concept', 'Concepto'), discourse_t.get('frequency', 'Frecuencia')] | |
) | |
st.write( | |
'<div class="concept-table">' + | |
''.join([ | |
f'<div class="concept-item"><span class="concept-name">{concept}</span>' | |
f'<span class="concept-freq">({freq:.2f})</span></div>' | |
for concept, freq in df1.values | |
]) + "</div>", | |
unsafe_allow_html=True | |
) | |
if 'graph1' in result and result['graph1']: | |
st.image(result['graph1'], use_container_width=True) | |
# Documento 2 | |
with col2: | |
st.subheader(discourse_t.get('compare_doc2_title', 'Documento 2')) | |
if 'key_concepts2' in result: | |
df2 = pd.DataFrame( | |
result['key_concepts2'], | |
columns=[discourse_t.get('concept', 'Concepto'), discourse_t.get('frequency', 'Frecuencia')] | |
) | |
st.write( | |
'<div class="concept-table">' + | |
''.join([ | |
f'<div class="concept-item"><span class="concept-name">{concept}</span>' | |
f'<span class="concept-freq">({freq:.2f})</span></div>' | |
for concept, freq in df2.values | |
]) + "</div>", | |
unsafe_allow_html=True | |
) | |
if 'graph2' in result and result['graph2']: | |
st.image(result['graph2'], use_container_width=True) | |
# Sección unificada de interpretación (como semantic_interface) | |
st.markdown(""" | |
<style> | |
div[data-testid="stExpander"] div[role="button"] p { | |
text-align: center; | |
font-weight: bold; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
with st.expander("📊 " + discourse_t.get('semantic_graph_interpretation', "Interpretación de los gráficos")): | |
st.markdown(f""" | |
- 🔀 {discourse_t.get('compare_arrow_meaning', 'Las flechas indican la dirección de la relación entre conceptos')} | |
- 🎨 {discourse_t.get('compare_color_meaning', 'Los colores más intensos indican conceptos más centrales en el texto')} | |
- ⭕ {discourse_t.get('compare_size_meaning', 'El tamaño de los nodos representa la frecuencia del concepto')} | |
- ↔️ {discourse_t.get('compare_thickness_meaning', 'El grosor de las líneas indica la fuerza de la conexión')} | |
""") | |
# Botón de descarga combinado (para ambas imágenes) | |
if 'graph1' in result and 'graph2' in result and result['graph1'] and result['graph2']: | |
# Crear figura combinada | |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 10)) | |
# Mostrar primer gráfico | |
if isinstance(result['graph1'], bytes): | |
img1 = plt.imread(io.BytesIO(result['graph1'])) | |
ax1.imshow(img1) | |
ax1.axis('off') | |
ax1.set_title(discourse_t.get('compare_doc1_title', 'Documento 1')) | |
# Mostrar segundo gráfico | |
if isinstance(result['graph2'], bytes): | |
img2 = plt.imread(io.BytesIO(result['graph2'])) | |
ax2.imshow(img2) | |
ax2.axis('off') | |
ax2.set_title(discourse_t.get('compare_doc2_title', 'Documento 2')) | |
plt.tight_layout() | |
# Convertir a bytes | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight') | |
buf.seek(0) | |
# Botón de descarga | |
st.markdown('<div class="download-btn-container">', unsafe_allow_html=True) | |
st.download_button( | |
label="📥 " + discourse_t.get('download_both_graphs', "Descargar ambos gráficos"), | |
data=buf, | |
file_name="comparison_graphs.png", | |
mime="image/png", | |
use_container_width=True | |
) | |
st.markdown('</div>', unsafe_allow_html=True) | |
plt.close() |