Upload 14 files
Browse files- modules/studentact/6-3-2025_current_situation_interface.py +486 -0
- modules/studentact/claude_recommendations.py +266 -0
- modules/studentact/current_situation_analysis-FAIL.py +810 -810
- modules/studentact/current_situation_analysis.py +1008 -810
- modules/studentact/current_situation_interface--FAIL.py +608 -608
- modules/studentact/current_situation_interface-v1.py +271 -271
- modules/studentact/current_situation_interface-v2.py +291 -291
- modules/studentact/current_situation_interface-v3.py +189 -189
- modules/studentact/current_situation_interface.py +321 -397
- modules/studentact/student_activities.py +110 -110
- modules/studentact/student_activities_v2-complet.py +793 -793
- modules/studentact/student_activities_v2-error.py +250 -250
- modules/studentact/student_activities_v2.py +571 -282
- modules/studentact/temp_current_situation_interface.py +310 -310
modules/studentact/6-3-2025_current_situation_interface.py
ADDED
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modules/studentact/current_situation_interface-vOK.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import logging
|
5 |
+
from ..utils.widget_utils import generate_unique_key
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
from ..database.current_situation_mongo_db import store_current_situation_result
|
9 |
+
|
10 |
+
# Importaciones locales
|
11 |
+
from translations import get_translations
|
12 |
+
|
13 |
+
from .current_situation_analysis import (
|
14 |
+
analyze_text_dimensions,
|
15 |
+
analyze_clarity,
|
16 |
+
analyze_vocabulary_diversity,
|
17 |
+
analyze_cohesion,
|
18 |
+
analyze_structure,
|
19 |
+
get_dependency_depths,
|
20 |
+
normalize_score,
|
21 |
+
generate_sentence_graphs,
|
22 |
+
generate_word_connections,
|
23 |
+
generate_connection_paths,
|
24 |
+
create_vocabulary_network,
|
25 |
+
create_syntax_complexity_graph,
|
26 |
+
create_cohesion_heatmap,
|
27 |
+
generate_recommendations
|
28 |
+
)
|
29 |
+
|
30 |
+
# Configuración del estilo de matplotlib para el gráfico de radar
|
31 |
+
plt.rcParams['font.family'] = 'sans-serif'
|
32 |
+
plt.rcParams['axes.grid'] = True
|
33 |
+
plt.rcParams['axes.spines.top'] = False
|
34 |
+
plt.rcParams['axes.spines.right'] = False
|
35 |
+
|
36 |
+
logger = logging.getLogger(__name__)
|
37 |
+
####################################
|
38 |
+
|
39 |
+
TEXT_TYPES = {
|
40 |
+
'academic_article': {
|
41 |
+
'name': 'Artículo Académico',
|
42 |
+
'thresholds': {
|
43 |
+
'vocabulary': {'min': 0.70, 'target': 0.85},
|
44 |
+
'structure': {'min': 0.75, 'target': 0.90},
|
45 |
+
'cohesion': {'min': 0.65, 'target': 0.80},
|
46 |
+
'clarity': {'min': 0.70, 'target': 0.85}
|
47 |
+
}
|
48 |
+
},
|
49 |
+
'student_essay': {
|
50 |
+
'name': 'Trabajo Universitario',
|
51 |
+
'thresholds': {
|
52 |
+
'vocabulary': {'min': 0.60, 'target': 0.75},
|
53 |
+
'structure': {'min': 0.65, 'target': 0.80},
|
54 |
+
'cohesion': {'min': 0.55, 'target': 0.70},
|
55 |
+
'clarity': {'min': 0.60, 'target': 0.75}
|
56 |
+
}
|
57 |
+
},
|
58 |
+
'general_communication': {
|
59 |
+
'name': 'Comunicación General',
|
60 |
+
'thresholds': {
|
61 |
+
'vocabulary': {'min': 0.50, 'target': 0.65},
|
62 |
+
'structure': {'min': 0.55, 'target': 0.70},
|
63 |
+
'cohesion': {'min': 0.45, 'target': 0.60},
|
64 |
+
'clarity': {'min': 0.50, 'target': 0.65}
|
65 |
+
}
|
66 |
+
}
|
67 |
+
}
|
68 |
+
####################################
|
69 |
+
|
70 |
+
def display_current_situation_interface(lang_code, nlp_models, t):
|
71 |
+
"""
|
72 |
+
Interfaz simplificada con gráfico de radar para visualizar métricas.
|
73 |
+
"""
|
74 |
+
# Inicializar estados si no existen
|
75 |
+
if 'text_input' not in st.session_state:
|
76 |
+
st.session_state.text_input = ""
|
77 |
+
if 'text_area' not in st.session_state: # Añadir inicialización de text_area
|
78 |
+
st.session_state.text_area = ""
|
79 |
+
if 'show_results' not in st.session_state:
|
80 |
+
st.session_state.show_results = False
|
81 |
+
if 'current_doc' not in st.session_state:
|
82 |
+
st.session_state.current_doc = None
|
83 |
+
if 'current_metrics' not in st.session_state:
|
84 |
+
st.session_state.current_metrics = None
|
85 |
+
|
86 |
+
try:
|
87 |
+
# Container principal con dos columnas
|
88 |
+
with st.container():
|
89 |
+
input_col, results_col = st.columns([1,2])
|
90 |
+
|
91 |
+
with input_col:
|
92 |
+
# Text area con manejo de estado
|
93 |
+
text_input = st.text_area(
|
94 |
+
t.get('input_prompt', "Escribe o pega tu texto aquí:"),
|
95 |
+
height=400,
|
96 |
+
key="text_area",
|
97 |
+
value=st.session_state.text_input,
|
98 |
+
help="Este texto será analizado para darte recomendaciones personalizadas"
|
99 |
+
)
|
100 |
+
|
101 |
+
# Función para manejar cambios de texto
|
102 |
+
if text_input != st.session_state.text_input:
|
103 |
+
st.session_state.text_input = text_input
|
104 |
+
st.session_state.show_results = False
|
105 |
+
|
106 |
+
if st.button(
|
107 |
+
t.get('analyze_button', "Analizar mi escritura"),
|
108 |
+
type="primary",
|
109 |
+
disabled=not text_input.strip(),
|
110 |
+
use_container_width=True,
|
111 |
+
):
|
112 |
+
try:
|
113 |
+
with st.spinner(t.get('processing', "Analizando...")):
|
114 |
+
doc = nlp_models[lang_code](text_input)
|
115 |
+
metrics = analyze_text_dimensions(doc)
|
116 |
+
|
117 |
+
storage_success = store_current_situation_result(
|
118 |
+
username=st.session_state.username,
|
119 |
+
text=text_input,
|
120 |
+
metrics=metrics,
|
121 |
+
feedback=None
|
122 |
+
)
|
123 |
+
|
124 |
+
if not storage_success:
|
125 |
+
logger.warning("No se pudo guardar el análisis en la base de datos")
|
126 |
+
|
127 |
+
st.session_state.current_doc = doc
|
128 |
+
st.session_state.current_metrics = metrics
|
129 |
+
st.session_state.show_results = True
|
130 |
+
|
131 |
+
except Exception as e:
|
132 |
+
logger.error(f"Error en análisis: {str(e)}")
|
133 |
+
st.error(t.get('analysis_error', "Error al analizar el texto"))
|
134 |
+
|
135 |
+
# Mostrar resultados en la columna derecha
|
136 |
+
with results_col:
|
137 |
+
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
138 |
+
# Primero los radio buttons para tipo de texto
|
139 |
+
st.markdown("### Tipo de texto")
|
140 |
+
text_type = st.radio(
|
141 |
+
"",
|
142 |
+
options=list(TEXT_TYPES.keys()),
|
143 |
+
format_func=lambda x: TEXT_TYPES[x]['name'],
|
144 |
+
horizontal=True,
|
145 |
+
key="text_type_radio",
|
146 |
+
help="Selecciona el tipo de texto para ajustar los criterios de evaluación"
|
147 |
+
)
|
148 |
+
|
149 |
+
st.session_state.current_text_type = text_type
|
150 |
+
|
151 |
+
# Luego mostrar los resultados
|
152 |
+
display_results(
|
153 |
+
metrics=st.session_state.current_metrics,
|
154 |
+
text_type=text_type
|
155 |
+
)
|
156 |
+
|
157 |
+
except Exception as e:
|
158 |
+
logger.error(f"Error en interfaz principal: {str(e)}")
|
159 |
+
st.error("Ocurrió un error al cargar la interfaz")
|
160 |
+
|
161 |
+
###################################3333
|
162 |
+
|
163 |
+
'''
|
164 |
+
def display_results(metrics, text_type=None):
|
165 |
+
"""
|
166 |
+
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
167 |
+
"""
|
168 |
+
try:
|
169 |
+
# Usar valor por defecto si no se especifica tipo
|
170 |
+
text_type = text_type or 'student_essay'
|
171 |
+
|
172 |
+
# Obtener umbrales según el tipo de texto
|
173 |
+
thresholds = TEXT_TYPES[text_type]['thresholds']
|
174 |
+
|
175 |
+
# Crear dos columnas para las métricas y el gráfico
|
176 |
+
metrics_col, graph_col = st.columns([1, 1.5])
|
177 |
+
|
178 |
+
# Columna de métricas
|
179 |
+
with metrics_col:
|
180 |
+
metrics_config = [
|
181 |
+
{
|
182 |
+
'label': "Vocabulario",
|
183 |
+
'key': 'vocabulary',
|
184 |
+
'value': metrics['vocabulary']['normalized_score'],
|
185 |
+
'help': "Riqueza y variedad del vocabulario",
|
186 |
+
'thresholds': thresholds['vocabulary']
|
187 |
+
},
|
188 |
+
{
|
189 |
+
'label': "Estructura",
|
190 |
+
'key': 'structure',
|
191 |
+
'value': metrics['structure']['normalized_score'],
|
192 |
+
'help': "Organización y complejidad de oraciones",
|
193 |
+
'thresholds': thresholds['structure']
|
194 |
+
},
|
195 |
+
{
|
196 |
+
'label': "Cohesión",
|
197 |
+
'key': 'cohesion',
|
198 |
+
'value': metrics['cohesion']['normalized_score'],
|
199 |
+
'help': "Conexión y fluidez entre ideas",
|
200 |
+
'thresholds': thresholds['cohesion']
|
201 |
+
},
|
202 |
+
{
|
203 |
+
'label': "Claridad",
|
204 |
+
'key': 'clarity',
|
205 |
+
'value': metrics['clarity']['normalized_score'],
|
206 |
+
'help': "Facilidad de comprensión del texto",
|
207 |
+
'thresholds': thresholds['clarity']
|
208 |
+
}
|
209 |
+
]
|
210 |
+
|
211 |
+
# Mostrar métricas
|
212 |
+
for metric in metrics_config:
|
213 |
+
value = metric['value']
|
214 |
+
if value < metric['thresholds']['min']:
|
215 |
+
status = "⚠️ Por mejorar"
|
216 |
+
color = "inverse"
|
217 |
+
elif value < metric['thresholds']['target']:
|
218 |
+
status = "📈 Aceptable"
|
219 |
+
color = "off"
|
220 |
+
else:
|
221 |
+
status = "✅ Óptimo"
|
222 |
+
color = "normal"
|
223 |
+
|
224 |
+
st.metric(
|
225 |
+
metric['label'],
|
226 |
+
f"{value:.2f}",
|
227 |
+
f"{status} (Meta: {metric['thresholds']['target']:.2f})",
|
228 |
+
delta_color=color,
|
229 |
+
help=metric['help']
|
230 |
+
)
|
231 |
+
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
|
232 |
+
|
233 |
+
# Gráfico radar en la columna derecha
|
234 |
+
with graph_col:
|
235 |
+
display_radar_chart(metrics_config, thresholds)
|
236 |
+
|
237 |
+
except Exception as e:
|
238 |
+
logger.error(f"Error mostrando resultados: {str(e)}")
|
239 |
+
st.error("Error al mostrar los resultados")
|
240 |
+
'''
|
241 |
+
|
242 |
+
######################################
|
243 |
+
######################################
|
244 |
+
def display_results(metrics, text_type=None):
|
245 |
+
"""
|
246 |
+
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
247 |
+
"""
|
248 |
+
try:
|
249 |
+
# Usar valor por defecto si no se especifica tipo
|
250 |
+
text_type = text_type or 'student_essay'
|
251 |
+
|
252 |
+
# Obtener umbrales según el tipo de texto
|
253 |
+
thresholds = TEXT_TYPES[text_type]['thresholds']
|
254 |
+
|
255 |
+
# Crear dos columnas para las métricas y el gráfico
|
256 |
+
metrics_col, graph_col = st.columns([1, 1.5])
|
257 |
+
|
258 |
+
# Columna de métricas
|
259 |
+
with metrics_col:
|
260 |
+
metrics_config = [
|
261 |
+
{
|
262 |
+
'label': "Vocabulario",
|
263 |
+
'key': 'vocabulary',
|
264 |
+
'value': metrics['vocabulary']['normalized_score'],
|
265 |
+
'help': "Riqueza y variedad del vocabulario",
|
266 |
+
'thresholds': thresholds['vocabulary']
|
267 |
+
},
|
268 |
+
{
|
269 |
+
'label': "Estructura",
|
270 |
+
'key': 'structure',
|
271 |
+
'value': metrics['structure']['normalized_score'],
|
272 |
+
'help': "Organización y complejidad de oraciones",
|
273 |
+
'thresholds': thresholds['structure']
|
274 |
+
},
|
275 |
+
{
|
276 |
+
'label': "Cohesión",
|
277 |
+
'key': 'cohesion',
|
278 |
+
'value': metrics['cohesion']['normalized_score'],
|
279 |
+
'help': "Conexión y fluidez entre ideas",
|
280 |
+
'thresholds': thresholds['cohesion']
|
281 |
+
},
|
282 |
+
{
|
283 |
+
'label': "Claridad",
|
284 |
+
'key': 'clarity',
|
285 |
+
'value': metrics['clarity']['normalized_score'],
|
286 |
+
'help': "Facilidad de comprensión del texto",
|
287 |
+
'thresholds': thresholds['clarity']
|
288 |
+
}
|
289 |
+
]
|
290 |
+
|
291 |
+
# Mostrar métricas
|
292 |
+
for metric in metrics_config:
|
293 |
+
value = metric['value']
|
294 |
+
if value < metric['thresholds']['min']:
|
295 |
+
status = "⚠️ Por mejorar"
|
296 |
+
color = "inverse"
|
297 |
+
elif value < metric['thresholds']['target']:
|
298 |
+
status = "📈 Aceptable"
|
299 |
+
color = "off"
|
300 |
+
else:
|
301 |
+
status = "✅ Óptimo"
|
302 |
+
color = "normal"
|
303 |
+
|
304 |
+
st.metric(
|
305 |
+
metric['label'],
|
306 |
+
f"{value:.2f}",
|
307 |
+
f"{status} (Meta: {metric['thresholds']['target']:.2f})",
|
308 |
+
delta_color=color,
|
309 |
+
help=metric['help']
|
310 |
+
)
|
311 |
+
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
|
312 |
+
|
313 |
+
# Gráfico radar en la columna derecha
|
314 |
+
with graph_col:
|
315 |
+
display_radar_chart(metrics_config, thresholds)
|
316 |
+
|
317 |
+
recommendations = generate_recommendations(
|
318 |
+
metrics=metrics,
|
319 |
+
text_type=text_type,
|
320 |
+
lang_code=st.session_state.lang_code
|
321 |
+
)
|
322 |
+
|
323 |
+
# Separador visual
|
324 |
+
st.markdown("---")
|
325 |
+
|
326 |
+
# Título para la sección de recomendaciones
|
327 |
+
st.subheader("Recomendaciones para mejorar tu escritura")
|
328 |
+
|
329 |
+
# Mostrar las recomendaciones
|
330 |
+
display_recommendations(recommendations, get_translations(st.session_state.lang_code))
|
331 |
+
|
332 |
+
except Exception as e:
|
333 |
+
logger.error(f"Error mostrando resultados: {str(e)}")
|
334 |
+
st.error("Error al mostrar los resultados")
|
335 |
+
|
336 |
+
|
337 |
+
######################################
|
338 |
+
######################################
|
339 |
+
def display_radar_chart(metrics_config, thresholds):
|
340 |
+
"""
|
341 |
+
Muestra el gráfico radar con los resultados.
|
342 |
+
"""
|
343 |
+
try:
|
344 |
+
# Preparar datos para el gráfico
|
345 |
+
categories = [m['label'] for m in metrics_config]
|
346 |
+
values_user = [m['value'] for m in metrics_config]
|
347 |
+
min_values = [m['thresholds']['min'] for m in metrics_config]
|
348 |
+
target_values = [m['thresholds']['target'] for m in metrics_config]
|
349 |
+
|
350 |
+
# Crear y configurar gráfico
|
351 |
+
fig = plt.figure(figsize=(8, 8))
|
352 |
+
ax = fig.add_subplot(111, projection='polar')
|
353 |
+
|
354 |
+
# Configurar radar
|
355 |
+
angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))]
|
356 |
+
angles += angles[:1]
|
357 |
+
values_user += values_user[:1]
|
358 |
+
min_values += min_values[:1]
|
359 |
+
target_values += target_values[:1]
|
360 |
+
|
361 |
+
# Configurar ejes
|
362 |
+
ax.set_xticks(angles[:-1])
|
363 |
+
ax.set_xticklabels(categories, fontsize=10)
|
364 |
+
circle_ticks = np.arange(0, 1.1, 0.2)
|
365 |
+
ax.set_yticks(circle_ticks)
|
366 |
+
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
|
367 |
+
ax.set_ylim(0, 1)
|
368 |
+
|
369 |
+
# Dibujar áreas de umbrales
|
370 |
+
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label='Mínimo', alpha=0.5)
|
371 |
+
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label='Meta', alpha=0.5)
|
372 |
+
ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1)
|
373 |
+
ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1)
|
374 |
+
|
375 |
+
# Dibujar valores del usuario
|
376 |
+
ax.plot(angles, values_user, '#3498db', linewidth=2, label='Tu escritura')
|
377 |
+
ax.fill(angles, values_user, '#3498db', alpha=0.2)
|
378 |
+
|
379 |
+
# Ajustar leyenda
|
380 |
+
ax.legend(
|
381 |
+
loc='upper right',
|
382 |
+
bbox_to_anchor=(1.3, 1.1), # Cambiado de (0.1, 0.1) a (1.3, 1.1)
|
383 |
+
fontsize=10,
|
384 |
+
frameon=True,
|
385 |
+
facecolor='white',
|
386 |
+
edgecolor='none',
|
387 |
+
shadow=True
|
388 |
+
)
|
389 |
+
|
390 |
+
plt.tight_layout()
|
391 |
+
st.pyplot(fig)
|
392 |
+
plt.close()
|
393 |
+
|
394 |
+
except Exception as e:
|
395 |
+
logger.error(f"Error mostrando gráfico radar: {str(e)}")
|
396 |
+
st.error("Error al mostrar el gráfico")
|
397 |
+
|
398 |
+
#####################################################
|
399 |
+
def display_recommendations(recommendations, t):
|
400 |
+
"""
|
401 |
+
Muestra las recomendaciones con un diseño de tarjetas.
