Spaces:
Running
Running
import spacy | |
from spacy import displacy | |
from streamlit.components.v1 import html | |
import base64 | |
from collections import Counter | |
import re | |
from ..utils.widget_utils import generate_unique_key | |
import logging | |
logger = logging.getLogger(__name__) | |
# Define colors for grammatical categories | |
POS_COLORS = { | |
'ADJ': '#FFA07A', # Light Salmon | |
'ADP': '#98FB98', # Pale Green | |
'ADV': '#87CEFA', # Light Sky Blue | |
'AUX': '#DDA0DD', # Plum | |
'CCONJ': '#F0E68C', # Khaki | |
'DET': '#FFB6C1', # Light Pink | |
'INTJ': '#FF6347', # Tomato | |
'NOUN': '#90EE90', # Light Green | |
'NUM': '#FAFAD2', # Light Goldenrod Yellow | |
'PART': '#D3D3D3', # Light Gray | |
'PRON': '#FFA500', # Orange | |
'PROPN': '#20B2AA', # Light Sea Green | |
'SCONJ': '#DEB887', # Burlywood | |
'SYM': '#7B68EE', # Medium Slate Blue | |
'VERB': '#FF69B4', # Hot Pink | |
'X': '#A9A9A9', # Dark Gray | |
} | |
POS_TRANSLATIONS = { | |
'es': { | |
'ADJ': 'Adjetivo', | |
'ADP': 'Preposición', | |
'ADV': 'Adverbio', | |
'AUX': 'Auxiliar', | |
'CCONJ': 'Conjunción Coordinante', | |
'DET': 'Determinante', | |
'INTJ': 'Interjección', | |
'NOUN': 'Sustantivo', | |
'NUM': 'Número', | |
'PART': 'Partícula', | |
'PRON': 'Pronombre', | |
'PROPN': 'Nombre Propio', | |
'SCONJ': 'Conjunción Subordinante', | |
'SYM': 'Símbolo', | |
'VERB': 'Verbo', | |
'X': 'Otro', | |
}, | |
'en': { | |
'ADJ': 'Adjective', | |
'ADP': 'Preposition', | |
'ADV': 'Adverb', | |
'AUX': 'Auxiliary', | |
'CCONJ': 'Coordinating Conjunction', | |
'DET': 'Determiner', | |
'INTJ': 'Interjection', | |
'NOUN': 'Noun', | |
'NUM': 'Number', | |
'PART': 'Particle', | |
'PRON': 'Pronoun', | |
'PROPN': 'Proper Noun', | |
'SCONJ': 'Subordinating Conjunction', | |
'SYM': 'Symbol', | |
'VERB': 'Verb', | |
'X': 'Other', | |
}, | |
'fr': { | |
'ADJ': 'Adjectif', | |
'ADP': 'Préposition', | |
'ADV': 'Adverbe', | |
'AUX': 'Auxiliaire', | |
'CCONJ': 'Conjonction de Coordination', | |
'DET': 'Déterminant', | |
'INTJ': 'Interjection', | |
'NOUN': 'Nom', | |
'NUM': 'Nombre', | |
'PART': 'Particule', | |
'PRON': 'Pronom', | |
'PROPN': 'Nom Propre', | |
'SCONJ': 'Conjonction de Subordination', | |
'SYM': 'Symbole', | |
'VERB': 'Verbe', | |
'X': 'Autre', | |
} | |
} | |
def generate_arc_diagram(doc): | |
arc_diagrams = [] | |
for sent in doc.sents: | |
words = [token.text for token in sent] | |
# Calculamos el ancho del SVG basado en la longitud de la oración | |
svg_width = max(100, len(words) * 120) | |
# Altura fija para cada oración | |
svg_height = 300 # Controla la altura del SVG | |
# Renderizamos el diagrama de dependencias | |
html = displacy.render(sent, style="dep", options={ | |
"add_lemma":False, # Introduced in version 2.2.4, this argument prints the lemma’s in a separate row below the token texts. | |
"arrow_spacing": 12, #This argument is used for adjusting the spacing between arrows in px to avoid overlaps. | |
"arrow_width": 2, #This argument is used for adjusting the width of arrow head in px. | |
"arrow_stroke": 2, #This argument is used for adjusting the width of arrow path in px. | |
"collapse_punct": True, #It attaches punctuation to the tokens. | |
"collapse_phrases": False, # This argument merges the noun phrases into one token. | |
"compact":False, # If you will take this argument as true, you will get the “Compact mode” with square arrows that takes up less space. | |
"color": "#ffffff", | |
"bg": "#0d6efd", | |
"compact": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_). | |
"distance": 100, # Aumentamos la distancia entre palabras | |
"fine_grained": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_). | |
"offset_x": 0, # This argument is used for spacing on left side of the SVG in px. | |
"word_spacing": 25, #This argument is used for adjusting the vertical spacing between words and arcs in px. | |
}) | |
# Ajustamos el tamaño del SVG y el viewBox | |
html = re.sub(r'width="(\d+)"', f'width="{svg_width}"', html) | |
html = re.sub(r'height="(\d+)"', f'height="{svg_height}"', html) | |
html = re.sub(r'<svg', f'<svg viewBox="0 0 {svg_width} {svg_height}"', html) | |
#html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) | |
#html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html) | |
# Movemos todo el contenido hacia abajo | |
#html = html.replace('<g', f'<g transform="translate(50, {svg_height - 200})"') | |
# Movemos todo el contenido hacia arriba para eliminar el espacio vacío en la parte superior | |
html = re.sub(r'<g transform="translate\((\d+),(\d+)\)"', | |
