Spaces:
Running
Running
# modules/text_analysis/semantic_analysis.py | |
# 1. Importaciones estándar del sistema | |
import logging | |
import io | |
import base64 | |
from collections import Counter, defaultdict | |
# 2. Importaciones de terceros | |
import streamlit as st | |
import spacy | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
# Solo configurar si no hay handlers ya configurados | |
logger = logging.getLogger(__name__) | |
# 4. Importaciones locales | |
from .stopwords import ( | |
process_text, | |
get_custom_stopwords, | |
get_stopwords_for_spacy | |
) | |
# Define colors for grammatical categories | |
POS_COLORS = { | |
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', | |
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', | |
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', | |
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', | |
} | |
POS_TRANSLATIONS = { | |
'es': { | |
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', | |
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', | |
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', | |
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', | |
'VERB': 'Verbo', 'X': 'Otro', | |
}, | |
'en': { | |
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', | |
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', | |
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', | |
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', | |
'VERB': 'Verb', 'X': 'Other', | |
}, | |
'fr': { | |
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', | |
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', | |
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', | |
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', | |
'VERB': 'Verbe', 'X': 'Autre', | |
} | |
} | |
ENTITY_LABELS = { | |
'es': { | |
"Personas": "lightblue", | |
"Lugares": "lightcoral", | |
"Inventos": "lightgreen", | |
"Fechas": "lightyellow", | |
"Conceptos": "lightpink" | |
}, | |
'en': { | |
"People": "lightblue", | |
"Places": "lightcoral", | |
"Inventions": "lightgreen", | |
"Dates": "lightyellow", | |
"Concepts": "lightpink" | |
}, | |
'fr': { | |
"Personnes": "lightblue", | |
"Lieux": "lightcoral", | |
"Inventions": "lightgreen", | |
"Dates": "lightyellow", | |
"Concepts": "lightpink" | |
} | |
} | |
def fig_to_bytes(fig): | |
"""Convierte una figura de matplotlib a bytes.""" | |
try: | |
buf = io.BytesIO() | |
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') | |
buf.seek(0) | |
return buf.getvalue() | |
except Exception as e: | |
logger.error(f"Error en fig_to_bytes: {str(e)}") | |
return None | |
########################################################### | |
def perform_semantic_analysis(text, nlp, lang_code): | |
""" | |
Realiza el análisis semántico completo del texto. | |
""" | |
if not text or not nlp or not lang_code: | |
logger.error("Parámetros inválidos para el análisis semántico") | |
return { | |
'success': False, | |
'error': 'Parámetros inválidos' | |
} | |
try: | |
logger.info(f"Starting semantic analysis for language: {lang_code}") | |
# Procesar texto y remover stopwords | |
doc = nlp(text) | |
if not doc: | |
logger.error("Error al procesar el texto con spaCy") | |
return { | |
'success': False, | |
'error': 'Error al procesar el texto' | |
} | |
# Identificar conceptos clave | |
logger.info("Identificando conceptos clave...") | |
stopwords = get_custom_stopwords(lang_code) | |
key_concepts = identify_key_concepts(doc, stopwords=stopwords) | |
if not key_concepts: | |
logger.warning("No se identificaron conceptos clave") | |
return { | |
'success': False, | |
'error': 'No se pudieron identificar conceptos clave' | |
} | |
# Crear grafo de conceptos | |
logger.info(f"Creando grafo de conceptos con {len(key_concepts)} conceptos...") | |
concept_graph = create_concept_graph(doc, key_concepts) | |
if not concept_graph.nodes(): | |
logger.warning("Se creó un grafo vacío") | |
return { | |
'success': False, | |
'error': 'No se pudo crear el grafo de conceptos' | |
} | |
# Visualizar grafo | |
logger.info("Visualizando grafo...") | |
plt.clf() # Limpiar figura actual | |
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) | |
# Convertir a bytes | |
logger.info("Convirtiendo grafo a bytes...") | |
graph_bytes = fig_to_bytes(concept_graph_fig) | |
if not graph_bytes: | |
logger.error("Error al convertir grafo a bytes") | |
return { | |
'success': False, | |