|
402 |
+
"""
|
403 |
+
# Definir colores para cada categoría
|
404 |
+
colors = {
|
405 |
+
'vocabulary': '#2E86C1', # Azul
|
406 |
+
'structure': '#28B463', # Verde
|
407 |
+
'cohesion': '#F39C12', # Naranja
|
408 |
+
'clarity': '#9B59B6', # Púrpura
|
409 |
+
'priority': '#E74C3C' # Rojo para la categoría prioritaria
|
410 |
+
}
|
411 |
+
|
412 |
+
# Iconos para cada categoría
|
413 |
+
icons = {
|
414 |
+
'vocabulary': '📚',
|
415 |
+
'structure': '🏗️',
|
416 |
+
'cohesion': '🔄',
|
417 |
+
'clarity': '💡',
|
418 |
+
'priority': '⭐'
|
419 |
+
}
|
420 |
+
|
421 |
+
# Obtener traducciones para cada dimensión
|
422 |
+
dimension_names = {
|
423 |
+
'vocabulary': t.get('SITUATION_ANALYSIS', {}).get('vocabulary', "Vocabulario"),
|
424 |
+
'structure': t.get('SITUATION_ANALYSIS', {}).get('structure', "Estructura"),
|
425 |
+
'cohesion': t.get('SITUATION_ANALYSIS', {}).get('cohesion', "Cohesión"),
|
426 |
+
'clarity': t.get('SITUATION_ANALYSIS', {}).get('clarity', "Claridad"),
|
427 |
+
'priority': t.get('SITUATION_ANALYSIS', {}).get('priority', "Prioridad")
|
428 |
+
}
|
429 |
+
|
430 |
+
# Título de la sección prioritaria
|
431 |
+
priority_focus = t.get('SITUATION_ANALYSIS', {}).get('priority_focus', 'Área prioritaria para mejorar')
|
432 |
+
st.markdown(f"### {icons['priority']} {priority_focus}")
|
433 |
+
|
434 |
+
# Determinar área prioritaria (la que tiene menor puntuación)
|
435 |
+
priority_area = recommendations.get('priority', 'vocabulary')
|
436 |
+
priority_title = dimension_names.get(priority_area, "Área prioritaria")
|
437 |
+
|
438 |
+
# Determinar el contenido para mostrar
|
439 |
+
if isinstance(recommendations[priority_area], dict) and 'title' in recommendations[priority_area]:
|
440 |
+
priority_title = recommendations[priority_area]['title']
|
441 |
+
priority_content = recommendations[priority_area]['content']
|
442 |
+
else:
|
443 |
+
priority_content = recommendations[priority_area]
|
444 |
+
|
445 |
+
# Mostrar la recomendación prioritaria con un estilo destacado
|
446 |
+
with st.container():
|
447 |
+
st.markdown(
|
448 |
+
f"""
|
449 |
+
<div style="border:2px solid {colors['priority']}; border-radius:5px; padding:15px; margin-bottom:20px;">
|
450 |
+
<h4 style="color:{colors['priority']};">{priority_title}</h4>
|
451 |
+
<p>{priority_content}</p>
|
452 |
+
</div>
|
453 |
+
""",
|
454 |
+
unsafe_allow_html=True
|
455 |
+
)
|
456 |
+
|
457 |
+
# Crear dos columnas para las tarjetas de recomendaciones restantes
|
458 |
+
col1, col2 = st.columns(2)
|
459 |
+
|
460 |
+
# Distribuir las recomendaciones en las columnas
|
461 |
+
categories = ['vocabulary', 'structure', 'cohesion', 'clarity']
|
462 |
+
for i, category in enumerate(categories):
|
463 |
+
# Saltar si esta categoría ya es la prioritaria
|
464 |
+
if category == priority_area:
|
465 |
+
continue
|
466 |
+
|
467 |
+
# Determinar título y contenido
|
468 |
+
if isinstance(recommendations[category], dict) and 'title' in recommendations[category]:
|
469 |
+
category_title = recommendations[category]['title']
|
470 |
+
category_content = recommendations[category]['content']
|
471 |
+
else:
|
472 |
+
category_title = dimension_names.get(category, category)
|
473 |
+
category_content = recommendations[category]
|
474 |
+
|
475 |
+
# Alternar entre columnas
|
476 |
+
with col1 if i % 2 == 0 else col2:
|
477 |
+
# Crear tarjeta para cada recomendación
|
478 |
+
st.markdown(
|
479 |
+
f"""
|
480 |
+
<div style="border:1px solid {colors[category]}; border-radius:5px; padding:10px; margin-bottom:15px;">
|
481 |
+
<h4 style="color:{colors[category]};">{icons[category]} {category_title}</h4>
|
482 |
+
<p>{category_content}</p>
|
483 |
+
</div>
|
484 |
+
""",
|
485 |
+
unsafe_allow_html=True
|
486 |
+
)
|
modules/studentact/claude_recommendations.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modules/studentact/claude_recommendations.py
|
2 |
+
import os
|
3 |
+
import anthropic
|
4 |
+
import streamlit as st
|
5 |
+
import logging
|
6 |
+
import time
|
7 |
+
import json
|
8 |
+
from datetime import datetime, timezone
|
9 |
+
|
10 |
+
# Local imports
|
11 |
+
from ..utils.widget_utils import generate_unique_key
|
12 |
+
from ..database.current_situation_mongo_db import store_current_situation_result
|
13 |
+
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Define text types
|
17 |
+
TEXT_TYPES = {
|
18 |
+
'es': {
|
19 |
+
'academic_article': 'artículo académico',
|
20 |
+
'university_work': 'trabajo universitario',
|
21 |
+
'general_communication': 'comunicación general'
|
22 |
+
},
|
23 |
+
'en': {
|
24 |
+
'academic_article': 'academic article',
|
25 |
+
'university_work': 'university work',
|
26 |
+
'general_communication': 'general communication'
|
27 |
+
},
|
28 |
+
'fr': {
|
29 |
+
'academic_article': 'article académique',
|
30 |
+
'university_work': 'travail universitaire',
|
31 |
+
'general_communication': 'communication générale'
|
32 |
+
}
|
33 |
+
}
|
34 |
+
|
35 |
+
# Cache for recommendations to avoid redundant API calls
|
36 |
+
recommendation_cache = {}
|
37 |
+
|
38 |
+
def get_recommendation_cache_key(text, metrics, text_type, lang_code):
|
39 |
+
"""
|
40 |
+
Generate a cache key for recommendations.
|
41 |
+
"""
|
42 |
+
# Create a simple hash based on text content and metrics
|
43 |
+
text_hash = hash(text[:1000]) # Only use first 1000 chars for hashing
|
44 |
+
metrics_hash = hash(json.dumps(metrics, sort_keys=True))
|
45 |
+
return f"{text_hash}_{metrics_hash}_{text_type}_{lang_code}"
|
46 |
+
|
47 |
+
def format_metrics_for_claude(metrics, lang_code, text_type):
|
48 |
+
"""
|
49 |
+
Format metrics in a way that's readable for Claude
|
50 |
+
"""
|
51 |
+
formatted_metrics = {}
|
52 |
+
for key, value in metrics.items():
|
53 |
+
if isinstance(value, (int, float)):
|
54 |
+
formatted_metrics[key] = round(value, 2)
|
55 |
+
else:
|
56 |
+
formatted_metrics[key] = value
|
57 |
+
|
58 |
+
# Add context about what type of text this is
|
59 |
+
text_type_label = TEXT_TYPES.get(lang_code, {}).get(text_type, text_type)
|
60 |
+
formatted_metrics['text_type'] = text_type_label
|
61 |
+
|
62 |
+
return formatted_metrics
|
63 |
+
|
64 |
+
def generate_claude_recommendations(text, metrics, text_type, lang_code):
|
65 |
+
"""
|
66 |
+
Generate personalized recommendations using Claude API.
|
67 |
+
"""
|
68 |
+
try:
|
69 |
+
api_key = os.environ.get("ANTHROPIC_API_KEY")
|
70 |
+
if not api_key:
|
71 |
+
logger.error("Claude API key not found in environment variables")
|
72 |
+
return get_fallback_recommendations(lang_code)
|
73 |
+
|
74 |
+
# Check cache first
|
75 |
+
cache_key = get_recommendation_cache_key(text, metrics, text_type, lang_code)
|
76 |
+
if cache_key in recommendation_cache:
|
77 |
+
logger.info("Using cached recommendations")
|
78 |
+
return recommendation_cache[cache_key]
|
79 |
+
|
80 |
+
# Format metrics for Claude
|
81 |
+
formatted_metrics = format_metrics_for_claude(metrics, lang_code, text_type)
|
82 |
+
|
83 |
+
# Determine language for prompt
|
84 |
+
if lang_code == 'es':
|
85 |
+
system_prompt = """Eres un asistente especializado en análisis de textos académicos y comunicación escrita.
|
86 |
+
Tu tarea es analizar el texto del usuario y proporcionar recomendaciones personalizadas.
|
87 |
+
Usa un tono constructivo y específico. Sé claro y directo con tus sugerencias.
|
88 |
+
"""
|
89 |
+
user_prompt = f"""Por favor, analiza este texto de tipo '{formatted_metrics['text_type']}'
|
90 |
+
y proporciona recomendaciones personalizadas para mejorarlo.
|
91 |
+
|
92 |
+
MÉTRICAS DE ANÁLISIS:
|
93 |
+
{json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
|
94 |
+
|
95 |
+
TEXTO A ANALIZAR:
|
96 |
+
{text[:2000]} # Limitamos el texto para evitar exceder tokens
|
97 |
+
|
98 |
+
Proporciona tu análisis con el siguiente formato:
|
99 |
+
1. Un resumen breve (2-3 frases) del análisis general
|
100 |
+
2. 3-4 recomendaciones específicas y accionables (cada una de 1-2 frases)
|
101 |
+
3. Un ejemplo concreto de mejora tomado del propio texto del usuario
|
102 |
+
4. Una sugerencia sobre qué herramienta de AIdeaText usar (Análisis Morfosintáctico, Análisis Semántico o Análisis del Discurso)
|
103 |
+
|
104 |
+
Tu respuesta debe ser concisa y no exceder los 300 palabras."""
|
105 |
+
else:
|
106 |
+
# Default to English
|
107 |
+
system_prompt = """You are an assistant specialized in analyzing academic texts and written communication.
|
108 |
+
Your task is to analyze the user's text and provide personalized recommendations.
|
109 |
+
Use a constructive and specific tone. Be clear and direct with your suggestions.
|
110 |
+
"""
|
111 |
+
user_prompt = f"""Please analyze this text of type '{formatted_metrics['text_type']}'
|
112 |
+
and provide personalized recommendations to improve it.
|
113 |
+
|
114 |
+
ANALYSIS METRICS:
|
115 |
+
{json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
|
116 |
+
|
117 |
+
TEXT TO ANALYZE:
|
118 |
+
{text[:2000]} # Limiting text to avoid exceeding tokens
|
119 |
+
|
120 |
+
Provide your analysis with the following format:
|
121 |
+
1. A brief summary (2-3 sentences) of the general analysis
|
122 |
+
2. 3-4 specific and actionable recommendations (each 1-2 sentences)
|
123 |
+
3. A concrete example of improvement taken from the user's own text
|
124 |
+
4. A suggestion about which AIdeaText tool to use (Morphosyntactic Analysis, Semantic Analysis or Discourse Analysis)
|
125 |
+
|
126 |
+
Your response should be concise and not exceed 300 words."""
|
127 |
+
|
128 |
+
# Initialize Claude client
|
129 |
+
client = anthropic.Anthropic(api_key=api_key)
|
130 |
+
|
131 |
+
# Call Claude API
|
132 |
+
start_time = time.time()
|
133 |
+
response = client.messages.create(
|
134 |
+
model="claude-3-5-sonnet-20241022",
|
135 |
+
max_tokens=1024,
|
136 |
+
temperature=0.7,
|
137 |
+
system=system_prompt,
|
138 |
+
messages=[
|
139 |
+
{"role": "user", "content": user_prompt}
|
140 |
+
]
|
141 |
+
)
|
142 |
+
logger.info(f"Claude API call completed in {time.time() - start_time:.2f} seconds")
|
143 |
+
|
144 |
+
# Extract recommendations
|
145 |
+
recommendations = response.content[0].text
|
146 |
+
|
147 |
+
# Cache the result
|
148 |
+
recommendation_cache[cache_key] = recommendations
|
149 |
+
|
150 |
+
return recommendations
|
151 |
+
except Exception as e:
|
152 |
+
logger.error(f"Error generating recommendations with Claude: {str(e)}")
|
153 |
+
return get_fallback_recommendations(lang_code)
|
154 |
+
|
155 |
+
def get_fallback_recommendations(lang_code):
|
156 |
+
"""
|
157 |
+
Return fallback recommendations if Claude API fails
|
158 |
+
"""
|
159 |
+
if lang_code == 'es':
|
160 |
+
return """
|
161 |
+
**Análisis General**
|
162 |
+
Tu texto presenta una estructura básica adecuada, pero hay áreas que pueden mejorarse para mayor claridad y cohesión.
|
163 |
+
|
164 |
+
**Recomendaciones**:
|
165 |
+
- Intenta variar tu vocabulario para evitar repeticiones innecesarias
|
166 |
+
- Considera revisar la longitud de tus oraciones para mantener un mejor ritmo
|
167 |
+
- Asegúrate de establecer conexiones claras entre las ideas principales
|
168 |
+
- Revisa la consistencia en el uso de tiempos verbales
|
169 |
+
|
170 |
+
**Herramienta recomendada**:
|
171 |
+
Te sugerimos utilizar el Análisis Morfosintáctico para identificar patrones en tu estructura de oraciones.
|
172 |
+
"""
|
173 |
+
else:
|
174 |
+
return """
|
175 |
+
**General Analysis**
|
176 |
+
Your text presents an adequate basic structure, but there are areas that can be improved for better clarity and cohesion.
|
177 |
+
|
178 |
+
**Recommendations**:
|
179 |
+
- Try to vary your vocabulary to avoid unnecessary repetition
|
180 |
+
- Consider reviewing the length of your sentences to maintain a better rhythm
|
181 |
+
- Make sure to establish clear connections between main ideas
|
182 |
+
- Check consistency in the use of verb tenses
|
183 |
+
|
184 |
+
**Recommended tool**:
|
185 |
+
We suggest using Morphosyntactic Analysis to identify patterns in your sentence structure.
|
186 |
+
"""
|
187 |
+
|
188 |
+
|
189 |
+
#######################################
|
190 |
+
|
191 |
+
def store_recommendations(username, text, metrics, text_type, recommendations):
|
192 |
+
"""
|
193 |
+
Store the recommendations in the database
|
194 |
+
"""
|
195 |
+
try:
|
196 |
+
# Importar la función de almacenamiento de recomendaciones
|
197 |
+
from ..database.claude_recommendations_mongo_db import store_claude_recommendation
|
198 |
+
|
199 |
+
# Guardar usando la nueva función especializada
|
200 |
+
result = store_claude_recommendation(
|
201 |
+
username=username,
|
202 |
+
text=text,
|
203 |
+
metrics=metrics,
|
204 |
+
text_type=text_type,
|
205 |
+
recommendations=recommendations
|
206 |
+
)
|
207 |
+
|
208 |
+
logger.info(f"Recommendations stored successfully: {result}")
|
209 |
+
return result
|
210 |
+
except Exception as e:
|
211 |
+
logger.error(f"Error storing recommendations: {str(e)}")
|
212 |
+
return False
|
213 |
+
|
214 |
+
|
215 |
+
##########################################
|
216 |
+
##########################################
|
217 |
+
def display_personalized_recommendations(text, metrics, text_type, lang_code, t):
|
218 |
+
"""
|
219 |
+
Display personalized recommendations based on text analysis
|
220 |
+
"""
|
221 |
+
try:
|
222 |
+
# Generate recommendations
|
223 |
+
recommendations = generate_claude_recommendations(text, metrics, text_type, lang_code)
|
224 |
+
|
225 |
+
# Format and display recommendations in a nice container
|
226 |
+
st.markdown("### 📝 " + t.get('recommendations_title', 'Personalized Recommendations'))
|
227 |
+
|
228 |
+
with st.container():
|
229 |
+
st.markdown(f"""
|
230 |
+
<div style="padding: 20px; border-radius: 10px;
|
231 |
+
background-color: #f8f9fa; margin-bottom: 20px;">
|
232 |
+
{recommendations}
|
233 |
+
</div>
|
234 |
+
""", unsafe_allow_html=True)
|
235 |
+
|
236 |
+
# Add prompt to use assistant
|
237 |
+
st.info("💡 **" + t.get('assistant_prompt', 'For further improvement:') + "** " +
|
238 |
+
t.get('assistant_message', 'Open the virtual assistant (powered by Claude AI) in the upper left corner by clicking the arrow next to the logo.'))
|
239 |
+
|
240 |
+
# Add save button
|
241 |
+
col1, col2, col3 = st.columns([1,1,1])
|
242 |
+
with col2:
|
243 |
+
if st.button(
|
244 |
+
t.get('save_button', 'Save Analysis'),
|
245 |
+
key=generate_unique_key("claude_recommendations", "save"),
|
246 |
+
type="primary",
|
247 |
+
use_container_width=True
|
248 |
+
):
|
249 |
+
if 'username' in st.session_state:
|
250 |
+
success = store_recommendations(
|
251 |
+
st.session_state.username,
|
252 |
+
text,
|
253 |
+
metrics,
|
254 |
+
text_type,
|
255 |
+
recommendations
|
256 |
+
)
|
257 |
+
if success:
|
258 |
+
st.success(t.get('save_success', 'Analysis saved successfully'))
|
259 |
+
else:
|
260 |
+
st.error(t.get('save_error', 'Error saving analysis'))
|
261 |
+
else:
|
262 |
+
st.error(t.get('login_required', 'Please log in to save analysis'))
|
263 |
+
|
264 |
+
except Exception as e:
|
265 |
+
logger.error(f"Error displaying recommendations: {str(e)}")
|
266 |
+
st.error(t.get('recommendations_error', 'Error generating recommendations. Please try again later.'))
|
modules/studentact/current_situation_analysis-FAIL.py
CHANGED
@@ -1,810 +1,810 @@
|
|
1 |
-
#v3/modules/studentact/current_situation_analysis.py
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
import networkx as nx
|
6 |
-
import seaborn as sns
|
7 |
-
from collections import Counter
|
8 |
-
from itertools import combinations
|
9 |
-
import numpy as np
|
10 |
-
import matplotlib.patches as patches
|
11 |
-
import logging
|
12 |
-
|
13 |
-
# 2. Configuración básica del logging
|
14 |
-
logging.basicConfig(
|
15 |
-
level=logging.INFO,
|
16 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
17 |
-
handlers=[
|
18 |
-
logging.StreamHandler(),
|
19 |
-
logging.FileHandler('app.log')
|
20 |
-
]
|
21 |
-
)
|
22 |
-
|
23 |
-
# 3. Obtener el logger específico para este módulo
|
24 |
-
logger = logging.getLogger(__name__)
|
25 |
-
|
26 |
-
#########################################################################
|
27 |
-
|
28 |
-
def correlate_metrics(scores):
|
29 |
-
"""
|
30 |
-
Ajusta los scores para mantener correlaciones lógicas entre métricas.
|
31 |
-
|
32 |
-
Args:
|
33 |
-
scores: dict con scores iniciales de vocabulario, estructura, cohesión y claridad
|
34 |
-
|
35 |
-
Returns:
|
36 |
-
dict con scores ajustados
|
37 |
-
"""
|
38 |
-
try:
|
39 |
-
# 1. Correlación estructura-cohesión
|
40 |
-
# La cohesión no puede ser menor que estructura * 0.7
|
41 |
-
min_cohesion = scores['structure']['normalized_score'] * 0.7
|
42 |
-
if scores['cohesion']['normalized_score'] < min_cohesion:
|
43 |
-
scores['cohesion']['normalized_score'] = min_cohesion
|
44 |
-
|
45 |
-
# 2. Correlación vocabulario-cohesión
|
46 |
-
# La cohesión léxica depende del vocabulario
|
47 |
-
vocab_influence = scores['vocabulary']['normalized_score'] * 0.6
|
48 |
-
scores['cohesion']['normalized_score'] = max(
|
49 |
-
scores['cohesion']['normalized_score'],
|
50 |
-
vocab_influence
|
51 |
-
)
|
52 |
-
|
53 |
-
# 3. Correlación cohesión-claridad
|
54 |
-
# La claridad no puede superar cohesión * 1.2
|
55 |
-
max_clarity = scores['cohesion']['normalized_score'] * 1.2
|
56 |
-
if scores['clarity']['normalized_score'] > max_clarity:
|
57 |
-
scores['clarity']['normalized_score'] = max_clarity
|
58 |
-
|
59 |
-
# 4. Correlación estructura-claridad
|
60 |
-
# La claridad no puede superar estructura * 1.1
|
61 |
-
struct_max_clarity = scores['structure']['normalized_score'] * 1.1
|
62 |
-
scores['clarity']['normalized_score'] = min(
|
63 |
-
scores['clarity']['normalized_score'],
|
64 |
-
struct_max_clarity
|
65 |
-
)
|
66 |
-
|
67 |
-
# Normalizar todos los scores entre 0 y 1
|
68 |
-
for metric in scores:
|
69 |
-
scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score']))
|
70 |
-
|
71 |
-
return scores
|
72 |
-
|
73 |
-
except Exception as e:
|
74 |
-
logger.error(f"Error en correlate_metrics: {str(e)}")
|
75 |
-
return scores
|
76 |
-
|
77 |
-
##########################################################################
|
78 |
-
|
79 |
-
def analyze_text_dimensions(doc):
|
80 |
-
"""
|
81 |
-
Analiza las dimensiones principales del texto manteniendo correlaciones lógicas.
