|
|
|
|
|
import streamlit as st |
|
import pandas as pd |
|
import plotly.graph_objects as go |
|
import logging |
|
from ..utils.widget_utils import generate_unique_key |
|
from .discourse_process import perform_discourse_analysis |
|
from ..database.chat_mongo_db import store_chat_history |
|
from ..database.discourse_mongo_db import store_student_discourse_result |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def display_discourse_results(result, lang_code, discourse_t): |
|
""" |
|
Muestra los resultados del an谩lisis del discurso con conceptos en formato horizontal |
|
""" |
|
if not result.get('success'): |
|
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles')) |
|
return |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
.concepts-container { |
|
display: flex; |
|
flex-wrap: nowrap; |
|
gap: 8px; |
|
padding: 12px; |
|
background-color: #f8f9fa; |
|
border-radius: 8px; |
|
overflow-x: auto; |
|
margin-bottom: 15px; |
|
} |
|
.concept-item { |
|
background-color: white; |
|
border-radius: 4px; |
|
padding: 6px 10px; |
|
display: inline-flex; |
|
align-items: center; |
|
gap: 4px; |
|
box-shadow: 0 1px 2px rgba(0,0,0,0.1); |
|
flex-shrink: 0; |
|
} |
|
.concept-name { |
|
font-weight: 500; |
|
color: #1f2937; |
|
font-size: 0.85em; |
|
} |
|
.concept-freq { |
|
color: #6b7280; |
|
font-size: 0.75em; |
|
} |
|
.graph-container { |
|
background-color: white; |
|
border-radius: 8px; |
|
padding: 15px; |
|
box-shadow: 0 1px 3px rgba(0,0,0,0.1); |
|
margin-top: 10px; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
with st.expander(discourse_t.get('doc1_title', 'Documento 1'), expanded=True): |
|
st.subheader(discourse_t.get('key_concepts', 'Conceptos Clave')) |
|
if 'key_concepts1' in result: |
|
|
|
concepts_html = '<div class="concepts-container">' |
|
for concept, freq in result['key_concepts1']: |
|
concepts_html += f""" |
|
<div class="concept-item"> |
|
<span class="concept-name">{concept}</span> |
|
<span class="concept-freq">({freq:.2f})</span> |
|
</div> |
|
""" |
|
concepts_html += '</div>' |
|
st.markdown(concepts_html, unsafe_allow_html=True) |
|
|
|
if 'graph1' in result: |
|
with st.container(): |
|
st.markdown('<div class="graph-container">', unsafe_allow_html=True) |
|
st.pyplot(result['graph1']) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
else: |
|
st.warning(discourse_t.get('graph_not_available', 'Gr谩fico no disponible')) |
|
else: |
|
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles')) |
|
|
|
|
|
with col2: |
|
with st.expander(discourse_t.get('doc2_title', 'Documento 2'), expanded=True): |
|
st.subheader(discourse_t.get('key_concepts', 'Conceptos Clave')) |
|
if 'key_concepts2' in result: |
|
|
|
concepts_html = '<div class="concepts-container">' |
|
for concept, freq in result['key_concepts2']: |
|
concepts_html += f""" |
|
<div class="concept-item"> |
|
<span class="concept-name">{concept}</span> |
|
<span class="concept-freq">({freq:.2f})</span> |
|
</div> |
|
""" |
|
concepts_html += '</div>' |
|
st.markdown(concepts_html, unsafe_allow_html=True) |
|
|
|
if 'graph2' in result: |
|
with st.container(): |
|
st.markdown('<div class="graph-container">', unsafe_allow_html=True) |
|
st.pyplot(result['graph2']) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
else: |
|
st.warning(discourse_t.get('graph_not_available', 'Gr谩fico no disponible')) |
|
else: |
|
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles')) |
|
|
|
|
|
st.info(discourse_t.get('comparison_note', |
|
'La funcionalidad de comparaci贸n detallada estar谩 disponible en una pr贸xima actualizaci贸n.')) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def display_discourse_results(result, lang_code, discourse_t): |
|
""" |
|
Muestra los resultados del an谩lisis del discurso |
|
""" |
|
if not result.get('success'): |
|
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles')) |
|
return |
|
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
with st.expander(discourse_t.get('doc1_title', 'Documento 1'), expanded=True): |
|
st.subheader(discourse_t.get('key_concepts', 'Conceptos Clave')) |
|
if 'key_concepts1' in result: |
|
df1 = pd.DataFrame(result['key_concepts1'], columns=['Concepto', 'Frecuencia']) |
|
df1['Frecuencia'] = df1['Frecuencia'].round(2) |
|
st.table(df1) |
|
|
|
if 'graph1' in result: |
|
st.pyplot(result['graph1']) |
|
else: |
|
st.warning(discourse_t.get('graph_not_available', 'Gr谩fico no disponible')) |
|
else: |
|
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles')) |
|
|
|
|
|
with col2: |
|
with st.expander(discourse_t.get('doc2_title', 'Documento 2'), expanded=True): |
|
st.subheader(discourse_t.get('key_concepts', 'Conceptos Clave')) |
|
if 'key_concepts2' in result: |
|
df2 = pd.DataFrame(result['key_concepts2'], columns=['Concepto', 'Frecuencia']) |
|
df2['Frecuencia'] = df2['Frecuencia'].round(2) |
|
st.table(df2) |
|
|
|
if 'graph2' in result: |
|
st.pyplot(result['graph2']) |
|
else: |
|
st.warning(discourse_t.get('graph_not_available', 'Gr谩fico no disponible')) |
|
else: |
|
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles')) |
|
|
|
|
|
st.info(discourse_t.get('comparison_note', |
|
'La funcionalidad de comparaci贸n detallada estar谩 disponible en una pr贸xima actualizaci贸n.')) |