'error': 'Error al generar visualización' | |
} | |
# Limpiar recursos | |
plt.close(concept_graph_fig) | |
plt.close('all') | |
result = { | |
'success': True, | |
'key_concepts': key_concepts, | |
'concept_graph': graph_bytes | |
} | |
logger.info("Análisis semántico completado exitosamente") | |
return result | |
except Exception as e: | |
logger.error(f"Error in perform_semantic_analysis: {str(e)}") | |
plt.close('all') # Asegurarse de limpiar recursos | |
return { | |
'success': False, | |
'error': str(e) | |
} | |
finally: | |
plt.close('all') # Asegurar limpieza incluso si hay error | |
############################################################ | |
def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3): | |
""" | |
Identifica conceptos clave en el texto. | |
""" | |
try: | |
word_freq = Counter() | |
for token in doc: | |
if (token.lemma_.lower() not in stopwords and | |
len(token.lemma_) >= min_length and | |
token.is_alpha and | |
not token.is_punct and | |
not token.like_num): | |
word_freq[token.lemma_.lower()] += 1 | |
concepts = [(word, freq) for word, freq in word_freq.items() | |
if freq >= min_freq] | |
concepts.sort(key=lambda x: x[1], reverse=True) | |
logger.info(f"Identified {len(concepts)} key concepts") | |
return concepts[:10] | |
except Exception as e: | |
logger.error(f"Error en identify_key_concepts: {str(e)}") | |
return [] | |
######################################################################## | |
def create_concept_graph(doc, key_concepts): | |
""" | |
Crea un grafo de relaciones entre conceptos. | |
Args: | |
doc: Documento procesado por spaCy | |
key_concepts: Lista de tuplas (concepto, frecuencia) | |
Returns: | |
nx.Graph: Grafo de conceptos | |
""" | |
try: | |
G = nx.Graph() | |
# Crear un conjunto de conceptos clave para búsqueda rápida | |
concept_words = {concept[0].lower() for concept in key_concepts} | |
# Añadir nodos al grafo | |
for concept, freq in key_concepts: | |
G.add_node(concept.lower(), weight=freq) | |
# Analizar cada oración | |
for sent in doc.sents: | |
# Obtener conceptos en la oración actual | |
current_concepts = [] | |
for token in sent: | |
if token.lemma_.lower() in concept_words: | |
current_concepts.append(token.lemma_.lower()) | |
# Crear conexiones entre conceptos en la misma oración | |
for i, concept1 in enumerate(current_concepts): | |
for concept2 in current_concepts[i+1:]: | |
if concept1 != concept2: | |
# Si ya existe la arista, incrementar el peso | |
if G.has_edge(concept1, concept2): | |
G[concept1][concept2]['weight'] += 1 | |
# Si no existe, crear nueva arista con peso 1 | |
else: | |
G.add_edge(concept1, concept2, weight=1) | |
return G | |
except Exception as e: | |
logger.error(f"Error en create_concept_graph: {str(e)}") | |
# Retornar un grafo vacío en caso de error | |
return nx.Graph() | |
############################################################################### | |
def visualize_concept_graph(G, lang_code): | |
""" | |
Visualiza el grafo de conceptos con nodos coloreados y flechas direccionales. | |
Args: | |
G: networkx.Graph - Grafo de conceptos | |
lang_code: str - Código del idioma | |
Returns: | |
matplotlib.figure.Figure - Figura del grafo | |
""" | |
try: | |
# Crear nueva figura con mayor tamaño y definir los ejes explícitamente | |
fig, ax = plt.subplots(figsize=(15, 10)) | |
if not G.nodes(): | |
logger.warning("Grafo vacío, retornando figura vacía") | |
return fig | |
# Convertir grafo no dirigido a dirigido para mostrar flechas | |
DG = nx.DiGraph(G) | |
# Calcular centralidad de los nodos para el color | |
centrality = nx.degree_centrality(G) | |
# Calcular layout con más espacio | |
pos = nx.spring_layout(DG, k=2, iterations=50) | |
# Calcular factor de escala basado en número de nodos | |
num_nodes = len(DG.nodes()) | |
scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200 | |
# Obtener pesos ajustados | |
node_weights = [DG.nodes[node].get('weight', 1) * scale_factor for node in DG.nodes()] | |
edge_weights = [DG[u][v].get('weight', 1) for u, v in DG.edges()] | |
# Crear mapa de colores basado en centralidad | |
node_colors = [plt.cm.viridis(centrality[node]) for node in DG.nodes()] | |
# Dibujar nodos | |
nodes = nx.draw_networkx_nodes(DG, pos, | |
node_size=node_weights, | |
node_color=node_colors, | |
alpha=0.7, | |
ax=ax) | |
# Dibujar aristas con flechas | |
edges = nx.draw_networkx_edges(DG, pos, | |
width=edge_weights, | |
alpha=0.6, | |
edge_color='gray', | |