|
82 |
-
"""
|
83 |
-
try:
|
84 |
-
# Obtener scores iniciales
|
85 |
-
vocab_score, vocab_details = analyze_vocabulary_diversity(doc)
|
86 |
-
struct_score = analyze_structure(doc)
|
87 |
-
cohesion_score = analyze_cohesion(doc)
|
88 |
-
clarity_score, clarity_details = analyze_clarity(doc)
|
89 |
-
|
90 |
-
# Crear diccionario de scores inicial
|
91 |
-
scores = {
|
92 |
-
'vocabulary': {
|
93 |
-
'normalized_score': vocab_score,
|
94 |
-
'details': vocab_details
|
95 |
-
},
|
96 |
-
'structure': {
|
97 |
-
'normalized_score': struct_score,
|
98 |
-
'details': None
|
99 |
-
},
|
100 |
-
'cohesion': {
|
101 |
-
'normalized_score': cohesion_score,
|
102 |
-
'details': None
|
103 |
-
},
|
104 |
-
'clarity': {
|
105 |
-
'normalized_score': clarity_score,
|
106 |
-
'details': clarity_details
|
107 |
-
}
|
108 |
-
}
|
109 |
-
|
110 |
-
# Ajustar correlaciones entre métricas
|
111 |
-
adjusted_scores = correlate_metrics(scores)
|
112 |
-
|
113 |
-
# Logging para diagnóstico
|
114 |
-
logger.info(f"""
|
115 |
-
Scores originales vs ajustados:
|
116 |
-
Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f}
|
117 |
-
Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f}
|
118 |
-
Cohesión: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f}
|
119 |
-
Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f}
|
120 |
-
""")
|
121 |
-
|
122 |
-
return adjusted_scores
|
123 |
-
|
124 |
-
except Exception as e:
|
125 |
-
logger.error(f"Error en analyze_text_dimensions: {str(e)}")
|
126 |
-
return {
|
127 |
-
'vocabulary': {'normalized_score': 0.0, 'details': {}},
|
128 |
-
'structure': {'normalized_score': 0.0, 'details': {}},
|
129 |
-
'cohesion': {'normalized_score': 0.0, 'details': {}},
|
130 |
-
'clarity': {'normalized_score': 0.0, 'details': {}}
|
131 |
-
}
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
#############################################################################################
|
136 |
-
|
137 |
-
def analyze_clarity(doc):
|
138 |
-
"""
|
139 |
-
Analiza la claridad del texto considerando múltiples factores.
|
140 |
-
"""
|
141 |
-
try:
|
142 |
-
sentences = list(doc.sents)
|
143 |
-
if not sentences:
|
144 |
-
return 0.0, {}
|
145 |
-
|
146 |
-
# 1. Longitud de oraciones
|
147 |
-
sentence_lengths = [len(sent) for sent in sentences]
|
148 |
-
avg_length = sum(sentence_lengths) / len(sentences)
|
149 |
-
|
150 |
-
# Normalizar usando los umbrales definidos para clarity
|
151 |
-
length_score = normalize_score(
|
152 |
-
value=avg_length,
|
153 |
-
metric_type='clarity',
|
154 |
-
optimal_length=20, # Una oración ideal tiene ~20 palabras
|
155 |
-
min_threshold=0.60, # Consistente con METRIC_THRESHOLDS
|
156 |
-
target_threshold=0.75 # Consistente con METRIC_THRESHOLDS
|
157 |
-
)
|
158 |
-
|
159 |
-
# 2. Análisis de conectores
|
160 |
-
connector_count = 0
|
161 |
-
connector_weights = {
|
162 |
-
'CCONJ': 1.0, # Coordinantes
|
163 |
-
'SCONJ': 1.2, # Subordinantes
|
164 |
-
'ADV': 0.8 # Adverbios conectivos
|
165 |
-
}
|
166 |
-
|
167 |
-
for token in doc:
|
168 |
-
if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']:
|
169 |
-
connector_count += connector_weights[token.pos_]
|
170 |
-
|
171 |
-
# Normalizar conectores por oración
|
172 |
-
connectors_per_sentence = connector_count / len(sentences) if sentences else 0
|
173 |
-
connector_score = normalize_score(
|
174 |
-
value=connectors_per_sentence,
|
175 |
-
metric_type='clarity',
|
176 |
-
optimal_connections=1.5, # ~1.5 conectores por oración es óptimo
|
177 |
-
min_threshold=0.60,
|
178 |
-
target_threshold=0.75
|
179 |
-
)
|
180 |
-
|
181 |
-
# 3. Complejidad estructural
|
182 |
-
clause_count = 0
|
183 |
-
for sent in sentences:
|
184 |
-
verbs = [token for token in sent if token.pos_ == 'VERB']
|
185 |
-
clause_count += len(verbs)
|
186 |
-
|
187 |
-
complexity_raw = clause_count / len(sentences) if sentences else 0
|
188 |
-
complexity_score = normalize_score(
|
189 |
-
value=complexity_raw,
|
190 |
-
metric_type='clarity',
|
191 |
-
optimal_depth=2.0, # ~2 cláusulas por oración es óptimo
|
192 |
-
min_threshold=0.60,
|
193 |
-
target_threshold=0.75
|
194 |
-
)
|
195 |
-
|
196 |
-
# 4. Densidad léxica
|
197 |
-
content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
|
198 |
-
total_words = len([token for token in doc if token.is_alpha])
|
199 |
-
density = content_words / total_words if total_words > 0 else 0
|
200 |
-
|
201 |
-
density_score = normalize_score(
|
202 |
-
value=density,
|
203 |
-
metric_type='clarity',
|
204 |
-
optimal_connections=0.6, # 60% de palabras de contenido es óptimo
|
205 |
-
min_threshold=0.60,
|
206 |
-
target_threshold=0.75
|
207 |
-
)
|
208 |
-
|
209 |
-
# Score final ponderado
|
210 |
-
weights = {
|
211 |
-
'length': 0.3,
|
212 |
-
'connectors': 0.3,
|
213 |
-
'complexity': 0.2,
|
214 |
-
'density': 0.2
|
215 |
-
}
|
216 |
-
|
217 |
-
clarity_score = (
|
218 |
-
weights['length'] * length_score +
|
219 |
-
weights['connectors'] * connector_score +
|
220 |
-
weights['complexity'] * complexity_score +
|
221 |
-
weights['density'] * density_score
|
222 |
-
)
|
223 |
-
|
224 |
-
details = {
|
225 |
-
'length_score': length_score,
|
226 |
-
'connector_score': connector_score,
|
227 |
-
'complexity_score': complexity_score,
|
228 |
-
'density_score': density_score,
|
229 |
-
'avg_sentence_length': avg_length,
|
230 |
-
'connectors_per_sentence': connectors_per_sentence,
|
231 |
-
'density': density
|
232 |
-
}
|
233 |
-
|
234 |
-
# Agregar logging para diagnóstico
|
235 |
-
logger.info(f"""
|
236 |
-
Scores de Claridad:
|
237 |
-
- Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras)
|
238 |
-
- Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oración)
|
239 |
-
- Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cláusulas)
|
240 |
-
- Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido)
|
241 |
-
- Score Final: {clarity_score:.2f}
|
242 |
-
""")
|
243 |
-
|
244 |
-
return clarity_score, details
|
245 |
-
|
246 |
-
except Exception as e:
|
247 |
-
logger.error(f"Error en analyze_clarity: {str(e)}")
|
248 |
-
return 0.0, {}
|
249 |
-
|
250 |
-
|
251 |
-
def analyze_vocabulary_diversity(doc):
|
252 |
-
"""Análisis mejorado de la diversidad y calidad del vocabulario"""
|
253 |
-
try:
|
254 |
-
# 1. Análisis básico de diversidad
|
255 |
-
unique_lemmas = {token.lemma_ for token in doc if token.is_alpha}
|
256 |
-
total_words = len([token for token in doc if token.is_alpha])
|
257 |
-
basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0
|
258 |
-
|
259 |
-
# 2. Análisis de registro
|
260 |
-
academic_words = 0
|
261 |
-
narrative_words = 0
|
262 |
-
technical_terms = 0
|
263 |
-
|
264 |
-
# Clasificar palabras por registro
|
265 |
-
for token in doc:
|
266 |
-
if token.is_alpha:
|
267 |
-
# Detectar términos académicos/técnicos
|
268 |
-
if token.pos_ in ['NOUN', 'VERB', 'ADJ']:
|
269 |
-
if any(parent.pos_ == 'NOUN' for parent in token.ancestors):
|
270 |
-
technical_terms += 1
|
271 |
-
# Detectar palabras narrativas
|
272 |
-
if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']:
|
273 |
-
narrative_words += 1
|
274 |
-
|
275 |
-
# 3. Análisis de complejidad sintáctica
|
276 |
-
avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents))
|
277 |
-
|
278 |
-
# 4. Calcular score ponderado
|
279 |
-
weights = {
|
280 |
-
'diversity': 0.3,
|
281 |
-
'technical': 0.3,
|
282 |
-
'narrative': 0.2,
|
283 |
-
'complexity': 0.2
|
284 |
-
}
|
285 |
-
|
286 |
-
scores = {
|
287 |
-
'diversity': basic_diversity,
|
288 |
-
'technical': technical_terms / total_words if total_words > 0 else 0,
|
289 |
-
'narrative': narrative_words / total_words if total_words > 0 else 0,
|
290 |
-
'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras
|
291 |
-
}
|
292 |
-
|
293 |
-
# Score final ponderado
|
294 |
-
final_score = sum(weights[key] * scores[key] for key in weights)
|
295 |
-
|
296 |
-
# Información adicional para diagnóstico
|
297 |
-
details = {
|
298 |
-
'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic',
|
299 |
-
'scores': scores
|
300 |
-
}
|
301 |
-
|
302 |
-
return final_score, details
|
303 |
-
|
304 |
-
except Exception as e:
|
305 |
-
logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}")
|
306 |
-
return 0.0, {}
|
307 |
-
|
308 |
-
def analyze_cohesion(doc):
|
309 |
-
"""Analiza la cohesión textual"""
|
310 |
-
try:
|
311 |
-
sentences = list(doc.sents)
|
312 |
-
if len(sentences) < 2:
|
313 |
-
logger.warning("Texto demasiado corto para análisis de cohesión")
|
314 |
-
return 0.0
|
315 |
-
|
316 |
-
# 1. Análisis de conexiones léxicas
|
317 |
-
lexical_connections = 0
|
318 |
-
total_possible_connections = 0
|
319 |
-
|
320 |
-
for i in range(len(sentences)-1):
|
321 |
-
# Obtener lemmas significativos (no stopwords)
|
322 |
-
sent1_words = {token.lemma_ for token in sentences[i]
|
323 |
-
if token.is_alpha and not token.is_stop}
|
324 |
-
sent2_words = {token.lemma_ for token in sentences[i+1]
|
325 |
-
if token.is_alpha and not token.is_stop}
|
326 |
-
|
327 |
-
if sent1_words and sent2_words: # Verificar que ambos conjuntos no estén vacíos
|
328 |
-
intersection = len(sent1_words.intersection(sent2_words))
|
329 |
-
total_possible = min(len(sent1_words), len(sent2_words))
|
330 |
-
|
331 |
-
if total_possible > 0:
|
332 |
-
lexical_score = intersection / total_possible
|
333 |
-
lexical_connections += lexical_score
|
334 |
-
total_possible_connections += 1
|
335 |
-
|
336 |
-
# 2. Análisis de conectores
|
337 |
-
connector_count = 0
|
338 |
-
connector_types = {
|
339 |
-
'CCONJ': 1.0, # Coordinantes
|
340 |
-
'SCONJ': 1.2, # Subordinantes
|
341 |
-
'ADV': 0.8 # Adverbios conectivos
|
342 |
-
}
|
343 |
-
|
344 |
-
for token in doc:
|
345 |
-
if (token.pos_ in connector_types and
|
346 |
-
token.dep_ in ['cc', 'mark', 'advmod'] and
|
347 |
-
not token.is_stop):
|
348 |
-
connector_count += connector_types[token.pos_]
|
349 |
-
|
350 |
-
# 3. Cálculo de scores normalizados
|
351 |
-
if total_possible_connections > 0:
|
352 |
-
lexical_cohesion = lexical_connections / total_possible_connections
|
353 |
-
else:
|
354 |
-
lexical_cohesion = 0
|
355 |
-
|
356 |
-
if len(sentences) > 1:
|
357 |
-
connector_cohesion = min(1.0, connector_count / (len(sentences) - 1))
|
358 |
-
else:
|
359 |
-
connector_cohesion = 0
|
360 |
-
|
361 |
-
# 4. Score final ponderado
|
362 |
-
weights = {
|
363 |
-
'lexical': 0.7,
|
364 |
-
'connectors': 0.3
|
365 |
-
}
|
366 |
-
|
367 |
-
cohesion_score = (
|
368 |
-
weights['lexical'] * lexical_cohesion +
|
369 |
-
weights['connectors'] * connector_cohesion
|
370 |
-
)
|
371 |
-
|
372 |
-
# 5. Logging para diagnóstico
|
373 |
-
logger.info(f"""
|
374 |
-
Análisis de Cohesión:
|
375 |
-
- Conexiones léxicas encontradas: {lexical_connections}
|
376 |
-
- Conexiones posibles: {total_possible_connections}
|
377 |
-
- Lexical cohesion score: {lexical_cohesion}
|
378 |
-
- Conectores encontrados: {connector_count}
|
379 |
-
- Connector cohesion score: {connector_cohesion}
|
380 |
-
- Score final: {cohesion_score}
|
381 |
-
""")
|
382 |
-
|
383 |
-
return cohesion_score
|
384 |
-
|
385 |
-
except Exception as e:
|
386 |
-
logger.error(f"Error en analyze_cohesion: {str(e)}")
|
387 |
-
return 0.0
|
388 |
-
|
389 |
-
def analyze_structure(doc):
|
390 |
-
try:
|
391 |
-
if len(doc) == 0:
|
392 |
-
return 0.0
|
393 |
-
|
394 |
-
structure_scores = []
|
395 |
-
for token in doc:
|
396 |
-
if token.dep_ == 'ROOT':
|
397 |
-
result = get_dependency_depths(token)
|
398 |
-
structure_scores.append(result['final_score'])
|
399 |
-
|
400 |
-
if not structure_scores:
|
401 |
-
return 0.0
|
402 |
-
|
403 |
-
return min(1.0, sum(structure_scores) / len(structure_scores))
|
404 |
-
|
405 |
-
except Exception as e:
|
406 |
-
logger.error(f"Error en analyze_structure: {str(e)}")
|
407 |
-
return 0.0
|
408 |
-
|
409 |
-
# Funciones auxiliares de análisis
|
410 |
-
|
411 |
-
def get_dependency_depths(token, depth=0, analyzed_tokens=None):
|
412 |
-
"""
|
413 |
-
Analiza la profundidad y calidad de las relaciones de dependencia.
|
414 |
-
|
415 |
-
Args:
|
416 |
-
token: Token a analizar
|
417 |
-
depth: Profundidad actual en el árbol
|
418 |
-
analyzed_tokens: Set para evitar ciclos en el análisis
|
419 |
-
|
420 |
-
Returns:
|
421 |
-
dict: Información detallada sobre las dependencias
|
422 |
-
- depths: Lista de profundidades
|
423 |
-
- relations: Diccionario con tipos de relaciones encontradas
|
424 |
-
- complexity_score: Puntuación de complejidad
|
425 |
-
"""
|
426 |
-
if analyzed_tokens is None:
|
427 |
-
analyzed_tokens = set()
|
428 |
-
|
429 |
-
# Evitar ciclos
|
430 |
-
if token.i in analyzed_tokens:
|
431 |
-
return {
|
432 |
-
'depths': [],
|
433 |
-
'relations': {},
|
434 |
-
'complexity_score': 0
|
435 |
-
}
|
436 |
-
|
437 |
-
analyzed_tokens.add(token.i)
|
438 |
-
|
439 |
-
# Pesos para diferentes tipos de dependencias
|
440 |
-
dependency_weights = {
|
441 |
-
# Dependencias principales
|
442 |
-
'nsubj': 1.2, # Sujeto nominal
|
443 |
-
'obj': 1.1, # Objeto directo
|
444 |
-
'iobj': 1.1, # Objeto indirecto
|
445 |
-
'ROOT': 1.3, # Raíz
|
446 |
-
|
447 |
-
# Modificadores
|
448 |
-
'amod': 0.8, # Modificador adjetival
|
449 |
-
'advmod': 0.8, # Modificador adverbial
|
450 |
-
'nmod': 0.9, # Modificador nominal
|
451 |
-
|
452 |
-
# Estructuras complejas
|
453 |
-
'csubj': 1.4, # Cláusula como sujeto
|
454 |
-
'ccomp': 1.3, # Complemento clausal
|
455 |
-
'xcomp': 1.2, # Complemento clausal abierto
|
456 |
-
'advcl': 1.2, # Cláusula adverbial
|
457 |
-
|
458 |
-
# Coordinación y subordinación
|
459 |
-
'conj': 1.1, # Conjunción
|
460 |
-
'cc': 0.7, # Coordinación
|
461 |
-
'mark': 0.8, # Marcador
|
462 |
-
|
463 |
-
# Otros
|
464 |
-
'det': 0.5, # Determinante
|
465 |
-
'case': 0.5, # Caso
|
466 |
-
'punct': 0.1 # Puntuación
|
467 |
-
}
|
468 |
-
|
469 |
-
# Inicializar resultados
|
470 |
-
current_result = {
|
471 |
-
'depths': [depth],
|
472 |
-
'relations': {token.dep_: 1},
|
473 |
-
'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1)
|
474 |
-
}
|
475 |
-
|
476 |
-
# Analizar hijos recursivamente
|
477 |
-
for child in token.children:
|
478 |
-
child_result = get_dependency_depths(child, depth + 1, analyzed_tokens)
|
479 |
-
|
480 |
-
# Combinar profundidades
|
481 |
-
current_result['depths'].extend(child_result['depths'])
|
482 |
-
|
483 |
-
# Combinar relaciones
|
484 |
-
for rel, count in child_result['relations'].items():
|
485 |
-
current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count
|
486 |
-
|
487 |
-
# Acumular score de complejidad
|
488 |
-
current_result['complexity_score'] += child_result['complexity_score']
|
489 |
-
|
490 |
-
# Calcular métricas adicionales
|
491 |
-
current_result['max_depth'] = max(current_result['depths'])
|
492 |
-
current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths'])
|
493 |
-
current_result['relation_diversity'] = len(current_result['relations'])
|
494 |
-
|
495 |
-
# Calcular score ponderado por tipo de estructura
|
496 |
-
structure_bonus = 0
|
497 |
-
|
498 |
-
# Bonus por estructuras complejas
|
499 |
-
if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']:
|
500 |
-
structure_bonus += 0.3
|
501 |
-
|
502 |
-
# Bonus por coordinación balanceada
|
503 |
-
if 'conj' in current_result['relations'] and 'cc' in current_result['relations']:
|
504 |
-
structure_bonus += 0.2
|
505 |
-
|
506 |
-
# Bonus por modificación rica
|
507 |
-
if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2:
|
508 |
-
structure_bonus += 0.2
|
509 |
-
|
510 |
-
current_result['final_score'] = (
|
511 |
-
current_result['complexity_score'] * (1 + structure_bonus)
|
512 |
-
)
|
513 |
-
|
514 |
-
return current_result
|
515 |
-
|
516 |
-
def normalize_score(value, metric_type,
|
517 |
-
min_threshold=0.0, target_threshold=1.0,
|
518 |
-
range_factor=2.0, optimal_length=None,
|
519 |
-
optimal_connections=None, optimal_depth=None):
|
520 |
-
"""
|
521 |
-
Normaliza un valor considerando umbrales específicos por tipo de métrica.