lambda m: f'<g transform="translate({m.group(1)},10)"', html) | |
# Ajustamos la posición de las etiquetas de las palabras | |
html = html.replace('dy="1em"', 'dy="-1em"') | |
# Ajustamos la posición de las etiquetas POS | |
html = html.replace('dy="0.25em"', 'dy="-3em"') | |
# Aumentamos el tamaño de la fuente para las etiquetas POS | |
html = html.replace('.displacy-tag {', '.displacy-tag { font-size: 14px;') | |
# Rotamos las etiquetas de las palabras para mejorar la legibilidad | |
#html = html.replace('class="displacy-label"', 'class="displacy-label" transform="rotate(30)"') | |
arc_diagrams.append(html) | |
return arc_diagrams | |
################################################################################################################################## | |
def perform_advanced_morphosyntactic_analysis(text, nlp): | |
logger.info(f"Performing advanced morphosyntactic analysis on text: {text[:50]}...") | |
try: | |
doc = nlp(text) | |
arc_diagram = generate_arc_diagram(doc) | |
logger.info(f"Arc diagram generated: {arc_diagram is not None}") | |
logger.debug(f"Arc diagram content: {arc_diagram[:500] if arc_diagram else 'None'}") | |
# Asegurar que arc_diagram sea una lista | |
if not isinstance(arc_diagram, list): | |
logger.warning("Warning: arc_diagram is not a list. Type: %s", type(arc_diagram)) | |
arc_diagram = [arc_diagram] if arc_diagram else [] | |
result = { | |
'arc_diagram': arc_diagram, | |
'pos_analysis': perform_pos_analysis(doc), | |
'morphological_analysis': perform_morphological_analysis(doc), | |
'sentence_structure': analyze_sentence_structure(doc), | |
'repeated_words': highlight_repeated_words(doc) | |
} | |
logger.info(f"Analysis result keys: {result.keys()}") | |
logger.info(f"Arc diagram in result: {result['arc_diagram'] is not None}") | |
return result | |
except Exception as e: | |
logger.error(f"Error in perform_advanced_morphosyntactic_analysis: {str(e)}", exc_info=True) | |
return None | |
########################################################### | |
def perform_pos_analysis(doc): | |
pos_counts = Counter(token.pos_ for token in doc) | |
total_tokens = len(doc) | |
pos_analysis = [] | |
for pos, count in pos_counts.items(): | |
percentage = (count / total_tokens) * 100 | |
pos_analysis.append({ | |
'pos': pos, | |
'count': count, | |
'percentage': round(percentage, 2), | |
'examples': [token.text for token in doc if token.pos_ == pos][:5] # Primeros 5 ejemplos | |
}) | |
return sorted(pos_analysis, key=lambda x: x['count'], reverse=True) | |
def perform_morphological_analysis(doc): | |
return [{ | |
'text': token.text, | |
'lemma': token.lemma_, | |
'pos': token.pos_, | |
'tag': token.tag_, | |
'dep': token.dep_, | |
'shape': token.shape_, | |
'is_alpha': token.is_alpha, | |
'is_stop': token.is_stop, | |
'morph': str(token.morph) | |
} for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']] | |
def analyze_sentence_structure(doc): | |
return [{ | |
'text': sent.text, | |
'root': sent.root.text, | |
'root_pos': sent.root.pos_, | |
'num_tokens': len(sent), | |
'num_words': len([token for token in sent if token.is_alpha]), | |
'subjects': [token.text for token in sent if "subj" in token.dep_], | |
'objects': [token.text for token in sent if "obj" in token.dep_], | |
'verbs': [token.text for token in sent if token.pos_ == "VERB"] | |
} for sent in doc.sents] | |
def get_repeated_words_colors(doc): | |
word_counts = Counter(token.text.lower() for token in doc if token.pos_ != 'PUNCT') | |
repeated_words = {word: count for word, count in word_counts.items() if count > 1} | |
word_colors = {} | |
for token in doc: | |
if token.text.lower() in repeated_words: | |
word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF') | |
return word_colors | |
def highlight_repeated_words(doc): | |
word_colors = get_repeated_words_colors(doc) | |
highlighted_text = [] | |
for token in doc: | |
if token.text.lower() in word_colors: | |
color = word_colors[token.text.lower()] | |
highlighted_text.append(f'<span style="background-color: {color};">{token.text}</span>') | |
else: | |
highlighted_text.append(token.text) | |
return ' '.join(highlighted_text) | |
# Exportar todas las funciones y variables necesarias | |
__all__ = [ | |
'get_repeated_words_colors', | |
'highlight_repeated_words', | |
'generate_arc_diagram', | |
'perform_pos_analysis', | |
'perform_morphological_analysis', | |
'analyze_sentence_structure', | |
'perform_advanced_morphosyntactic_analysis', | |
'POS_COLORS', | |
'POS_TRANSLATIONS' | |
] |