arrows=True, | |
arrowsize=20, | |
arrowstyle='->', | |
connectionstyle='arc3,rad=0.2', | |
ax=ax) | |
# Ajustar tamaño de fuente según número de nodos | |
font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8 | |
# Dibujar etiquetas con fondo blanco para mejor legibilidad | |
labels = nx.draw_networkx_labels(DG, pos, | |
font_size=font_size, | |
font_weight='bold', | |
bbox=dict(facecolor='white', | |
edgecolor='none', | |
alpha=0.7), | |
ax=ax) | |
# Añadir leyenda de centralidad correctamente | |
sm = plt.cm.ScalarMappable(cmap=plt.cm.viridis, | |
norm=plt.Normalize(vmin=0, vmax=1)) | |
sm.set_array([]) | |
plt.colorbar(sm, ax=ax, label='Centralidad del concepto') | |
plt.title("Red de conceptos relacionados", pad=20, fontsize=14) | |
ax.set_axis_off() | |
# Ajustar el layout para que la barra de color no se superponga | |
plt.tight_layout() | |
return fig | |
except Exception as e: | |
logger.error(f"Error en visualize_concept_graph: {str(e)}") | |
return plt.figure() # Retornar figura vacía en caso de error | |
######################################################################## | |
def create_entity_graph(entities): | |
G = nx.Graph() | |
for entity_type, entity_list in entities.items(): | |
for entity in entity_list: | |
G.add_node(entity, type=entity_type) | |
for i, entity1 in enumerate(entity_list): | |
for entity2 in entity_list[i+1:]: | |
G.add_edge(entity1, entity2) | |
return G | |
############################################################# | |
def visualize_entity_graph(G, lang_code): | |
fig, ax = plt.subplots(figsize=(12, 8)) | |
pos = nx.spring_layout(G) | |
for entity_type, color in ENTITY_LABELS[lang_code].items(): | |
node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] | |
nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) | |
nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) | |
nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) | |
ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) | |
ax.axis('off') | |
plt.tight_layout() | |
return fig | |
################################################################################# | |
def create_topic_graph(topics, doc): | |
G = nx.Graph() | |
for topic in topics: | |
G.add_node(topic, weight=doc.text.count(topic)) | |
for i, topic1 in enumerate(topics): | |
for topic2 in topics[i+1:]: | |
weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) | |
if weight > 0: | |
G.add_edge(topic1, topic2, weight=weight) | |
return G | |
def visualize_topic_graph(G, lang_code): | |
fig, ax = plt.subplots(figsize=(12, 8)) | |
pos = nx.spring_layout(G) | |
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] | |
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) | |
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) | |
edge_weights = [G[u][v]['weight'] for u, v in G.edges()] | |
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) | |
ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) | |
ax.axis('off') | |
plt.tight_layout() | |
return fig | |
########################################################################################### | |
def generate_summary(doc, lang_code): | |
sentences = list(doc.sents) | |
summary = sentences[:3] # Toma las primeras 3 oraciones como resumen | |
return " ".join([sent.text for sent in summary]) | |
def extract_entities(doc, lang_code): | |
entities = defaultdict(list) | |
for ent in doc.ents: | |
if ent.label_ in ENTITY_LABELS[lang_code]: | |
entities[ent.label_].append(ent.text) | |
return dict(entities) | |
def analyze_sentiment(doc, lang_code): | |
positive_words = sum(1 for token in doc if token.sentiment > 0) | |
negative_words = sum(1 for token in doc if token.sentiment < 0) | |
total_words = len(doc) | |
if positive_words > negative_words: | |
return "Positivo" | |
elif negative_words > positive_words: | |
return "Negativo" | |
else: | |
return "Neutral" | |
def extract_topics(doc, lang_code): | |
vectorizer = TfidfVectorizer(stop_words='english', max_features=5) | |
tfidf_matrix = vectorizer.fit_transform([doc.text]) | |
feature_names = vectorizer.get_feature_names_out() | |
return list(feature_names) | |
# Asegúrate de que todas las funciones necesarias estén exportadas | |
__all__ = [ | |
'perform_semantic_analysis', | |
'identify_key_concepts', | |
'create_concept_graph', | |
'visualize_concept_graph', | |
'fig_to_bytes', # Faltaba esta coma | |
'ENTITY_LABELS', | |
'POS_COLORS', | |
'POS_TRANSLATIONS' | |
] |