|
522 |
-
|
523 |
-
Args:
|
524 |
-
value: Valor a normalizar
|
525 |
-
metric_type: Tipo de métrica ('vocabulary', 'structure', 'cohesion', 'clarity')
|
526 |
-
min_threshold: Valor mínimo aceptable
|
527 |
-
target_threshold: Valor objetivo
|
528 |
-
range_factor: Factor para ajustar el rango
|
529 |
-
optimal_length: Longitud óptima (opcional)
|
530 |
-
optimal_connections: Número óptimo de conexiones (opcional)
|
531 |
-
optimal_depth: Profundidad óptima de estructura (opcional)
|
532 |
-
|
533 |
-
Returns:
|
534 |
-
float: Valor normalizado entre 0 y 1
|
535 |
-
"""
|
536 |
-
try:
|
537 |
-
# Definir umbrales por tipo de métrica
|
538 |
-
METRIC_THRESHOLDS = {
|
539 |
-
'vocabulary': {
|
540 |
-
'min': 0.60,
|
541 |
-
'target': 0.75,
|
542 |
-
'range_factor': 1.5
|
543 |
-
},
|
544 |
-
'structure': {
|
545 |
-
'min': 0.65,
|
546 |
-
'target': 0.80,
|
547 |
-
'range_factor': 1.8
|
548 |
-
},
|
549 |
-
'cohesion': {
|
550 |
-
'min': 0.55,
|
551 |
-
'target': 0.70,
|
552 |
-
'range_factor': 1.6
|
553 |
-
},
|
554 |
-
'clarity': {
|
555 |
-
'min': 0.60,
|
556 |
-
'target': 0.75,
|
557 |
-
'range_factor': 1.7
|
558 |
-
}
|
559 |
-
}
|
560 |
-
|
561 |
-
# Validar valores negativos o cero
|
562 |
-
if value < 0:
|
563 |
-
logger.warning(f"Valor negativo recibido: {value}")
|
564 |
-
return 0.0
|
565 |
-
|
566 |
-
# Manejar caso donde el valor es cero
|
567 |
-
if value == 0:
|
568 |
-
logger.warning("Valor cero recibido")
|
569 |
-
return 0.0
|
570 |
-
|
571 |
-
# Obtener umbrales específicos para el tipo de métrica
|
572 |
-
thresholds = METRIC_THRESHOLDS.get(metric_type, {
|
573 |
-
'min': min_threshold,
|
574 |
-
'target': target_threshold,
|
575 |
-
'range_factor': range_factor
|
576 |
-
})
|
577 |
-
|
578 |
-
# Identificar el valor de referencia a usar
|
579 |
-
if optimal_depth is not None:
|
580 |
-
reference = optimal_depth
|
581 |
-
elif optimal_connections is not None:
|
582 |
-
reference = optimal_connections
|
583 |
-
elif optimal_length is not None:
|
584 |
-
reference = optimal_length
|
585 |
-
else:
|
586 |
-
reference = thresholds['target']
|
587 |
-
|
588 |
-
# Validar valor de referencia
|
589 |
-
if reference <= 0:
|
590 |
-
logger.warning(f"Valor de referencia inválido: {reference}")
|
591 |
-
return 0.0
|
592 |
-
|
593 |
-
# Calcular score basado en umbrales
|
594 |
-
if value < thresholds['min']:
|
595 |
-
# Valor por debajo del mínimo
|
596 |
-
score = (value / thresholds['min']) * 0.5 # Máximo 0.5 para valores bajo el mínimo
|
597 |
-
elif value < thresholds['target']:
|
598 |
-
# Valor entre mínimo y objetivo
|
599 |
-
range_size = thresholds['target'] - thresholds['min']
|
600 |
-
progress = (value - thresholds['min']) / range_size
|
601 |
-
score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0
|
602 |
-
else:
|
603 |
-
# Valor alcanza o supera el objetivo
|
604 |
-
score = 1.0
|
605 |
-
|
606 |
-
# Penalizar valores muy por encima del objetivo
|
607 |
-
if value > (thresholds['target'] * thresholds['range_factor']):
|
608 |
-
excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor'])
|
609 |
-
score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos
|
610 |
-
|
611 |
-
# Asegurar que el resultado esté entre 0 y 1
|
612 |
-
return max(0.0, min(1.0, score))
|
613 |
-
|
614 |
-
except Exception as e:
|
615 |
-
logger.error(f"Error en normalize_score: {str(e)}")
|
616 |
-
return 0.0
|
617 |
-
|
618 |
-
|
619 |
-
# Funciones de generación de gráficos
|
620 |
-
def generate_sentence_graphs(doc):
|
621 |
-
"""Genera visualizaciones de estructura de oraciones"""
|
622 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
623 |
-
# Implementar visualización
|
624 |
-
plt.close()
|
625 |
-
return fig
|
626 |
-
|
627 |
-
def generate_word_connections(doc):
|
628 |
-
"""Genera red de conexiones de palabras"""
|
629 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
630 |
-
# Implementar visualización
|
631 |
-
plt.close()
|
632 |
-
return fig
|
633 |
-
|
634 |
-
def generate_connection_paths(doc):
|
635 |
-
"""Genera patrones de conexión"""
|
636 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
637 |
-
# Implementar visualización
|
638 |
-
plt.close()
|
639 |
-
return fig
|
640 |
-
|
641 |
-
def create_vocabulary_network(doc):
|
642 |
-
"""
|
643 |
-
Genera el grafo de red de vocabulario.
|
644 |
-
"""
|
645 |
-
G = nx.Graph()
|
646 |
-
|
647 |
-
# Crear nodos para palabras significativas
|
648 |
-
words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop]
|
649 |
-
word_freq = Counter(words)
|
650 |
-
|
651 |
-
# Añadir nodos con tamaño basado en frecuencia
|
652 |
-
for word, freq in word_freq.items():
|
653 |
-
G.add_node(word, size=freq)
|
654 |
-
|
655 |
-
# Crear conexiones basadas en co-ocurrencia
|
656 |
-
window_size = 5
|
657 |
-
for i in range(len(words) - window_size):
|
658 |
-
window = words[i:i+window_size]
|
659 |
-
for w1, w2 in combinations(set(window), 2):
|
660 |
-
if G.has_edge(w1, w2):
|
661 |
-
G[w1][w2]['weight'] += 1
|
662 |
-
else:
|
663 |
-
G.add_edge(w1, w2, weight=1)
|
664 |
-
|
665 |
-
# Crear visualización
|
666 |
-
fig, ax = plt.subplots(figsize=(12, 8))
|
667 |
-
pos = nx.spring_layout(G)
|
668 |
-
|
669 |
-
# Dibujar nodos
|
670 |
-
nx.draw_networkx_nodes(G, pos,
|
671 |
-
node_size=[G.nodes[node]['size']*100 for node in G.nodes],
|
672 |
-
node_color='lightblue',
|
673 |
-
alpha=0.7)
|
674 |
-
|
675 |
-
# Dibujar conexiones
|
676 |
-
nx.draw_networkx_edges(G, pos,
|
677 |
-
width=[G[u][v]['weight']*0.5 for u,v in G.edges],
|
678 |
-
alpha=0.5)
|
679 |
-
|
680 |
-
# Añadir etiquetas
|
681 |
-
nx.draw_networkx_labels(G, pos)
|
682 |
-
|
683 |
-
plt.title("Red de Vocabulario")
|
684 |
-
plt.axis('off')
|
685 |
-
return fig
|
686 |
-
|
687 |
-
def create_syntax_complexity_graph(doc):
|
688 |
-
"""
|
689 |
-
Genera el diagrama de arco de complejidad sintáctica.
|
690 |
-
Muestra la estructura de dependencias con colores basados en la complejidad.
|
691 |
-
"""
|
692 |
-
try:
|
693 |
-
# Preparar datos para la visualización
|
694 |
-
sentences = list(doc.sents)
|
695 |
-
if not sentences:
|
696 |
-
return None
|
697 |
-
|
698 |
-
# Crear figura para el gráfico
|
699 |
-
fig, ax = plt.subplots(figsize=(12, len(sentences) * 2))
|
700 |
-
|
701 |
-
# Colores para diferentes niveles de profundidad
|
702 |
-
depth_colors = plt.cm.viridis(np.linspace(0, 1, 6))
|
703 |
-
|
704 |
-
y_offset = 0
|
705 |
-
max_x = 0
|
706 |
-
|
707 |
-
for sent in sentences:
|
708 |
-
words = [token.text for token in sent]
|
709 |
-
x_positions = range(len(words))
|
710 |
-
max_x = max(max_x, len(words))
|
711 |
-
|
712 |
-
# Dibujar palabras
|
713 |
-
plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2)
|
714 |
-
plt.scatter(x_positions, [y_offset] * len(words), alpha=0)
|
715 |
-
|
716 |
-
# Añadir texto
|
717 |
-
for i, word in enumerate(words):
|
718 |
-
plt.annotate(word, (i, y_offset), xytext=(0, -10),
|
719 |
-
textcoords='offset points', ha='center')
|
720 |
-
|
721 |
-
# Dibujar arcos de dependencia
|
722 |
-
for token in sent:
|
723 |
-
if token.dep_ != "ROOT":
|
724 |
-
# Calcular profundidad de dependencia
|
725 |
-
depth = 0
|
726 |
-
current = token
|
727 |
-
while current.head != current:
|
728 |
-
depth += 1
|
729 |
-
current = current.head
|
730 |
-
|
731 |
-
# Determinar posiciones para el arco
|
732 |
-
start = token.i - sent[0].i
|
733 |
-
end = token.head.i - sent[0].i
|
734 |
-
|
735 |
-
# Altura del arco basada en la distancia entre palabras
|
736 |
-
height = 0.5 * abs(end - start)
|
737 |
-
|
738 |
-
# Color basado en la profundidad
|
739 |
-
color = depth_colors[min(depth, len(depth_colors)-1)]
|
740 |
-
|
741 |
-
# Crear arco
|
742 |
-
arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset),
|
743 |
-
width=abs(end - start),
|
744 |
-
height=height,
|
745 |
-
angle=0,
|
746 |
-
theta1=0,
|
747 |
-
theta2=180,
|
748 |
-
color=color,
|
749 |
-
alpha=0.6)
|
750 |
-
ax.add_patch(arc)
|
751 |
-
|
752 |
-
y_offset -= 2
|
753 |
-
|
754 |
-
# Configurar el gráfico
|
755 |
-
plt.xlim(-1, max_x)
|
756 |
-
plt.ylim(y_offset - 1, 1)
|
757 |
-
plt.axis('off')
|
758 |
-
plt.title("Complejidad Sintáctica")
|
759 |
-
|
760 |
-
return fig
|
761 |
-
|
762 |
-
except Exception as e:
|
763 |
-
logger.error(f"Error en create_syntax_complexity_graph: {str(e)}")
|
764 |
-
return None
|
765 |
-
|
766 |
-
|
767 |
-
def create_cohesion_heatmap(doc):
|
768 |
-
"""Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones."""
|
769 |
-
try:
|
770 |
-
sentences = list(doc.sents)
|
771 |
-
n_sentences = len(sentences)
|
772 |
-
|
773 |
-
if n_sentences < 2:
|
774 |
-
return None
|
775 |
-
|
776 |
-
similarity_matrix = np.zeros((n_sentences, n_sentences))
|
777 |
-
|
778 |
-
for i in range(n_sentences):
|
779 |
-
for j in range(n_sentences):
|
780 |
-
sent1_lemmas = {token.lemma_ for token in sentences[i]
|
781 |
-
if token.is_alpha and not token.is_stop}
|
782 |
-
sent2_lemmas = {token.lemma_ for token in sentences[j]
|
783 |
-
if token.is_alpha and not token.is_stop}
|
784 |
-
|
785 |
-
if sent1_lemmas and sent2_lemmas:
|
786 |
-
intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aquí
|
787 |
-
union = len(sent1_lemmas | sent2_lemmas) # Y aquí
|
788 |
-
similarity_matrix[i, j] = intersection / union if union > 0 else 0
|
789 |
-
|
790 |
-
# Crear visualización
|
791 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
792 |
-
|
793 |
-
sns.heatmap(similarity_matrix,
|
794 |
-
cmap='YlOrRd',
|
795 |
-
square=True,
|
796 |
-
xticklabels=False,
|
797 |
-
yticklabels=False,
|
798 |
-
cbar_kws={'label': 'Cohesión'},
|
799 |
-
ax=ax)
|
800 |
-
|
801 |
-
plt.title("Mapa de Cohesión Textual")
|
802 |
-
plt.xlabel("Oraciones")
|
803 |
-
plt.ylabel("Oraciones")
|
804 |
-
|
805 |
-
plt.tight_layout()
|
806 |
-
return fig
|
807 |
-
|
808 |
-
except Exception as e:
|
809 |
-
logger.error(f"Error en create_cohesion_heatmap: {str(e)}")
|
810 |
-
return None
|
|
|
1 |
+
#v3/modules/studentact/current_situation_analysis.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import networkx as nx
|
6 |
+
import seaborn as sns
|
7 |
+
from collections import Counter
|
8 |
+
from itertools import combinations
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.patches as patches
|
11 |
+
import logging
|
12 |
+
|
13 |
+
# 2. Configuración básica del logging
|
14 |
+
logging.basicConfig(
|
15 |
+
level=logging.INFO,
|
16 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
17 |
+
handlers=[
|
18 |
+
logging.StreamHandler(),
|
19 |
+
logging.FileHandler('app.log')
|
20 |
+
]
|
21 |
+
)
|
22 |
+
|
23 |
+
# 3. Obtener el logger específico para este módulo
|
24 |
+
logger = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
#########################################################################
|
27 |
+
|
28 |
+
def correlate_metrics(scores):
|
29 |
+
"""
|
30 |
+
Ajusta los scores para mantener correlaciones lógicas entre métricas.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
scores: dict con scores iniciales de vocabulario, estructura, cohesión y claridad
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
dict con scores ajustados
|
37 |
+
"""
|
38 |
+
try:
|
39 |
+
# 1. Correlación estructura-cohesión
|
40 |
+
# La cohesión no puede ser menor que estructura * 0.7
|
41 |
+
min_cohesion = scores['structure']['normalized_score'] * 0.7
|
42 |
+
if scores['cohesion']['normalized_score'] < min_cohesion:
|
43 |
+
scores['cohesion']['normalized_score'] = min_cohesion
|
44 |
+
|
45 |
+
# 2. Correlación vocabulario-cohesión
|
46 |
+
# La cohesión léxica depende del vocabulario
|
47 |
+
vocab_influence = scores['vocabulary']['normalized_score'] * 0.6
|
48 |
+
scores['cohesion']['normalized_score'] = max(
|
49 |
+
scores['cohesion']['normalized_score'],
|
50 |
+
vocab_influence
|
51 |
+
)
|
52 |
+
|
53 |
+
# 3. Correlación cohesión-claridad
|
54 |
+
# La claridad no puede superar cohesión * 1.2
|
55 |
+
max_clarity = scores['cohesion']['normalized_score'] * 1.2
|
56 |
+
if scores['clarity']['normalized_score'] > max_clarity:
|
57 |
+
scores['clarity']['normalized_score'] = max_clarity
|
58 |
+
|
59 |
+
# 4. Correlación estructura-claridad
|
60 |
+
# La claridad no puede superar estructura * 1.1
|
61 |
+
struct_max_clarity = scores['structure']['normalized_score'] * 1.1
|
62 |
+
scores['clarity']['normalized_score'] = min(
|
63 |
+
scores['clarity']['normalized_score'],
|
64 |
+
struct_max_clarity
|
65 |
+
)
|
66 |
+
|
67 |
+
# Normalizar todos los scores entre 0 y 1
|
68 |
+
for metric in scores:
|
69 |
+
scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score']))
|
70 |
+
|
71 |
+
return scores
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
logger.error(f"Error en correlate_metrics: {str(e)}")
|
75 |
+
return scores
|
76 |
+
|
77 |
+
##########################################################################
|
78 |
+
|
79 |
+
def analyze_text_dimensions(doc):
|
80 |
+
"""
|
81 |
+
Analiza las dimensiones principales del texto manteniendo correlaciones lógicas.
|
82 |
+
"""
|
83 |
+
try:
|
84 |
+
# Obtener scores iniciales
|
85 |
+
vocab_score, vocab_details = analyze_vocabulary_diversity(doc)
|
86 |
+
struct_score = analyze_structure(doc)
|
87 |
+
cohesion_score = analyze_cohesion(doc)
|
88 |
+
clarity_score, clarity_details = analyze_clarity(doc)
|
89 |
+
|
90 |
+
# Crear diccionario de scores inicial
|
91 |
+
scores = {
|
92 |
+
'vocabulary': {
|
93 |
+
'normalized_score': vocab_score,
|
94 |
+
'details': vocab_details
|
95 |
+
},
|
96 |
+
'structure': {
|
97 |
+
'normalized_score': struct_score,
|
98 |
+
'details': None
|
99 |
+
},
|
100 |
+
'cohesion': {
|
101 |
+
'normalized_score': cohesion_score,
|
102 |
+
'details': None
|
103 |
+
},
|
104 |
+
'clarity': {
|
105 |
+
'normalized_score': clarity_score,
|
106 |
+
'details': clarity_details
|
107 |
+
}
|
108 |
+
}
|
109 |
+
|
110 |
+
# Ajustar correlaciones entre métricas
|
111 |
+
adjusted_scores = correlate_metrics(scores)
|
112 |
+
|
113 |
+
# Logging para diagnóstico
|
114 |
+
logger.info(f"""
|
115 |
+
Scores originales vs ajustados:
|
116 |
+
Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f}
|
117 |
+
Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f}
|
118 |
+
Cohesión: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f}
|
119 |
+
Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f}
|
120 |
+
""")
|
121 |
+
|
122 |
+
return adjusted_scores
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
logger.error(f"Error en analyze_text_dimensions: {str(e)}")
|
126 |
+
return {
|
127 |
+
'vocabulary': {'normalized_score': 0.0, 'details': {}},
|
128 |
+
'structure': {'normalized_score': 0.0, 'details': {}},
|
129 |
+
'cohesion': {'normalized_score': 0.0, 'details': {}},
|
130 |
+
'clarity': {'normalized_score': 0.0, 'details': {}}
|
131 |
+
}
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
#############################################################################################
|
136 |
+
|
137 |
+
def analyze_clarity(doc):
|
138 |
+
"""
|
139 |
+
Analiza la claridad del texto considerando múltiples factores.
