Spaces:
Running
Running
# modules/chatbot/chat_process.py | |
import os | |
import anthropic | |
import logging | |
from typing import Dict, Generator | |
logger = logging.getLogger(__name__) | |
#################################################### | |
class ChatProcessor: | |
def __init__(self): | |
"""Inicializa el procesador de chat con la API de Claude""" | |
api_key = os.environ.get("ANTHROPIC_API_KEY") | |
if not api_key: | |
raise ValueError("No se encontr贸 la clave API de Anthropic. Aseg煤rate de configurarla en las variables de entorno.") | |
self.client = anthropic.Anthropic(api_key=api_key) | |
self.conversation_history = [] | |
def process_chat_input(self, message: str, lang_code: str) -> Generator[str, None, None]: | |
"""Procesa el mensaje y genera una respuesta""" | |
try: | |
# Agregar mensaje a la historia | |
self.conversation_history.append({"role": "user", "content": message}) | |
# Generar respuesta usando la API de Claude | |
response = self.client.messages.create( | |
model="claude-3-5-sonnet-20241022", | |
messages=self.conversation_history, | |
max_tokens=8000, # A帽adimos este par谩metro requerido | |
temperature=0.7, | |
) | |
# Procesar la respuesta | |
claude_response = response.content[0].text | |
self.conversation_history.append({"role": "assistant", "content": claude_response}) | |
# Mantener un historial limitado | |
if len(self.conversation_history) > 10: | |
self.conversation_history = self.conversation_history[-10:] | |
# Dividir la respuesta en palabras para streaming | |
words = claude_response.split() | |
for word in words: | |
yield word + " " | |
except Exception as e: | |
logger.error(f"Error en process_chat_input: {str(e)}") | |
yield f"Error: {str(e)}" | |
def get_conversation_history(self) -> list: | |
"""Retorna el historial de la conversaci贸n""" | |
return self.conversation_history | |
def clear_history(self): | |
"""Limpia el historial de la conversaci贸n""" | |
self.conversation_history = [] |