Spaces:
Running
Running
# modules/database/discourse_mongo_db.py | |
import matplotlib.pyplot as plt # Añadir esta importación al inicio | |
import io | |
import base64 | |
from .mongo_db import ( | |
get_collection, | |
insert_document, | |
find_documents, | |
update_document, | |
delete_document | |
) | |
from datetime import datetime, timezone | |
import logging | |
logger = logging.getLogger(__name__) | |
COLLECTION_NAME = 'student_discourse_analysis' | |
def store_student_discourse_result(username, text1, text2, analysis_result): | |
""" | |
Guarda el resultado del análisis de discurso comparativo en MongoDB. | |
""" | |
try: | |
# Los gráficos ya vienen en bytes, solo necesitamos codificar a base64 | |
graph1_data = None | |
graph2_data = None | |
combined_graph_data = None | |
if 'graph1' in analysis_result and analysis_result['graph1'] is not None: | |
try: | |
graph1_data = base64.b64encode(analysis_result['graph1']).decode('utf-8') | |
except Exception as e: | |
logger.error(f"Error al codificar gráfico 1: {str(e)}") | |
if 'graph2' in analysis_result and analysis_result['graph2'] is not None: | |
try: | |
graph2_data = base64.b64encode(analysis_result['graph2']).decode('utf-8') | |
except Exception as e: | |
logger.error(f"Error al codificar gráfico 2: {str(e)}") | |
if 'combined_graph' in analysis_result and analysis_result['combined_graph'] is not None: | |
try: | |
combined_graph_data = base64.b64encode(analysis_result['combined_graph']).decode('utf-8') | |
except Exception as e: | |
logger.error(f"Error al codificar gráfico combinado: {str(e)}") | |
# Crear documento para MongoDB | |
analysis_document = { | |
'username': username, | |
'timestamp': datetime.now(timezone.utc).isoformat(), | |
'text1': text1, | |
'text2': text2, | |
'analysis_type': 'discourse', | |
'key_concepts1': analysis_result.get('key_concepts1', []), | |
'key_concepts2': analysis_result.get('key_concepts2', []), | |
'graph1': graph1_data, | |
'graph2': graph2_data, | |
'combined_graph': combined_graph_data | |
} | |
# Insertar en MongoDB | |
result = insert_document(COLLECTION_NAME, analysis_document) | |
if result: | |
logger.info(f"Análisis del discurso guardado con ID: {result} para el usuario: {username}") | |
return True | |
logger.error("No se pudo insertar el documento en MongoDB") | |
return False | |
except Exception as e: | |
logger.error(f"Error al guardar el análisis del discurso: {str(e)}") | |
return False | |
################################################################################# | |
def get_student_discourse_analysis(username, limit=10): | |
""" | |
Recupera los análisis del discurso de un estudiante. | |
""" | |
try: | |
# Obtener la colección | |
collection = get_collection(COLLECTION_NAME) | |
if collection is None: # Cambiado de if not collection a if collection is None | |
logger.error("No se pudo obtener la colección discourse") | |
return [] | |
# Consulta | |
query = { | |
"username": username, | |
"analysis_type": "discourse" | |
} | |
# Campos a recuperar | |
projection = { | |
"timestamp": 1, | |
"combined_graph": 1, | |
"_id": 1 | |
} | |
# Ejecutar consulta | |
try: | |
cursor = collection.find(query, projection).sort("timestamp", -1) | |
if limit: | |
cursor = cursor.limit(limit) | |
# Convertir cursor a lista | |
results = list(cursor) | |
logger.info(f"Recuperados {len(results)} análisis del discurso para {username}") | |
return results | |
except Exception as db_error: | |
logger.error(f"Error en la consulta a MongoDB: {str(db_error)}") | |
return [] | |
except Exception as e: | |
logger.error(f"Error recuperando análisis del discurso: {str(e)}") | |
return [] | |
##################################################################################### | |
def get_student_discourse_data(username): | |
""" | |
Obtiene un resumen de los análisis del discurso de un estudiante. | |
""" | |
try: | |
analyses = get_student_discourse_analysis(username, limit=None) | |
formatted_analyses = [] | |
for analysis in analyses: | |
formatted_analysis = { | |
'timestamp': analysis['timestamp'], | |
'text1': analysis.get('text1', ''), | |
'text2': analysis.get('text2', ''), | |
'key_concepts1': analysis.get('key_concepts1', []), | |
'key_concepts2': analysis.get('key_concepts2', []) | |
} | |
formatted_analyses.append(formatted_analysis) | |
return {'entries': formatted_analyses} | |
except Exception as e: | |
logger.error(f"Error al obtener datos del discurso: {str(e)}") | |
return {'entries': []} | |
def update_student_discourse_analysis(analysis_id, update_data): | |
""" | |
Actualiza un análisis del discurso existente. | |
""" | |
try: | |
query = {"_id": analysis_id} | |
update = {"$set": update_data} | |
return update_document(COLLECTION_NAME, query, update) | |
except Exception as e: | |
logger.error(f"Error al actualizar análisis del discurso: {str(e)}") | |
return False | |
def delete_student_discourse_analysis(analysis_id): | |
""" | |
Elimina un análisis del discurso. | |
""" | |
try: | |
query = {"_id": analysis_id} | |
return delete_document(COLLECTION_NAME, query) | |
except Exception as e: | |
logger.error(f"Error al eliminar análisis del discurso: {str(e)}") | |
return False |