|
140 |
+
"""
|
141 |
+
try:
|
142 |
+
sentences = list(doc.sents)
|
143 |
+
if not sentences:
|
144 |
+
return 0.0, {}
|
145 |
+
|
146 |
+
# 1. Longitud de oraciones
|
147 |
+
sentence_lengths = [len(sent) for sent in sentences]
|
148 |
+
avg_length = sum(sentence_lengths) / len(sentences)
|
149 |
+
|
150 |
+
# Normalizar usando los umbrales definidos para clarity
|
151 |
+
length_score = normalize_score(
|
152 |
+
value=avg_length,
|
153 |
+
metric_type='clarity',
|
154 |
+
optimal_length=20, # Una oración ideal tiene ~20 palabras
|
155 |
+
min_threshold=0.60, # Consistente con METRIC_THRESHOLDS
|
156 |
+
target_threshold=0.75 # Consistente con METRIC_THRESHOLDS
|
157 |
+
)
|
158 |
+
|
159 |
+
# 2. Análisis de conectores
|
160 |
+
connector_count = 0
|
161 |
+
connector_weights = {
|
162 |
+
'CCONJ': 1.0, # Coordinantes
|
163 |
+
'SCONJ': 1.2, # Subordinantes
|
164 |
+
'ADV': 0.8 # Adverbios conectivos
|
165 |
+
}
|
166 |
+
|
167 |
+
for token in doc:
|
168 |
+
if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']:
|
169 |
+
connector_count += connector_weights[token.pos_]
|
170 |
+
|
171 |
+
# Normalizar conectores por oración
|
172 |
+
connectors_per_sentence = connector_count / len(sentences) if sentences else 0
|
173 |
+
connector_score = normalize_score(
|
174 |
+
value=connectors_per_sentence,
|
175 |
+
metric_type='clarity',
|
176 |
+
optimal_connections=1.5, # ~1.5 conectores por oración es óptimo
|
177 |
+
min_threshold=0.60,
|
178 |
+
target_threshold=0.75
|
179 |
+
)
|
180 |
+
|
181 |
+
# 3. Complejidad estructural
|
182 |
+
clause_count = 0
|
183 |
+
for sent in sentences:
|
184 |
+
verbs = [token for token in sent if token.pos_ == 'VERB']
|
185 |
+
clause_count += len(verbs)
|
186 |
+
|
187 |
+
complexity_raw = clause_count / len(sentences) if sentences else 0
|
188 |
+
complexity_score = normalize_score(
|
189 |
+
value=complexity_raw,
|
190 |
+
metric_type='clarity',
|
191 |
+
optimal_depth=2.0, # ~2 cláusulas por oración es óptimo
|
192 |
+
min_threshold=0.60,
|
193 |
+
target_threshold=0.75
|
194 |
+
)
|
195 |
+
|
196 |
+
# 4. Densidad léxica
|
197 |
+
content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
|
198 |
+
total_words = len([token for token in doc if token.is_alpha])
|
199 |
+
density = content_words / total_words if total_words > 0 else 0
|
200 |
+
|
201 |
+
density_score = normalize_score(
|
202 |
+
value=density,
|
203 |
+
metric_type='clarity',
|
204 |
+
optimal_connections=0.6, # 60% de palabras de contenido es óptimo
|
205 |
+
min_threshold=0.60,
|
206 |
+
target_threshold=0.75
|
207 |
+
)
|
208 |
+
|
209 |
+
# Score final ponderado
|
210 |
+
weights = {
|
211 |
+
'length': 0.3,
|
212 |
+
'connectors': 0.3,
|
213 |
+
'complexity': 0.2,
|
214 |
+
'density': 0.2
|
215 |
+
}
|
216 |
+
|
217 |
+
clarity_score = (
|
218 |
+
weights['length'] * length_score +
|
219 |
+
weights['connectors'] * connector_score +
|
220 |
+
weights['complexity'] * complexity_score +
|
221 |
+
weights['density'] * density_score
|
222 |
+
)
|
223 |
+
|
224 |
+
details = {
|
225 |
+
'length_score': length_score,
|
226 |
+
'connector_score': connector_score,
|
227 |
+
'complexity_score': complexity_score,
|
228 |
+
'density_score': density_score,
|
229 |
+
'avg_sentence_length': avg_length,
|
230 |
+
'connectors_per_sentence': connectors_per_sentence,
|
231 |
+
'density': density
|
232 |
+
}
|
233 |
+
|
234 |
+
# Agregar logging para diagnóstico
|
235 |
+
logger.info(f"""
|
236 |
+
Scores de Claridad:
|
237 |
+
- Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras)
|
238 |
+
- Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oración)
|
239 |
+
- Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cláusulas)
|
240 |
+
- Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido)
|
241 |
+
- Score Final: {clarity_score:.2f}
|
242 |
+
""")
|
243 |
+
|
244 |
+
return clarity_score, details
|
245 |
+
|
246 |
+
except Exception as e:
|
247 |
+
logger.error(f"Error en analyze_clarity: {str(e)}")
|
248 |
+
return 0.0, {}
|
249 |
+
|
250 |
+
|
251 |
+
def analyze_vocabulary_diversity(doc):
|
252 |
+
"""Análisis mejorado de la diversidad y calidad del vocabulario"""
|
253 |
+
try:
|
254 |
+
# 1. Análisis básico de diversidad
|
255 |
+
unique_lemmas = {token.lemma_ for token in doc if token.is_alpha}
|
256 |
+
total_words = len([token for token in doc if token.is_alpha])
|
257 |
+
basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0
|
258 |
+
|
259 |
+
# 2. Análisis de registro
|
260 |
+
academic_words = 0
|
261 |
+
narrative_words = 0
|
262 |
+
technical_terms = 0
|
263 |
+
|
264 |
+
# Clasificar palabras por registro
|
265 |
+
for token in doc:
|
266 |
+
if token.is_alpha:
|
267 |
+
# Detectar términos académicos/técnicos
|
268 |
+
if token.pos_ in ['NOUN', 'VERB', 'ADJ']:
|
269 |
+
if any(parent.pos_ == 'NOUN' for parent in token.ancestors):
|
270 |
+
technical_terms += 1
|
271 |
+
# Detectar palabras narrativas
|
272 |
+
if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']:
|
273 |
+
narrative_words += 1
|
274 |
+
|
275 |
+
# 3. Análisis de complejidad sintáctica
|
276 |
+
avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents))
|
277 |
+
|
278 |
+
# 4. Calcular score ponderado
|
279 |
+
weights = {
|
280 |
+
'diversity': 0.3,
|
281 |
+
'technical': 0.3,
|
282 |
+
'narrative': 0.2,
|
283 |
+
'complexity': 0.2
|
284 |
+
}
|
285 |
+
|
286 |
+
scores = {
|
287 |
+
'diversity': basic_diversity,
|
288 |
+
'technical': technical_terms / total_words if total_words > 0 else 0,
|
289 |
+
'narrative': narrative_words / total_words if total_words > 0 else 0,
|
290 |
+
'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras
|
291 |
+
}
|
292 |
+
|
293 |
+
# Score final ponderado
|
294 |
+
final_score = sum(weights[key] * scores[key] for key in weights)
|
295 |
+
|
296 |
+
# Información adicional para diagnóstico
|
297 |
+
details = {
|
298 |
+
'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic',
|
299 |
+
'scores': scores
|
300 |
+
}
|
301 |
+
|
302 |
+
return final_score, details
|
303 |
+
|
304 |
+
except Exception as e:
|
305 |
+
logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}")
|
306 |
+
return 0.0, {}
|
307 |
+
|
308 |
+
def analyze_cohesion(doc):
|
309 |
+
"""Analiza la cohesión textual"""
|
310 |
+
try:
|
311 |
+
sentences = list(doc.sents)
|
312 |
+
if len(sentences) < 2:
|
313 |
+
logger.warning("Texto demasiado corto para análisis de cohesión")
|
314 |
+
return 0.0
|
315 |
+
|
316 |
+
# 1. Análisis de conexiones léxicas
|
317 |
+
lexical_connections = 0
|
318 |
+
total_possible_connections = 0
|
319 |
+
|
320 |
+
for i in range(len(sentences)-1):
|
321 |
+
# Obtener lemmas significativos (no stopwords)
|
322 |
+
sent1_words = {token.lemma_ for token in sentences[i]
|
323 |
+
if token.is_alpha and not token.is_stop}
|
324 |
+
sent2_words = {token.lemma_ for token in sentences[i+1]
|
325 |
+
if token.is_alpha and not token.is_stop}
|
326 |
+
|
327 |
+
if sent1_words and sent2_words: # Verificar que ambos conjuntos no estén vacíos
|
328 |
+
intersection = len(sent1_words.intersection(sent2_words))
|
329 |
+
total_possible = min(len(sent1_words), len(sent2_words))
|
330 |
+
|
331 |
+
if total_possible > 0:
|
332 |
+
lexical_score = intersection / total_possible
|
333 |
+
lexical_connections += lexical_score
|
334 |
+
total_possible_connections += 1
|
335 |
+
|
336 |
+
# 2. Análisis de conectores
|
337 |
+
connector_count = 0
|
338 |
+
connector_types = {
|
339 |
+
'CCONJ': 1.0, # Coordinantes
|
340 |
+
'SCONJ': 1.2, # Subordinantes
|
341 |
+
'ADV': 0.8 # Adverbios conectivos
|
342 |
+
}
|
343 |
+
|
344 |
+
for token in doc:
|
345 |
+
if (token.pos_ in connector_types and
|
346 |
+
token.dep_ in ['cc', 'mark', 'advmod'] and
|
347 |
+
not token.is_stop):
|
348 |
+
connector_count += connector_types[token.pos_]
|
349 |
+
|
350 |
+
# 3. Cálculo de scores normalizados
|
351 |
+
if total_possible_connections > 0:
|
352 |
+
lexical_cohesion = lexical_connections / total_possible_connections
|
353 |
+
else:
|
354 |
+
lexical_cohesion = 0
|
355 |
+
|
356 |
+
if len(sentences) > 1:
|
357 |
+
connector_cohesion = min(1.0, connector_count / (len(sentences) - 1))
|
358 |
+
else:
|
359 |
+
connector_cohesion = 0
|
360 |
+
|
361 |
+
# 4. Score final ponderado
|
362 |
+
weights = {
|
363 |
+
'lexical': 0.7,
|
364 |
+
'connectors': 0.3
|
365 |
+
}
|
366 |
+
|
367 |
+
cohesion_score = (
|
368 |
+
weights['lexical'] * lexical_cohesion +
|
369 |
+
weights['connectors'] * connector_cohesion
|
370 |
+
)
|
371 |
+
|
372 |
+
# 5. Logging para diagnóstico
|
373 |
+
logger.info(f"""
|
374 |
+
Análisis de Cohesión:
|
375 |
+
- Conexiones léxicas encontradas: {lexical_connections}
|
376 |
+
- Conexiones posibles: {total_possible_connections}
|
377 |
+
- Lexical cohesion score: {lexical_cohesion}
|
378 |
+
- Conectores encontrados: {connector_count}
|
379 |
+
- Connector cohesion score: {connector_cohesion}
|
380 |
+
- Score final: {cohesion_score}
|
381 |
+
""")
|
382 |
+
|
383 |
+
return cohesion_score
|
384 |
+
|
385 |
+
except Exception as e:
|
386 |
+
logger.error(f"Error en analyze_cohesion: {str(e)}")
|
387 |
+
return 0.0
|
388 |
+
|
389 |
+
def analyze_structure(doc):
|
390 |
+
try:
|
391 |
+
if len(doc) == 0:
|
392 |
+
return 0.0
|
393 |
+
|
394 |
+
structure_scores = []
|
395 |
+
for token in doc:
|
396 |
+
if token.dep_ == 'ROOT':
|
397 |
+
result = get_dependency_depths(token)
|
398 |
+
structure_scores.append(result['final_score'])
|
399 |
+
|
400 |
+
if not structure_scores:
|
401 |
+
return 0.0
|
402 |
+
|
403 |
+
return min(1.0, sum(structure_scores) / len(structure_scores))
|
404 |
+
|
405 |
+
except Exception as e:
|
406 |
+
logger.error(f"Error en analyze_structure: {str(e)}")
|
407 |
+
return 0.0
|
408 |
+
|
409 |
+
# Funciones auxiliares de análisis
|
410 |
+
|
411 |
+
def get_dependency_depths(token, depth=0, analyzed_tokens=None):
|
412 |
+
"""
|
413 |
+
Analiza la profundidad y calidad de las relaciones de dependencia.
|
414 |
+
|
415 |
+
Args:
|
416 |
+
token: Token a analizar
|
417 |
+
depth: Profundidad actual en el árbol
|
418 |
+
analyzed_tokens: Set para evitar ciclos en el análisis
|
419 |
+
|
420 |
+
Returns:
|
421 |
+
dict: Información detallada sobre las dependencias
|
422 |
+
- depths: Lista de profundidades
|
423 |
+
- relations: Diccionario con tipos de relaciones encontradas
|
424 |
+
- complexity_score: Puntuación de complejidad
|
425 |
+
"""
|
426 |
+
if analyzed_tokens is None:
|
427 |
+
analyzed_tokens = set()
|
428 |
+
|
429 |
+
# Evitar ciclos
|
430 |
+
if token.i in analyzed_tokens:
|
431 |
+
return {
|
432 |
+
'depths': [],
|
433 |
+
'relations': {},
|
434 |
+
'complexity_score': 0
|
435 |
+
}
|
436 |
+
|
437 |
+
analyzed_tokens.add(token.i)
|
438 |
+
|
439 |
+
# Pesos para diferentes tipos de dependencias
|
440 |
+
dependency_weights = {
|
441 |
+
# Dependencias principales
|
442 |
+
'nsubj': 1.2, # Sujeto nominal
|
443 |
+
'obj': 1.1, # Objeto directo
|
444 |
+
'iobj': 1.1, # Objeto indirecto
|
445 |
+
'ROOT': 1.3, # Raíz
|
446 |
+
|
447 |
+
# Modificadores
|
448 |
+
'amod': 0.8, # Modificador adjetival
|
449 |
+
'advmod': 0.8, # Modificador adverbial
|
450 |
+
'nmod': 0.9, # Modificador nominal
|
451 |
+
|
452 |
+
# Estructuras complejas
|
453 |
+
'csubj': 1.4, # Cláusula como sujeto
|
454 |
+
'ccomp': 1.3, # Complemento clausal
|
455 |
+
'xcomp': 1.2, # Complemento clausal abierto
|
456 |
+
'advcl': 1.2, # Cláusula adverbial
|
457 |
+
|
458 |
+
# Coordinación y subordinación
|
459 |
+
'conj': 1.1, # Conjunción
|
460 |
+
'cc': 0.7, # Coordinación
|
461 |
+
'mark': 0.8, # Marcador
|
462 |
+
|
463 |
+
# Otros
|
464 |
+
'det': 0.5, # Determinante
|
465 |
+
'case': 0.5, # Caso
|
466 |
+
'punct': 0.1 # Puntuación
|
467 |
+
}
|
468 |
+
|
469 |
+
# Inicializar resultados
|
470 |
+
current_result = {
|
471 |
+
'depths': [depth],
|
472 |
+
'relations': {token.dep_: 1},
|
473 |
+
'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1)
|
474 |
+
}
|
475 |
+
|
476 |
+
# Analizar hijos recursivamente
|
477 |
+
for child in token.children:
|
478 |
+
child_result = get_dependency_depths(child, depth + 1, analyzed_tokens)
|
479 |
+
|
480 |
+
# Combinar profundidades
|
481 |
+
current_result['depths'].extend(child_result['depths'])
|
482 |
+
|
483 |
+
# Combinar relaciones
|
484 |
+
for rel, count in child_result['relations'].items():
|
485 |
+
current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count
|
486 |
+
|
487 |
+
# Acumular score de complejidad
|
488 |
+
current_result['complexity_score'] += child_result['complexity_score']
|
489 |
+
|
490 |
+
# Calcular métricas adicionales
|
491 |
+
current_result['max_depth'] = max(current_result['depths'])
|
492 |
+
current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths'])
|
493 |
+
current_result['relation_diversity'] = len(current_result['relations'])
|
494 |
+
|
495 |
+
# Calcular score ponderado por tipo de estructura
|
496 |
+
structure_bonus = 0
|
497 |
+
|
498 |
+
# Bonus por estructuras complejas
|
499 |
+
if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']:
|
500 |
+
structure_bonus += 0.3
|
501 |
+
|
502 |
+
# Bonus por coordinación balanceada
|
503 |
+
if 'conj' in current_result['relations'] and 'cc' in current_result['relations']:
|
504 |
+
structure_bonus += 0.2
|
505 |
+
|
506 |
+
# Bonus por modificación rica
|
507 |
+
if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2:
|
508 |
+
structure_bonus += 0.2
|
509 |
+
|
510 |
+
current_result['final_score'] = (
|
511 |
+
current_result['complexity_score'] * (1 + structure_bonus)
|
512 |
+
)
|
513 |
+
|
514 |
+
return current_result
|
515 |
+
|
516 |
+
def normalize_score(value, metric_type,
|
517 |
+
min_threshold=0.0, target_threshold=1.0,
|
518 |
+
range_factor=2.0, optimal_length=None,
|
519 |
+
optimal_connections=None, optimal_depth=None):
|
520 |
+
"""
|
521 |
+
Normaliza un valor considerando umbrales específicos por tipo de métrica.
|
522 |
+
|
523 |
+
Args:
|
524 |
+
value: Valor a normalizar
|
525 |
+
metric_type: Tipo de métrica ('vocabulary', 'structure', 'cohesion', 'clarity')
|
526 |
+
min_threshold: Valor mínimo aceptable
|
527 |
+
target_threshold: Valor objetivo
|
528 |
+
range_factor: Factor para ajustar el rango
|
529 |
+
optimal_length: Longitud óptima (opcional)
|
530 |
+
optimal_connections: Número óptimo de conexiones (opcional)
|
531 |
+
optimal_depth: Profundidad óptima de estructura (opcional)
|
532 |
+
|
533 |
+
Returns:
|
534 |
+
float: Valor normalizado entre 0 y 1
|
535 |
+
"""
|
536 |
+
try:
|
537 |
+
# Definir umbrales por tipo de métrica
|
538 |
+
METRIC_THRESHOLDS = {
|
539 |
+
'vocabulary': {
|
540 |
+
'min': 0.60,
|
541 |
+
'target': 0.75,
|
542 |
+
'range_factor': 1.5
|
543 |
+
},
|
544 |
+
'structure': {
|
545 |
+
'min': 0.65,
|
546 |
+
'target': 0.80,
|
547 |
+
'range_factor': 1.8
|
548 |
+
},
|
549 |
+
'cohesion': {
|
550 |
+
'min': 0.55,
|
551 |
+
'target': 0.70,
|
552 |
+
'range_factor': 1.6
|
553 |
+
},
|
554 |
+
'clarity': {
|
555 |
+
'min': 0.60,
|
556 |
+
'target': 0.75,
|
557 |
+
'range_factor': 1.7
|
558 |
+
}
|
559 |
+
}
|
560 |
+
|
561 |
+
# Validar valores negativos o cero
|
562 |
+
if value < 0:
|
563 |
+
logger.warning(f"Valor negativo recibido: {value}")
|
564 |
+
return 0.0
|
565 |
+
|
566 |
+
# Manejar caso donde el valor es cero
|
567 |
+
if value == 0:
|
568 |
+
logger.warning("Valor cero recibido")
|
569 |
+
return 0.0
|
570 |
+
|
571 |
+
# Obtener umbrales específicos para el tipo de métrica
|
572 |
+
thresholds = METRIC_THRESHOLDS.get(metric_type, {
|
573 |
+
'min': min_threshold,
|
574 |
+
'target': target_threshold,
|
575 |
+
'range_factor': range_factor
|
576 |
+
})
|
577 |
+
|
578 |
+
# Identificar el valor de referencia a usar
|
579 |
+
if optimal_depth is not None:
|
580 |
+
reference = optimal_depth
|
581 |
+
elif optimal_connections is not None:
|
582 |
+
reference = optimal_connections
|
583 |
+
elif optimal_length is not None:
|
584 |
+
reference = optimal_length
|
585 |
+
else:
|
586 |
+
reference = thresholds['target']
|
587 |
+
|
588 |
+
# Validar valor de referencia
|
589 |
+
if reference <= 0:
|
590 |
+
logger.warning(f"Valor de referencia inválido: {reference}")
|
591 |
+
return 0.0
|
592 |
+
|
593 |
+
# Calcular score basado en umbrales
|
594 |
+
if value < thresholds['min']:
|
595 |
+
# Valor por debajo del mínimo
|
596 |
+
score = (value / thresholds['min']) * 0.5 # Máximo 0.5 para valores bajo el mínimo
|
597 |
+
elif value < thresholds['target']:
|
598 |
+
# Valor entre mínimo y objetivo
|
599 |
+
range_size = thresholds['target'] - thresholds['min']
|
600 |
+
progress = (value - thresholds['min']) / range_size
|
601 |
+
score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0
|
602 |
+
else:
|
603 |
+
# Valor alcanza o supera el objetivo
|
604 |
+
score = 1.0
|
605 |
+
|
606 |
+
# Penalizar valores muy por encima del objetivo
|
607 |
+
if value > (thresholds['target'] * thresholds['range_factor']):
|
608 |
+
excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor'])
|
609 |
+
score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos
|
610 |
+
|
611 |
+
# Asegurar que el resultado esté entre 0 y 1
|
612 |
+
return max(0.0, min(1.0, score))
|
613 |
+
|
614 |
+
except Exception as e:
|
615 |
+
logger.error(f"Error en normalize_score: {str(e)}")
|
616 |
+
return 0.0
|
617 |
+
|
618 |
+
|
619 |
+
# Funciones de generación de gráficos
|
620 |
+
def generate_sentence_graphs(doc):
|
621 |
+
"""Genera visualizaciones de estructura de oraciones"""
|
622 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
623 |
+
# Implementar visualización
|
624 |
+
plt.close()
|
625 |
+
return fig
|
626 |
+
|
627 |
+
def generate_word_connections(doc):
|
628 |
+
"""Genera red de conexiones de palabras"""
|
629 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
630 |
+
# Implementar visualización
|
631 |
+
plt.close()
|
632 |
+
return fig
|
633 |
+
|
634 |
+
def generate_connection_paths(doc):
|
635 |
+
"""Genera patrones de conexión"""
|
636 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
637 |
+
# Implementar visualización
|
638 |
+
plt.close()
|
639 |
+
return fig
|
640 |
+
|
641 |
+
def create_vocabulary_network(doc):
|
642 |
+
"""
|
643 |
+
Genera el grafo de red de vocabulario.
|
644 |
+
"""
|
645 |
+
G = nx.Graph()
|
646 |
+
|
647 |
+
# Crear nodos para palabras significativas
|
648 |
+
words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop]
|
649 |
+
word_freq = Counter(words)
|
650 |
+
|
651 |
+
# Añadir nodos con tamaño basado en frecuencia
|
652 |
+
for word, freq in word_freq.items():
|
653 |
+
G.add_node(word, size=freq)
|
654 |
+
|
655 |
+
# Crear conexiones basadas en co-ocurrencia
|
656 |
+
window_size = 5
|
657 |
+
for i in range(len(words) - window_size):
|
658 |
+
window = words[i:i+window_size]
|
659 |
+
for w1, w2 in combinations(set(window), 2):
|
660 |
+
if G.has_edge(w1, w2):
|
661 |
+
G[w1][w2]['weight'] += 1
|
662 |
+
else:
|
663 |
+
G.add_edge(w1, w2, weight=1)
|
664 |
+
|
665 |
+
# Crear visualización
|
666 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
667 |
+
pos = nx.spring_layout(G)
|
668 |
+
|
669 |
+
# Dibujar nodos
|
670 |
+
nx.draw_networkx_nodes(G, pos,
|
671 |
+
node_size=[G.nodes[node]['size']*100 for node in G.nodes],
|
672 |
+
node_color='lightblue',
|
673 |
+
alpha=0.7)
|
674 |
+
|
675 |
+
# Dibujar conexiones
|
676 |
+
nx.draw_networkx_edges(G, pos,
|
677 |
+
width=[G[u][v]['weight']*0.5 for u,v in G.edges],
|
678 |
+
alpha=0.5)
|
679 |
+
|
680 |
+
# Añadir etiquetas
|
681 |
+
nx.draw_networkx_labels(G, pos)
|
682 |
+
|
683 |
+
plt.title("Red de Vocabulario")
|
684 |
+
plt.axis('off')
|
685 |
+
return fig
|
686 |
+
|
687 |
+
def create_syntax_complexity_graph(doc):
|
688 |
+
"""
|
689 |
+
Genera el diagrama de arco de complejidad sintáctica.
|
690 |
+
Muestra la estructura de dependencias con colores basados en la complejidad.
|
691 |
+
"""
|
692 |
+
try:
|
693 |
+
# Preparar datos para la visualización
|
694 |
+
sentences = list(doc.sents)
|
695 |
+
if not sentences:
|
696 |
+
return None
|
697 |
+
|
698 |
+
# Crear figura para el gráfico
|
699 |
+
fig, ax = plt.subplots(figsize=(12, len(sentences) * 2))
|
700 |
+
|
701 |
+
# Colores para diferentes niveles de profundidad
|
702 |
+
depth_colors = plt.cm.viridis(np.linspace(0, 1, 6))
|
703 |
+
|
704 |
+
y_offset = 0
|
705 |
+
max_x = 0
|
706 |
+
|
707 |
+
for sent in sentences:
|
708 |
+
words = [token.text for token in sent]
|
709 |
+
x_positions = range(len(words))
|
710 |
+
max_x = max(max_x, len(words))
|
711 |
+
|
712 |
+
# Dibujar palabras
|
713 |
+
plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2)
|
714 |
+
plt.scatter(x_positions, [y_offset] * len(words), alpha=0)
|
715 |
+
|
716 |
+
# Añadir texto
|
717 |
+
for i, word in enumerate(words):
|
718 |
+
plt.annotate(word, (i, y_offset), xytext=(0, -10),
|
719 |
+
textcoords='offset points', ha='center')
|
720 |
+
|
721 |
+
# Dibujar arcos de dependencia
|
722 |
+
for token in sent:
|
723 |
+
if token.dep_ != "ROOT":
|
724 |
+
# Calcular profundidad de dependencia
|
725 |
+
depth = 0
|
726 |
+
current = token
|
727 |
+
while current.head != current:
|
728 |
+
depth += 1
|
729 |
+
current = current.head
|
730 |
+
|
731 |
+
# Determinar posiciones para el arco
|
732 |
+
start = token.i - sent[0].i
|
733 |
+
end = token.head.i - sent[0].i
|
734 |
+
|
735 |
+
# Altura del arco basada en la distancia entre palabras
|
736 |
+
height = 0.5 * abs(end - start)
|
737 |
+
|
738 |
+
# Color basado en la profundidad
|
739 |
+
color = depth_colors[min(depth, len(depth_colors)-1)]
|
740 |
+
|
741 |
+
# Crear arco
|
742 |
+
arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset),
|
743 |
+
width=abs(end - start),
|
744 |
+
height=height,
|
745 |
+
angle=0,
|
746 |
+
theta1=0,
|
747 |
+
theta2=180,
|
748 |
+
color=color,
|
749 |
+
alpha=0.6)
|
750 |
+
ax.add_patch(arc)
|
751 |
+
|
752 |
+
y_offset -= 2
|
753 |
+
|
754 |
+
# Configurar el gráfico
|
755 |
+
plt.xlim(-1, max_x)
|
756 |
+
plt.ylim(y_offset - 1, 1)
|
757 |
+
plt.axis('off')
|
758 |
+
plt.title("Complejidad Sintáctica")
|
759 |
+
|
760 |
+
return fig
|
761 |
+
|
762 |
+
except Exception as e:
|
763 |
+
logger.error(f"Error en create_syntax_complexity_graph: {str(e)}")
|
764 |
+
return None
|
765 |
+
|
766 |
+
|
767 |
+
def create_cohesion_heatmap(doc):
|
768 |
+
"""Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones."""
|
769 |
+
try:
|
770 |
+
sentences = list(doc.sents)
|
771 |
+
n_sentences = len(sentences)
|
772 |
+
|
773 |
+
if n_sentences < 2:
|
774 |
+
return None
|
775 |
+
|
776 |
+
similarity_matrix = np.zeros((n_sentences, n_sentences))
|
777 |
+
|
778 |
+
for i in range(n_sentences):
|
779 |
+
for j in range(n_sentences):
|
780 |
+
sent1_lemmas = {token.lemma_ for token in sentences[i]
|
781 |
+
if token.is_alpha and not token.is_stop}
|
782 |
+
sent2_lemmas = {token.lemma_ for token in sentences[j]
|
783 |
+
if token.is_alpha and not token.is_stop}
|
784 |
+
|
785 |
+
if sent1_lemmas and sent2_lemmas:
|
786 |
+
intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aquí
|
787 |
+
union = len(sent1_lemmas | sent2_lemmas) # Y aquí
|
788 |
+
similarity_matrix[i, j] = intersection / union if union > 0 else 0
|
789 |
+
|
790 |
+
# Crear visualización
|
791 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
792 |
+
|
793 |
+
sns.heatmap(similarity_matrix,
|
794 |
+
cmap='YlOrRd',
|
795 |
+
square=True,
|
796 |
+
xticklabels=False,
|
797 |
+
yticklabels=False,
|
798 |
+
cbar_kws={'label': 'Cohesión'},
|
799 |
+
ax=ax)
|
800 |
+
|
801 |
+
plt.title("Mapa de Cohesión Textual")
|
802 |
+
plt.xlabel("Oraciones")
|
803 |
+
plt.ylabel("Oraciones")
|
804 |
+
|
805 |
+
plt.tight_layout()
|
806 |
+
return fig
|
807 |
+
|
808 |
+
except Exception as e:
|
809 |
+
logger.error(f"Error en create_cohesion_heatmap: {str(e)}")
|
810 |
+
return None
|
modules/studentact/current_situation_analysis.py
CHANGED
@@ -1,810 +1,1008 @@
|
|
1 |
-
#v3/modules/studentact/current_situation_analysis.py
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
import networkx as nx
|
6 |
-
import seaborn as sns
|
7 |
-
from collections import Counter
|
8 |
-
from itertools import combinations
|
9 |
-
import numpy as np
|
10 |
-
import matplotlib.patches as patches
|
11 |
-
import logging
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
)
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
"""
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
'
|
130 |
-
'
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
"""
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
'
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
'
|
214 |
-
'
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
weights['
|
221 |
-
weights['
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
'
|
228 |
-
'
|
229 |
-
'
|
230 |
-
'
|
231 |
-
'
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
-
|
240 |
-
-
|
241 |
-
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
'
|
283 |
-
'
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
'
|
290 |
-
'
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
-
|
379 |
-
-
|
380 |
-
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
return
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
if
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
#
|
448 |
-
'
|
449 |
-
'
|
450 |
-
|
451 |
-
|
452 |
-
#
|
453 |
-
'
|
454 |
-
'
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
#
|
459 |
-
'
|
460 |
-
'
|
461 |
-
|
462 |
-
|
463 |
-
#
|
464 |
-
'
|
465 |
-
'
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
#
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
# Bonus por
|
503 |
-
if '
|
504 |
-
structure_bonus += 0.
|
505 |
-
|
506 |
-
# Bonus por
|
507 |
-
if
|
508 |
-
structure_bonus += 0.2
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
'
|
545 |
-
'min': 0.
|
546 |
-
'target': 0.
|
547 |
-
'range_factor': 1.
|
548 |
-
},
|
549 |
-
'
|
550 |
-
'min': 0.
|
551 |
-
'target': 0.
|
552 |
-
'range_factor': 1.
|
553 |
-
},
|
554 |
-
'
|
555 |
-
'min': 0.
|
556 |
-
'target': 0.
|
557 |
-
'range_factor': 1.
|
558 |
-
}
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
#
|
567 |
-
if value
|
568 |
-
logger.warning("Valor
|
569 |
-
return 0.0
|
570 |
-
|
571 |
-
#
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
#
|
594 |
-
if
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
score =
|
602 |
-
|
603 |
-
# Valor
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#v3/modules/studentact/current_situation_analysis.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import networkx as nx
|
6 |
+
import seaborn as sns
|
7 |
+
from collections import Counter
|
8 |
+
from itertools import combinations
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.patches as patches
|
11 |
+
import logging
|
12 |
+
|
13 |
+
from translations.recommendations import RECOMMENDATIONS
|
14 |
+
|
15 |
+
# 2. Configuración básica del logging
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO,
|
18 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
19 |
+
handlers=[
|
20 |
+
logging.StreamHandler(),
|
21 |
+
logging.FileHandler('app.log')
|
22 |
+
]
|
23 |
+
)
|
24 |
+
|
25 |
+
# 3. Obtener el logger específico para este módulo
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
#########################################################################
|
29 |
+
|
30 |
+
def correlate_metrics(scores):
|
31 |
+
"""
|
32 |
+
Ajusta los scores para mantener correlaciones lógicas entre métricas.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
scores: dict con scores iniciales de vocabulario, estructura, cohesión y claridad
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
dict con scores ajustados
|
39 |
+
"""
|
40 |
+
try:
|
41 |
+
# 1. Correlación estructura-cohesión
|
42 |
+
# La cohesión no puede ser menor que estructura * 0.7
|
43 |
+
min_cohesion = scores['structure']['normalized_score'] * 0.7
|
44 |
+
if scores['cohesion']['normalized_score'] < min_cohesion:
|
45 |
+
scores['cohesion']['normalized_score'] = min_cohesion
|
46 |
+
|
47 |
+
# 2. Correlación vocabulario-cohesión
|
48 |
+
# La cohesión léxica depende del vocabulario
|
49 |
+
vocab_influence = scores['vocabulary']['normalized_score'] * 0.6
|
50 |
+
scores['cohesion']['normalized_score'] = max(
|
51 |
+
scores['cohesion']['normalized_score'],
|
52 |
+
vocab_influence
|
53 |
+
)
|
54 |
+
|
55 |
+
# 3. Correlación cohesión-claridad
|
56 |
+
# La claridad no puede superar cohesión * 1.2
|
57 |
+
max_clarity = scores['cohesion']['normalized_score'] * 1.2
|
58 |
+
if scores['clarity']['normalized_score'] > max_clarity:
|
59 |
+
scores['clarity']['normalized_score'] = max_clarity
|
60 |
+
|
61 |
+
# 4. Correlación estructura-claridad
|
62 |
+
# La claridad no puede superar estructura * 1.1
|
63 |
+
struct_max_clarity = scores['structure']['normalized_score'] * 1.1
|
64 |
+
scores['clarity']['normalized_score'] = min(
|
65 |
+
scores['clarity']['normalized_score'],
|
66 |
+
struct_max_clarity
|
67 |
+
)
|
68 |
+
|
69 |
+
# Normalizar todos los scores entre 0 y 1
|
70 |
+
for metric in scores:
|
71 |
+
scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score']))
|
72 |
+
|
73 |
+
return scores
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
logger.error(f"Error en correlate_metrics: {str(e)}")
|
77 |
+
return scores
|
78 |
+
|
79 |
+
##########################################################################
|
80 |
+
|
81 |
+
def analyze_text_dimensions(doc):
|
82 |
+
"""
|
83 |
+
Analiza las dimensiones principales del texto manteniendo correlaciones lógicas.
|
84 |
+
"""
|
85 |
+
try:
|
86 |
+
# Obtener scores iniciales
|
87 |
+
vocab_score, vocab_details = analyze_vocabulary_diversity(doc)
|
88 |
+
struct_score = analyze_structure(doc)
|
89 |
+
cohesion_score = analyze_cohesion(doc)
|
90 |
+
clarity_score, clarity_details = analyze_clarity(doc)
|
91 |
+
|
92 |
+
# Crear diccionario de scores inicial
|
93 |
+
scores = {
|
94 |
+
'vocabulary': {
|
95 |
+
'normalized_score': vocab_score,
|
96 |
+
'details': vocab_details
|
97 |
+
},
|
98 |
+
'structure': {
|
99 |
+
'normalized_score': struct_score,
|
100 |
+
'details': None
|
101 |
+
},
|
102 |
+
'cohesion': {
|
103 |
+
'normalized_score': cohesion_score,
|
104 |
+
'details': None
|
105 |
+
},
|
106 |
+
'clarity': {
|
107 |
+
'normalized_score': clarity_score,
|
108 |
+
'details': clarity_details
|
109 |
+
}
|
110 |
+
}
|
111 |
+
|
112 |
+
# Ajustar correlaciones entre métricas
|
113 |
+
adjusted_scores = correlate_metrics(scores)
|
114 |
+
|
115 |
+
# Logging para diagnóstico
|
116 |
+
logger.info(f"""
|
117 |
+
Scores originales vs ajustados:
|
118 |
+
Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f}
|
119 |
+
Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f}
|
120 |
+
Cohesión: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f}
|
121 |
+
Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f}
|
122 |
+
""")
|
123 |
+
|
124 |
+
return adjusted_scores
|
125 |
+
|
126 |
+
except Exception as e:
|
127 |
+
logger.error(f"Error en analyze_text_dimensions: {str(e)}")
|
128 |
+
return {
|
129 |
+
'vocabulary': {'normalized_score': 0.0, 'details': {}},
|
130 |
+
'structure': {'normalized_score': 0.0, 'details': {}},
|
131 |
+
'cohesion': {'normalized_score': 0.0, 'details': {}},
|
132 |
+
'clarity': {'normalized_score': 0.0, 'details': {}}
|
133 |
+
}
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
#############################################################################################
|
138 |
+
|
139 |
+
def analyze_clarity(doc):
|
140 |
+
"""
|
141 |
+
Analiza la claridad del texto considerando múltiples factores.
|
142 |
+
"""
|
143 |
+
try:
|
144 |
+
sentences = list(doc.sents)
|
145 |
+
if not sentences:
|
146 |
+
return 0.0, {}
|
147 |
+
|
148 |
+
# 1. Longitud de oraciones
|
149 |
+
sentence_lengths = [len(sent) for sent in sentences]
|
150 |
+
avg_length = sum(sentence_lengths) / len(sentences)
|
151 |
+
|
152 |
+
# Normalizar usando los umbrales definidos para clarity
|
153 |
+
length_score = normalize_score(
|
154 |
+
value=avg_length,
|
155 |
+
metric_type='clarity',
|
156 |
+
optimal_length=20, # Una oración ideal tiene ~20 palabras
|
157 |
+
min_threshold=0.60, # Consistente con METRIC_THRESHOLDS
|
158 |
+
target_threshold=0.75 # Consistente con METRIC_THRESHOLDS
|
159 |
+
)
|
160 |
+
|
161 |
+
# 2. Análisis de conectores
|
162 |
+
connector_count = 0
|
163 |
+
connector_weights = {
|
164 |
+
'CCONJ': 1.0, # Coordinantes
|
165 |
+
'SCONJ': 1.2, # Subordinantes
|
166 |
+
'ADV': 0.8 # Adverbios conectivos
|
167 |
+
}
|
168 |
+
|
169 |
+
for token in doc:
|
170 |
+
if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']:
|
171 |
+
connector_count += connector_weights[token.pos_]
|
172 |
+
|
173 |
+
# Normalizar conectores por oración
|
174 |
+
connectors_per_sentence = connector_count / len(sentences) if sentences else 0
|
175 |
+
connector_score = normalize_score(
|
176 |
+
value=connectors_per_sentence,
|
177 |
+
metric_type='clarity',
|
178 |
+
optimal_connections=1.5, # ~1.5 conectores por oración es óptimo
|
179 |
+
min_threshold=0.60,
|
180 |
+
target_threshold=0.75
|
181 |
+
)
|
182 |
+
|
183 |
+
# 3. Complejidad estructural
|
184 |
+
clause_count = 0
|
185 |
+
for sent in sentences:
|
186 |
+
verbs = [token for token in sent if token.pos_ == 'VERB']
|
187 |
+
clause_count += len(verbs)
|
188 |
+
|
189 |
+
complexity_raw = clause_count / len(sentences) if sentences else 0
|
190 |
+
complexity_score = normalize_score(
|
191 |
+
value=complexity_raw,
|
192 |
+
metric_type='clarity',
|
193 |
+
optimal_depth=2.0, # ~2 cláusulas por oración es óptimo
|
194 |
+
min_threshold=0.60,
|
195 |
+
target_threshold=0.75
|
196 |
+
)
|
197 |
+
|
198 |
+
# 4. Densidad léxica
|
199 |
+
content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
|
200 |
+
total_words = len([token for token in doc if token.is_alpha])
|
201 |
+
density = content_words / total_words if total_words > 0 else 0
|
202 |
+
|
203 |
+
density_score = normalize_score(
|
204 |
+
value=density,
|
205 |
+
metric_type='clarity',
|
206 |
+
optimal_connections=0.6, # 60% de palabras de contenido es óptimo
|
207 |
+
min_threshold=0.60,
|
208 |
+
target_threshold=0.75
|
209 |
+
)
|
210 |
+
|
211 |
+
# Score final ponderado
|
212 |
+
weights = {
|
213 |
+
'length': 0.3,
|
214 |
+
'connectors': 0.3,
|
215 |
+
'complexity': 0.2,
|
216 |
+
'density': 0.2
|
217 |
+
}
|
218 |
+
|
219 |
+
clarity_score = (
|
220 |
+
weights['length'] * length_score +
|
221 |
+
weights['connectors'] * connector_score +
|
222 |
+
weights['complexity'] * complexity_score +
|
223 |
+
weights['density'] * density_score
|
224 |
+
)
|
225 |
+
|
226 |
+
details = {
|
227 |
+
'length_score': length_score,
|
228 |
+
'connector_score': connector_score,
|
229 |
+
'complexity_score': complexity_score,
|
230 |
+
'density_score': density_score,
|
231 |
+
'avg_sentence_length': avg_length,
|
232 |
+
'connectors_per_sentence': connectors_per_sentence,
|
233 |
+
'density': density
|
234 |
+
}
|
235 |
+
|
236 |
+
# Agregar logging para diagnóstico
|
237 |
+
logger.info(f"""
|
238 |
+
Scores de Claridad:
|
239 |
+
- Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras)
|
240 |
+
- Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oración)
|
241 |
+
- Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cláusulas)
|
242 |
+
- Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido)
|
243 |
+
- Score Final: {clarity_score:.2f}
|
244 |
+
""")
|
245 |
+
|
246 |
+
return clarity_score, details
|
247 |
+
|
248 |
+
except Exception as e:
|
249 |
+
logger.error(f"Error en analyze_clarity: {str(e)}")
|
250 |
+
return 0.0, {}
|
251 |
+
|
252 |
+
#########################################################################
|
253 |
+
def analyze_vocabulary_diversity(doc):
|
254 |
+
"""Análisis mejorado de la diversidad y calidad del vocabulario"""
|
255 |
+
try:
|
256 |
+
# 1. Análisis básico de diversidad
|
257 |
+
unique_lemmas = {token.lemma_ for token in doc if token.is_alpha}
|
258 |
+
total_words = len([token for token in doc if token.is_alpha])
|
259 |
+
basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0
|
260 |
+
|
261 |
+
# 2. Análisis de registro
|
262 |
+
academic_words = 0
|
263 |
+
narrative_words = 0
|
264 |
+
technical_terms = 0
|
265 |
+
|
266 |
+
# Clasificar palabras por registro
|
267 |
+
for token in doc:
|
268 |
+
if token.is_alpha:
|
269 |
+
# Detectar términos académicos/técnicos
|
270 |
+
if token.pos_ in ['NOUN', 'VERB', 'ADJ']:
|
271 |
+
if any(parent.pos_ == 'NOUN' for parent in token.ancestors):
|
272 |
+
technical_terms += 1
|
273 |
+
# Detectar palabras narrativas
|
274 |
+
if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']:
|
275 |
+
narrative_words += 1
|
276 |
+
|
277 |
+
# 3. Análisis de complejidad sintáctica
|
278 |
+
avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents))
|
279 |
+
|
280 |
+
# 4. Calcular score ponderado
|
281 |
+
weights = {
|
282 |
+
'diversity': 0.3,
|
283 |
+
'technical': 0.3,
|
284 |
+
'narrative': 0.2,
|
285 |
+
'complexity': 0.2
|
286 |
+
}
|
287 |
+
|
288 |
+
scores = {
|
289 |
+
'diversity': basic_diversity,
|
290 |
+
'technical': technical_terms / total_words if total_words > 0 else 0,
|
291 |
+
'narrative': narrative_words / total_words if total_words > 0 else 0,
|
292 |
+
'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras
|
293 |
+
}
|
294 |
+
|
295 |
+
# Score final ponderado
|
296 |
+
final_score = sum(weights[key] * scores[key] for key in weights)
|
297 |
+
|
298 |
+
# Información adicional para diagnóstico
|
299 |
+
details = {
|
300 |
+
'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic',
|
301 |
+
'scores': scores
|
302 |
+
}
|
303 |
+
|
304 |
+
return final_score, details
|
305 |
+
|
306 |
+
except Exception as e:
|
307 |
+
logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}")
|
308 |
+
return 0.0, {}
|
309 |
+
|
310 |
+
#########################################################################
|
311 |
+
def analyze_cohesion(doc):
|
312 |
+
"""Analiza la cohesión textual"""
|
313 |
+
try:
|
314 |
+
sentences = list(doc.sents)
|
315 |
+
if len(sentences) < 2:
|
316 |
+
logger.warning("Texto demasiado corto para análisis de cohesión")
|
317 |
+
return 0.0
|
318 |
+
|
319 |
+
# 1. Análisis de conexiones léxicas
|
320 |
+
lexical_connections = 0
|
321 |
+
total_possible_connections = 0
|
322 |
+
|
323 |
+
for i in range(len(sentences)-1):
|
324 |
+
# Obtener lemmas significativos (no stopwords)
|
325 |
+
sent1_words = {token.lemma_ for token in sentences[i]
|
326 |
+
if token.is_alpha and not token.is_stop}
|
327 |
+
sent2_words = {token.lemma_ for token in sentences[i+1]
|
328 |
+
if token.is_alpha and not token.is_stop}
|
329 |
+
|
330 |
+
if sent1_words and sent2_words: # Verificar que ambos conjuntos no estén vacíos
|
331 |
+
intersection = len(sent1_words.intersection(sent2_words))
|
332 |
+
total_possible = min(len(sent1_words), len(sent2_words))
|
333 |
+
|
334 |
+
if total_possible > 0:
|
335 |
+
lexical_score = intersection / total_possible
|
336 |
+
lexical_connections += lexical_score
|
337 |
+
total_possible_connections += 1
|
338 |
+
|
339 |
+
# 2. Análisis de conectores
|
340 |
+
connector_count = 0
|
341 |
+
connector_types = {
|
342 |
+
'CCONJ': 1.0, # Coordinantes
|
343 |
+
'SCONJ': 1.2, # Subordinantes
|
344 |
+
'ADV': 0.8 # Adverbios conectivos
|
345 |
+
}
|
346 |
+
|
347 |
+
for token in doc:
|
348 |
+
if (token.pos_ in connector_types and
|
349 |
+
token.dep_ in ['cc', 'mark', 'advmod'] and
|
350 |
+
not token.is_stop):
|
351 |
+
connector_count += connector_types[token.pos_]
|
352 |
+
|
353 |
+
# 3. Cálculo de scores normalizados
|
354 |
+
if total_possible_connections > 0:
|
355 |
+
lexical_cohesion = lexical_connections / total_possible_connections
|
356 |
+
else:
|
357 |
+
lexical_cohesion = 0
|
358 |
+
|
359 |
+
if len(sentences) > 1:
|
360 |
+
connector_cohesion = min(1.0, connector_count / (len(sentences) - 1))
|
361 |
+
else:
|
362 |
+
connector_cohesion = 0
|
363 |
+
|
364 |
+
# 4. Score final ponderado
|
365 |
+
weights = {
|
366 |
+
'lexical': 0.7,
|
367 |
+
'connectors': 0.3
|
368 |
+
}
|
369 |
+
|
370 |
+
cohesion_score = (
|
371 |
+
weights['lexical'] * lexical_cohesion +
|
372 |
+
weights['connectors'] * connector_cohesion
|
373 |
+
)
|
374 |
+
|
375 |
+
# 5. Logging para diagnóstico
|
376 |
+
logger.info(f"""
|
377 |
+
Análisis de Cohesión:
|
378 |
+
- Conexiones léxicas encontradas: {lexical_connections}
|
379 |
+
- Conexiones posibles: {total_possible_connections}
|
380 |
+
- Lexical cohesion score: {lexical_cohesion}
|
381 |
+
- Conectores encontrados: {connector_count}
|
382 |
+
- Connector cohesion score: {connector_cohesion}
|
383 |
+
- Score final: {cohesion_score}
|
384 |
+
""")
|
385 |
+
|
386 |
+
return cohesion_score
|
387 |
+
|
388 |
+
except Exception as e:
|
389 |
+
logger.error(f"Error en analyze_cohesion: {str(e)}")
|
390 |
+
return 0.0
|
391 |
+
|
392 |
+
#########################################################################
|
393 |
+
def analyze_structure(doc):
|
394 |
+
try:
|
395 |
+
if len(doc) == 0:
|
396 |
+
return 0.0
|
397 |
+
|
398 |
+
structure_scores = []
|
399 |
+
for token in doc:
|
400 |
+
if token.dep_ == 'ROOT':
|
401 |
+
result = get_dependency_depths(token)
|
402 |
+
structure_scores.append(result['final_score'])
|
403 |
+
|
404 |
+
if not structure_scores:
|
405 |
+
return 0.0
|
406 |
+
|
407 |
+
return min(1.0, sum(structure_scores) / len(structure_scores))
|
408 |
+
|
409 |
+
except Exception as e:
|
410 |
+
logger.error(f"Error en analyze_structure: {str(e)}")
|
411 |
+
return 0.0
|
412 |
+
|
413 |
+
#########################################################################
|
414 |
+
# Funciones auxiliares de análisis
|
415 |
+
def get_dependency_depths(token, depth=0, analyzed_tokens=None):
|
416 |
+
"""
|
417 |
+
Analiza la profundidad y calidad de las relaciones de dependencia.
|
418 |
+
|
419 |
+
Args:
|
420 |
+
token: Token a analizar
|
421 |
+
depth: Profundidad actual en el árbol
|
422 |
+
analyzed_tokens: Set para evitar ciclos en el análisis
|
423 |
+
|
424 |
+
Returns:
|
425 |
+
dict: Información detallada sobre las dependencias
|
426 |
+
- depths: Lista de profundidades
|
427 |
+
- relations: Diccionario con tipos de relaciones encontradas
|
428 |
+
- complexity_score: Puntuación de complejidad
|
429 |
+
"""
|
430 |
+
if analyzed_tokens is None:
|
431 |
+
analyzed_tokens = set()
|
432 |
+
|
433 |
+
# Evitar ciclos
|
434 |
+
if token.i in analyzed_tokens:
|
435 |
+
return {
|
436 |
+
'depths': [],
|
437 |
+
'relations': {},
|
438 |
+
'complexity_score': 0
|
439 |
+
}
|
440 |
+
|
441 |
+
analyzed_tokens.add(token.i)
|
442 |
+
|
443 |
+
# Pesos para diferentes tipos de dependencias
|
444 |
+
dependency_weights = {
|
445 |
+
# Dependencias principales
|
446 |
+
'nsubj': 1.2, # Sujeto nominal
|
447 |
+
'obj': 1.1, # Objeto directo
|
448 |
+
'iobj': 1.1, # Objeto indirecto
|
449 |
+
'ROOT': 1.3, # Raíz
|
450 |
+
|
451 |
+
# Modificadores
|
452 |
+
'amod': 0.8, # Modificador adjetival
|
453 |
+
'advmod': 0.8, # Modificador adverbial
|
454 |
+
'nmod': 0.9, # Modificador nominal
|
455 |
+
|
456 |
+
# Estructuras complejas
|
457 |
+
'csubj': 1.4, # Cláusula como sujeto
|
458 |
+
'ccomp': 1.3, # Complemento clausal
|
459 |
+
'xcomp': 1.2, # Complemento clausal abierto
|
460 |
+
'advcl': 1.2, # Cláusula adverbial
|
461 |
+
|
462 |
+
# Coordinación y subordinación
|
463 |
+
'conj': 1.1, # Conjunción
|
464 |
+
'cc': 0.7, # Coordinación
|
465 |
+
'mark': 0.8, # Marcador
|
466 |
+
|
467 |
+
# Otros
|
468 |
+
'det': 0.5, # Determinante
|
469 |
+
'case': 0.5, # Caso
|
470 |
+
'punct': 0.1 # Puntuación
|
471 |
+
}
|
472 |
+
|
473 |
+
# Inicializar resultados
|
474 |
+
current_result = {
|
475 |
+
'depths': [depth],
|
476 |
+
'relations': {token.dep_: 1},
|
477 |
+
'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1)
|
478 |
+
}
|
479 |
+
|
480 |
+
# Analizar hijos recursivamente
|
481 |
+
for child in token.children:
|
482 |
+
child_result = get_dependency_depths(child, depth + 1, analyzed_tokens)
|
483 |
+
|
484 |
+
# Combinar profundidades
|
485 |
+
current_result['depths'].extend(child_result['depths'])
|
486 |
+
|
487 |
+
# Combinar relaciones
|
488 |
+
for rel, count in child_result['relations'].items():
|
489 |
+
current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count
|
490 |
+
|
491 |
+
# Acumular score de complejidad
|
492 |
+
current_result['complexity_score'] += child_result['complexity_score']
|
493 |
+
|
494 |
+
# Calcular métricas adicionales
|
495 |
+
current_result['max_depth'] = max(current_result['depths'])
|
496 |
+
current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths'])
|
497 |
+
current_result['relation_diversity'] = len(current_result['relations'])
|
498 |
+
|
499 |
+
# Calcular score ponderado por tipo de estructura
|
500 |
+
structure_bonus = 0
|
501 |
+
|
502 |
+
# Bonus por estructuras complejas
|
503 |
+
if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']:
|
504 |
+
structure_bonus += 0.3
|
505 |
+
|
506 |
+
# Bonus por coordinación balanceada
|
507 |
+
if 'conj' in current_result['relations'] and 'cc' in current_result['relations']:
|
508 |
+
structure_bonus += 0.2
|
509 |
+
|
510 |
+
# Bonus por modificación rica
|
511 |
+
if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2:
|
512 |
+
structure_bonus += 0.2
|
513 |
+
|
514 |
+
current_result['final_score'] = (
|
515 |
+
current_result['complexity_score'] * (1 + structure_bonus)
|
516 |
+
)
|
517 |
+
|
518 |
+
return current_result
|
519 |
+
|
520 |
+
#########################################################################
|
521 |
+
def normalize_score(value, metric_type,
|
522 |
+
min_threshold=0.0, target_threshold=1.0,
|
523 |
+
range_factor=2.0, optimal_length=None,
|
524 |
+
optimal_connections=None, optimal_depth=None):
|
525 |
+
"""
|
526 |
+
Normaliza un valor considerando umbrales específicos por tipo de métrica.
|
527 |
+
|
528 |
+
Args:
|
529 |
+
value: Valor a normalizar
|
530 |
+
metric_type: Tipo de métrica ('vocabulary', 'structure', 'cohesion', 'clarity')
|
531 |
+
min_threshold: Valor mínimo aceptable
|
532 |
+
target_threshold: Valor objetivo
|
533 |
+
range_factor: Factor para ajustar el rango
|
534 |
+
optimal_length: Longitud óptima (opcional)
|
535 |
+
optimal_connections: Número óptimo de conexiones (opcional)
|
536 |
+
optimal_depth: Profundidad óptima de estructura (opcional)
|
537 |
+
|
538 |
+
Returns:
|
539 |
+
float: Valor normalizado entre 0 y 1
|
540 |
+
"""
|
541 |
+
try:
|
542 |
+
# Definir umbrales por tipo de métrica
|
543 |
+
METRIC_THRESHOLDS = {
|
544 |
+
'vocabulary': {
|
545 |
+
'min': 0.60,
|
546 |
+
'target': 0.75,
|
547 |
+
'range_factor': 1.5
|
548 |
+
},
|
549 |
+
'structure': {
|
550 |
+
'min': 0.65,
|
551 |
+
'target': 0.80,
|
552 |
+
'range_factor': 1.8
|
553 |
+
},
|
554 |
+
'cohesion': {
|
555 |
+
'min': 0.55,
|
556 |
+
'target': 0.70,
|
557 |
+
'range_factor': 1.6
|
558 |
+
},
|
559 |
+
'clarity': {
|
560 |
+
'min': 0.60,
|
561 |
+
'target': 0.75,
|
562 |
+
'range_factor': 1.7
|
563 |
+
}
|
564 |
+
}
|
565 |
+
|
566 |
+
# Validar valores negativos o cero
|
567 |
+
if value < 0:
|
568 |
+
logger.warning(f"Valor negativo recibido: {value}")
|
569 |
+
return 0.0
|
570 |
+
|
571 |
+
# Manejar caso donde el valor es cero
|
572 |
+
if value == 0:
|
573 |
+
logger.warning("Valor cero recibido")
|
574 |
+
return 0.0
|
575 |
+
|
576 |
+
# Obtener umbrales específicos para el tipo de métrica
|
577 |
+
thresholds = METRIC_THRESHOLDS.get(metric_type, {
|
578 |
+
'min': min_threshold,
|
579 |
+
'target': target_threshold,
|
580 |
+
'range_factor': range_factor
|
581 |
+
})
|
582 |
+
|
583 |
+
# Identificar el valor de referencia a usar
|
584 |
+
if optimal_depth is not None:
|
585 |
+
reference = optimal_depth
|
586 |
+
elif optimal_connections is not None:
|
587 |
+
reference = optimal_connections
|
588 |
+
elif optimal_length is not None:
|
589 |
+
reference = optimal_length
|
590 |
+
else:
|
591 |
+
reference = thresholds['target']
|
592 |
+
|
593 |
+
# Validar valor de referencia
|
594 |
+
if reference <= 0:
|
595 |
+
logger.warning(f"Valor de referencia inválido: {reference}")
|
596 |
+
return 0.0
|
597 |
+
|
598 |
+
# Calcular score basado en umbrales
|
599 |
+
if value < thresholds['min']:
|
600 |
+
# Valor por debajo del mínimo
|
601 |
+
score = (value / thresholds['min']) * 0.5 # Máximo 0.5 para valores bajo el mínimo
|
602 |
+
elif value < thresholds['target']:
|
603 |
+
# Valor entre mínimo y objetivo
|
604 |
+
range_size = thresholds['target'] - thresholds['min']
|
605 |
+
progress = (value - thresholds['min']) / range_size
|
606 |
+
score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0
|
607 |
+
else:
|
608 |
+
# Valor alcanza o supera el objetivo
|
609 |
+
score = 1.0
|
610 |
+
|
611 |
+
# Penalizar valores muy por encima del objetivo
|
612 |
+
if value > (thresholds['target'] * thresholds['range_factor']):
|
613 |
+
excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor'])
|
614 |
+
score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos
|
615 |
+
|
616 |
+
# Asegurar que el resultado esté entre 0 y 1
|
617 |
+
return max(0.0, min(1.0, score))
|
618 |
+
|
619 |
+
except Exception as e:
|
620 |
+
logger.error(f"Error en normalize_score: {str(e)}")
|
621 |
+
return 0.0
|
622 |
+
|
623 |
+
#########################################################################
|
624 |
+
#########################################################################
|
625 |
+
def generate_recommendations(metrics, text_type, lang_code='es'):
|
626 |
+
"""
|
627 |
+
Genera recomendaciones personalizadas basadas en las métricas del texto y el tipo de texto.
|
628 |
+
|
629 |
+
Args:
|
630 |
+
metrics: Diccionario con las métricas analizadas
|
631 |
+
text_type: Tipo de texto ('academic_article', 'student_essay', 'general_communication')
|
632 |
+
lang_code: Código del idioma para las recomendaciones (es, en, fr, pt)
|
633 |
+
|
634 |
+
Returns:
|
635 |
+
dict: Recomendaciones organizadas por categoría en el idioma correspondiente
|
636 |
+
"""
|
637 |
+
try:
|
638 |
+
# Obtener umbrales según el tipo de texto
|
639 |
+
thresholds = TEXT_TYPES[text_type]['thresholds']
|
640 |
+
|
641 |
+
# Verificar que el idioma esté soportado, usar español como respaldo
|
642 |
+
if lang_code not in RECOMMENDATIONS:
|
643 |
+
logger.warning(f"Idioma {lang_code} no soportado para recomendaciones, usando español")
|
644 |
+
lang_code = 'es'
|
645 |
+
|
646 |
+
# Obtener traducciones para el idioma seleccionado
|
647 |
+
translations = RECOMMENDATIONS[lang_code]
|
648 |
+
|
649 |
+
# Inicializar diccionario de recomendaciones
|
650 |
+
recommendations = {
|
651 |
+
'vocabulary': [],
|
652 |
+
'structure': [],
|
653 |
+
'cohesion': [],
|
654 |
+
'clarity': [],
|
655 |
+
'specific': [],
|
656 |
+
'priority': {
|
657 |
+
'area': 'general',
|
658 |
+
'tips': []
|
659 |
+
},
|
660 |
+
'text_type_name': translations['text_types'][text_type],
|
661 |
+
'dimension_names': translations['dimension_names'],
|
662 |
+
'ui_text': {
|
663 |
+
'priority_intro': translations['priority_intro'],
|
664 |
+
'detailed_recommendations': translations['detailed_recommendations'],
|
665 |
+
'save_button': translations['save_button'],
|
666 |
+
'save_success': translations['save_success'],
|
667 |
+
'save_error': translations['save_error'],
|
668 |
+
'area_priority': translations['area_priority']
|
669 |
+
}
|
670 |
+
}
|
671 |
+
|
672 |
+
# Determinar nivel para cada dimensión y asignar recomendaciones
|
673 |
+
dimensions = ['vocabulary', 'structure', 'cohesion', 'clarity']
|
674 |
+
scores = {}
|
675 |
+
|
676 |
+
for dim in dimensions:
|
677 |
+
score = metrics[dim]['normalized_score']
|
678 |
+
scores[dim] = score
|
679 |
+
|
680 |
+
# Determinar nivel (bajo, medio, alto)
|
681 |
+
if score < thresholds[dim]['min']:
|
682 |
+
level = 'low'
|
683 |
+
elif score < thresholds[dim]['target']:
|
684 |
+
level = 'medium'
|
685 |
+
else:
|
686 |
+
level = 'high'
|
687 |
+
|
688 |
+
# Asignar recomendaciones para ese nivel
|
689 |
+
recommendations[dim] = translations[dim][level]
|
690 |
+
|
691 |
+
# Asignar recomendaciones específicas por tipo de texto
|
692 |
+
recommendations['specific'] = translations[text_type]
|
693 |
+
|
694 |
+
# Determinar área prioritaria (la que tiene menor puntuación)
|
695 |
+
priority_dimension = min(scores, key=scores.get)
|
696 |
+
recommendations['priority']['area'] = priority_dimension
|
697 |
+
recommendations['priority']['tips'] = recommendations[priority_dimension]
|
698 |
+
|
699 |
+
logger.info(f"Generadas recomendaciones en {lang_code} para texto tipo {text_type}")
|
700 |
+
return recommendations
|
701 |
+
|
702 |
+
except Exception as e:
|
703 |
+
logger.error(f"Error en generate_recommendations: {str(e)}")
|
704 |
+
# Retornar mensajes genéricos en caso de error
|
705 |
+
if lang_code == 'en':
|
706 |
+
return {
|
707 |
+
'vocabulary': ["Try enriching your vocabulary"],
|
708 |
+
'structure': ["Work on the structure of your sentences"],
|
709 |
+
'cohesion': ["Improve the connection between your ideas"],
|
710 |
+
'clarity': ["Try to express your ideas more clearly"],
|
711 |
+
'specific': ["Adapt your text according to its purpose"],
|
712 |
+
'priority': {
|
713 |
+
'area': 'general',
|
714 |
+
'tips': ["Seek specific feedback from a tutor or teacher"]
|
715 |
+
},
|
716 |
+
'dimension_names': {
|
717 |
+
'vocabulary': 'Vocabulary',
|
718 |
+
'structure': 'Structure',
|
719 |
+
'cohesion': 'Cohesion',
|
720 |
+
'clarity': 'Clarity',
|
721 |
+
'general': 'General'
|
722 |
+
},
|
723 |
+
'ui_text': {
|
724 |
+
'priority_intro': "This is where you should focus your efforts.",
|
725 |
+
'detailed_recommendations': "Detailed recommendations",
|
726 |
+
'save_button': "Save analysis",
|
727 |
+
'save_success': "Analysis saved successfully",
|
728 |
+
'save_error': "Error saving analysis",
|
729 |
+
'area_priority': "Priority area"
|
730 |
+
}
|
731 |
+
}
|
732 |
+
elif lang_code == 'fr':
|
733 |
+
return {
|
734 |
+
'vocabulary': ["Essayez d'enrichir votre vocabulaire"],
|
735 |
+
'structure': ["Travaillez sur la structure de vos phrases"],
|
736 |
+
'cohesion': ["Améliorez la connexion entre vos idées"],
|
737 |
+
'clarity': ["Essayez d'exprimer vos idées plus clairement"],
|
738 |
+
'specific': ["Adaptez votre texte en fonction de son objectif"],
|
739 |
+
'priority': {
|
740 |
+
'area': 'general',
|
741 |
+
'tips': ["Demandez des commentaires spécifiques à un tuteur ou un professeur"]
|
742 |
+
},
|
743 |
+
'dimension_names': {
|
744 |
+
'vocabulary': 'Vocabulaire',
|
745 |
+
'structure': 'Structure',
|
746 |
+
'cohesion': 'Cohésion',
|
747 |
+
'clarity': 'Clarté',
|
748 |
+
'general': 'Général'
|
749 |
+
},
|
750 |
+
'ui_text': {
|
751 |
+
'priority_intro': "C'est là que vous devriez concentrer vos efforts.",
|
752 |
+
'detailed_recommendations': "Recommandations détaillées",
|
753 |
+
'save_button': "Enregistrer l'analyse",
|
754 |
+
'save_success': "Analyse enregistrée avec succès",
|
755 |
+
'save_error': "Erreur lors de l'enregistrement de l'analyse",
|
756 |
+
'area_priority': "Domaine prioritaire"
|
757 |
+
}
|
758 |
+
}
|
759 |
+
elif lang_code == 'pt':
|
760 |
+
return {
|
761 |
+
'vocabulary': ["Tente enriquecer seu vocabulário"],
|
762 |
+
'structure': ["Trabalhe na estrutura de suas frases"],
|
763 |
+
'cohesion': ["Melhore a conexão entre suas ideias"],
|
764 |
+
'clarity': ["Tente expressar suas ideias com mais clareza"],
|
765 |
+
'specific': ["Adapte seu texto de acordo com seu propósito"],
|
766 |
+
'priority': {
|
767 |
+
'area': 'general',
|
768 |
+
'tips': ["Busque feedback específico de um tutor ou professor"]
|
769 |
+
},
|
770 |
+
'dimension_names': {
|
771 |
+
'vocabulary': 'Vocabulário',
|
772 |
+
'structure': 'Estrutura',
|
773 |
+
'cohesion': 'Coesão',
|
774 |
+
'clarity': 'Clareza',
|
775 |
+
'general': 'Geral'
|
776 |
+
},
|
777 |
+
'ui_text': {
|
778 |
+
'priority_intro': "É aqui que você deve concentrar seus esforços.",
|
779 |
+
'detailed_recommendations': "Recomendações detalhadas",
|
780 |
+
'save_button': "Salvar análise",
|
781 |
+
'save_success': "Análise salva com sucesso",
|
782 |
+
'save_error': "Erro ao salvar análise",
|
783 |
+
'area_priority': "Área prioritária"
|
784 |
+
}
|
785 |
+
}
|
786 |
+
else: # Español por defecto
|
787 |
+
return {
|
788 |
+
'vocabulary': ["Intenta enriquecer tu vocabulario"],
|
789 |
+
'structure': ["Trabaja en la estructura de tus oraciones"],
|
790 |
+
'cohesion': ["Mejora la conexión entre tus ideas"],
|
791 |
+
'clarity': ["Busca expresar tus ideas con mayor claridad"],
|
792 |
+
'specific': ["Adapta tu texto según su propósito"],
|
793 |
+
'priority': {
|
794 |
+
'area': 'general',
|
795 |
+
'tips': ["Busca retroalimentación específica de un tutor o profesor"]
|
796 |
+
},
|
797 |
+
'dimension_names': {
|
798 |
+
'vocabulary': 'Vocabulario',
|
799 |
+
'structure': 'Estructura',
|
800 |
+
'cohesion': 'Cohesión',
|
801 |
+
'clarity': 'Claridad',
|
802 |
+
'general': 'General'
|
803 |
+
},
|
804 |
+
'ui_text': {
|
805 |
+
'priority_intro': "Esta es el área donde debes concentrar tus esfuerzos.",
|
806 |
+
'detailed_recommendations': "Recomendaciones detalladas",
|
807 |
+
'save_button': "Guardar análisis",
|
808 |
+
'save_success': "Análisis guardado con éxito",
|
809 |
+
'save_error': "Error al guardar el análisis",
|
810 |
+
'area_priority': "Área prioritaria"
|
811 |
+
}
|
812 |
+
}
|
813 |
+
|
814 |
+
|
815 |
+
#########################################################################
|
816 |
+
#########################################################################
|
817 |
+
# Funciones de generación de gráficos
|
818 |
+
def generate_sentence_graphs(doc):
|
819 |
+
"""Genera visualizaciones de estructura de oraciones"""
|
820 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
821 |
+
# Implementar visualización
|
822 |
+
plt.close()
|
823 |
+
return fig
|
824 |
+
|
825 |
+
def generate_word_connections(doc):
|
826 |
+
"""Genera red de conexiones de palabras"""
|
827 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
828 |
+
# Implementar visualización
|
829 |
+
plt.close()
|
830 |
+
return fig
|
831 |
+
|
832 |
+
def generate_connection_paths(doc):
|
833 |
+
"""Genera patrones de conexión"""
|
834 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
835 |
+
# Implementar visualización
|
836 |
+
plt.close()
|
837 |
+
return fig
|
838 |
+
|
839 |
+
def create_vocabulary_network(doc):
|
840 |
+
"""
|
841 |
+
Genera el grafo de red de vocabulario.
|
842 |
+
"""
|
843 |
+
G = nx.Graph()
|
844 |
+
|
845 |
+
# Crear nodos para palabras significativas
|
846 |
+
words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop]
|
847 |
+
word_freq = Counter(words)
|
848 |
+
|
849 |
+
# Añadir nodos con tamaño basado en frecuencia
|
850 |
+
for word, freq in word_freq.items():
|
851 |
+
G.add_node(word, size=freq)
|
852 |
+
|
853 |
+
# Crear conexiones basadas en co-ocurrencia
|
854 |
+
window_size = 5
|
855 |
+
for i in range(len(words) - window_size):
|
856 |
+
window = words[i:i+window_size]
|
857 |
+
for w1, w2 in combinations(set(window), 2):
|
858 |
+
if G.has_edge(w1, w2):
|
859 |
+
G[w1][w2]['weight'] += 1
|
860 |
+
else:
|
861 |
+
G.add_edge(w1, w2, weight=1)
|
862 |
+
|
863 |
+
# Crear visualización
|
864 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
865 |
+
pos = nx.spring_layout(G)
|
866 |
+
|
867 |
+
# Dibujar nodos
|
868 |
+
nx.draw_networkx_nodes(G, pos,
|
869 |
+
node_size=[G.nodes[node]['size']*100 for node in G.nodes],
|
870 |
+
node_color='lightblue',
|
871 |
+
alpha=0.7)
|
872 |
+
|
873 |
+
# Dibujar conexiones
|
874 |
+
nx.draw_networkx_edges(G, pos,
|
875 |
+
width=[G[u][v]['weight']*0.5 for u,v in G.edges],
|
876 |
+
alpha=0.5)
|
877 |
+
|
878 |
+
# Añadir etiquetas
|
879 |
+
nx.draw_networkx_labels(G, pos)
|
880 |
+
|
881 |
+
plt.title("Red de Vocabulario")
|
882 |
+
plt.axis('off')
|
883 |
+
return fig
|
884 |
+
|
885 |
+
def create_syntax_complexity_graph(doc):
|
886 |
+
"""
|
887 |
+
Genera el diagrama de arco de complejidad sintáctica.
|
888 |
+
Muestra la estructura de dependencias con colores basados en la complejidad.
|
889 |
+
"""
|
890 |
+
try:
|
891 |
+
# Preparar datos para la visualización
|
892 |
+
sentences = list(doc.sents)
|
893 |
+
if not sentences:
|
894 |
+
return None
|
895 |
+
|
896 |
+
# Crear figura para el gráfico
|
897 |
+
fig, ax = plt.subplots(figsize=(12, len(sentences) * 2))
|
898 |
+
|
899 |
+
# Colores para diferentes niveles de profundidad
|
900 |
+
depth_colors = plt.cm.viridis(np.linspace(0, 1, 6))
|
901 |
+
|
902 |
+
y_offset = 0
|
903 |
+
max_x = 0
|
904 |
+
|
905 |
+
for sent in sentences:
|
906 |
+
words = [token.text for token in sent]
|
907 |
+
x_positions = range(len(words))
|
908 |
+
max_x = max(max_x, len(words))
|
909 |
+
|
910 |
+
# Dibujar palabras
|
911 |
+
plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2)
|
912 |
+
plt.scatter(x_positions, [y_offset] * len(words), alpha=0)
|
913 |
+
|
914 |
+
# Añadir texto
|
915 |
+
for i, word in enumerate(words):
|
916 |
+
plt.annotate(word, (i, y_offset), xytext=(0, -10),
|
917 |
+
textcoords='offset points', ha='center')
|
918 |
+
|
919 |
+
# Dibujar arcos de dependencia
|
920 |
+
for token in sent:
|
921 |
+
if token.dep_ != "ROOT":
|
922 |
+
# Calcular profundidad de dependencia
|
923 |
+
depth = 0
|
924 |
+
current = token
|
925 |
+
while current.head != current:
|
926 |
+
depth += 1
|
927 |
+
current = current.head
|
928 |
+
|
929 |
+
# Determinar posiciones para el arco
|
930 |
+
start = token.i - sent[0].i
|
931 |
+
end = token.head.i - sent[0].i
|
932 |
+
|
933 |
+
# Altura del arco basada en la distancia entre palabras
|
934 |
+
height = 0.5 * abs(end - start)
|
935 |
+
|
936 |
+
# Color basado en la profundidad
|
937 |
+
color = depth_colors[min(depth, len(depth_colors)-1)]
|
938 |
+
|
939 |
+
# Crear arco
|
940 |
+
arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset),
|
941 |
+
width=abs(end - start),
|
942 |
+
height=height,
|
943 |
+
angle=0,
|
944 |
+
theta1=0,
|
945 |
+
theta2=180,
|
946 |
+
color=color,
|
947 |
+
alpha=0.6)
|
948 |
+
ax.add_patch(arc)
|
949 |
+
|
950 |
+
y_offset -= 2
|
951 |
+
|
952 |
+
# Configurar el gráfico
|
953 |
+
plt.xlim(-1, max_x)
|
954 |
+
plt.ylim(y_offset - 1, 1)
|
955 |
+
plt.axis('off')
|
956 |
+
plt.title("Complejidad Sintáctica")
|
957 |
+
|
958 |
+
return fig
|
959 |
+
|
960 |
+
except Exception as e:
|
961 |
+
logger.error(f"Error en create_syntax_complexity_graph: {str(e)}")
|
962 |
+
return None
|
963 |
+
|
964 |
+
|
965 |
+
def create_cohesion_heatmap(doc):
|
966 |
+
"""Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones."""
|
967 |
+
try:
|
968 |
+
sentences = list(doc.sents)
|
969 |
+
n_sentences = len(sentences)
|
970 |
+
|
971 |
+
if n_sentences < 2:
|
972 |
+
return None
|
973 |
+
|
974 |
+
similarity_matrix = np.zeros((n_sentences, n_sentences))
|
975 |
+
|
976 |
+
for i in range(n_sentences):
|
977 |
+
for j in range(n_sentences):
|
978 |
+
sent1_lemmas = {token.lemma_ for token in sentences[i]
|
979 |
+
if token.is_alpha and not token.is_stop}
|
980 |
+
sent2_lemmas = {token.lemma_ for token in sentences[j]
|
981 |
+
if token.is_alpha and not token.is_stop}
|
982 |
+
|
983 |
+
if sent1_lemmas and sent2_lemmas:
|
984 |
+
intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aquí
|
985 |
+
union = len(sent1_lemmas | sent2_lemmas) # Y aquí
|
986 |
+
similarity_matrix[i, j] = intersection / union if union > 0 else 0
|
987 |
+
|
988 |
+
# Crear visualización
|
989 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
990 |
+
|
991 |
+
sns.heatmap(similarity_matrix,
|
992 |
+
cmap='YlOrRd',
|
993 |
+
square=True,
|
994 |
+
xticklabels=False,
|
995 |
+
yticklabels=False,
|
996 |
+
cbar_kws={'label': 'Cohesión'},
|
997 |
+
ax=ax)
|
998 |
+
|
999 |
+
plt.title("Mapa de Cohesión Textual")
|
1000 |
+
plt.xlabel("Oraciones")
|
1001 |
+
plt.ylabel("Oraciones")
|
1002 |
+
|
1003 |
+
plt.tight_layout()
|
1004 |
+
return fig
|
1005 |
+
|
1006 |
+
except Exception as e:
|
1007 |
+
logger.error(f"Error en create_cohesion_heatmap: {str(e)}")
|
1008 |
+
return None
|
modules/studentact/current_situation_interface--FAIL.py
CHANGED
@@ -1,608 +1,608 @@
|
|
1 |
-
# modules/studentact/current_situation_interface.py
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import logging
|
5 |
-
from ..utils.widget_utils import generate_unique_key
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import numpy as np
|
8 |
-
|
9 |
-
from ..database.current_situation_mongo_db import store_current_situation_result
|
10 |
-
|
11 |
-
from ..database.writing_progress_mongo_db import (
|
12 |
-
store_writing_baseline,
|
13 |
-
store_writing_progress,
|
14 |
-
get_writing_baseline,
|
15 |
-
get_writing_progress,
|
16 |
-
get_latest_writing_metrics
|
17 |
-
)
|
18 |
-
|
19 |
-
from .current_situation_analysis import (
|
20 |
-
analyze_text_dimensions,
|
21 |
-
analyze_clarity,
|
22 |
-
analyze_vocabulary_diversity,
|
23 |
-
analyze_cohesion,
|
24 |
-
analyze_structure,
|
25 |
-
get_dependency_depths,
|
26 |
-
normalize_score,
|
27 |
-
generate_sentence_graphs,
|
28 |
-
generate_word_connections,
|
29 |
-
generate_connection_paths,
|
30 |
-
create_vocabulary_network,
|
31 |
-
create_syntax_complexity_graph,
|
32 |
-
create_cohesion_heatmap
|
33 |
-
)
|
34 |
-
|
35 |
-
# Configuración del estilo de matplotlib para el gráfico de radar
|
36 |
-
plt.rcParams['font.family'] = 'sans-serif'
|
37 |
-
plt.rcParams['axes.grid'] = True
|
38 |
-
plt.rcParams['axes.spines.top'] = False
|
39 |
-
plt.rcParams['axes.spines.right'] = False
|
40 |
-
|
41 |
-
logger = logging.getLogger(__name__)
|
42 |
-
####################################
|
43 |
-
|
44 |
-
TEXT_TYPES = {
|
45 |
-
'academic_article': {
|
46 |
-
'name': 'Artículo Académico',
|
47 |
-
'thresholds': {
|
48 |
-
'vocabulary': {'min': 0.70, 'target': 0.85},
|
49 |
-
'structure': {'min': 0.75, 'target': 0.90},
|
50 |
-
'cohesion': {'min': 0.65, 'target': 0.80},
|
51 |
-
'clarity': {'min': 0.70, 'target': 0.85}
|
52 |
-
}
|
53 |
-
},
|
54 |
-
'student_essay': {
|
55 |
-
'name': 'Trabajo Universitario',
|
56 |
-
'thresholds': {
|
57 |
-
'vocabulary': {'min': 0.60, 'target': 0.75},
|
58 |
-
'structure': {'min': 0.65, 'target': 0.80},
|
59 |
-
'cohesion': {'min': 0.55, 'target': 0.70},
|
60 |
-
'clarity': {'min': 0.60, 'target': 0.75}
|
61 |
-
}
|
62 |
-
},
|
63 |
-
'general_communication': {
|
64 |
-
'name': 'Comunicación General',
|
65 |
-
'thresholds': {
|
66 |
-
'vocabulary': {'min': 0.50, 'target': 0.65},
|
67 |
-
'structure': {'min': 0.55, 'target': 0.70},
|
68 |
-
'cohesion': {'min': 0.45, 'target': 0.60},
|
69 |
-
'clarity': {'min': 0.50, 'target': 0.65}
|
70 |
-
}
|
71 |
-
}
|
72 |
-
}
|
73 |
-
####################################
|
74 |
-
|
75 |
-
ANALYSIS_DIMENSION_MAPPING = {
|
76 |
-
'morphosyntactic': {
|
77 |
-
'primary': ['vocabulary', 'clarity'],
|
78 |
-
'secondary': ['structure'],
|
79 |
-
'tools': ['arc_diagrams', 'word_repetition']
|
80 |
-
},
|
81 |
-
'semantic': {
|
82 |
-
'primary': ['cohesion', 'structure'],
|
83 |
-
'secondary': ['vocabulary'],
|
84 |
-
'tools': ['concept_graphs', 'semantic_networks']
|
85 |
-
},
|
86 |
-
'discourse': {
|
87 |
-
'primary': ['cohesion', 'structure'],
|
88 |
-
'secondary': ['clarity'],
|
89 |
-
'tools': ['comparative_analysis']
|
90 |
-
}
|
91 |
-
}
|
92 |
-
|
93 |
-
##############################################################################
|
94 |
-
# FUNCIÓN PRINCIPAL
|
95 |
-
##############################################################################
|
96 |
-
def display_current_situation_interface(lang_code, nlp_models, t):
|
97 |
-
"""
|
98 |
-
TAB:
|
99 |
-
- Expander con radio para tipo de texto
|
100 |
-
Contenedor-1 con expanders:
|
101 |
-
- Expander "Métricas de la línea base"
|
102 |
-
- Expander "Métricas de la iteración"
|
103 |
-
Contenedor-2 (2 columnas):
|
104 |
-
- Col1: Texto base
|
105 |
-
- Col2: Texto iteración
|
106 |
-
Al final, Recomendaciones en un expander (una sola “fila”).
|
107 |
-
"""
|
108 |
-
|
109 |
-
# --- Inicializar session_state ---
|
110 |
-
if 'base_text' not in st.session_state:
|
111 |
-
st.session_state.base_text = ""
|
112 |
-
if 'iter_text' not in st.session_state:
|
113 |
-
st.session_state.iter_text = ""
|
114 |
-
if 'base_metrics' not in st.session_state:
|
115 |
-
st.session_state.base_metrics = {}
|
116 |
-
if 'iter_metrics' not in st.session_state:
|
117 |
-
st.session_state.iter_metrics = {}
|
118 |
-
if 'show_base' not in st.session_state:
|
119 |
-
st.session_state.show_base = False
|
120 |
-
if 'show_iter' not in st.session_state:
|
121 |
-
st.session_state.show_iter = False
|
122 |
-
|
123 |
-
# Creamos un tab
|
124 |
-
tabs = st.tabs(["Análisis de Texto"])
|
125 |
-
with tabs[0]:
|
126 |
-
# [1] Expander con radio para seleccionar tipo de texto
|
127 |
-
with st.expander("Selecciona el tipo de texto", expanded=True):
|
128 |
-
text_type = st.radio(
|
129 |
-
"¿Qué tipo de texto quieres analizar?",
|
130 |
-
options=list(TEXT_TYPES.keys()),
|
131 |
-
format_func=lambda x: TEXT_TYPES[x]['name'],
|
132 |
-
index=0
|
133 |
-
)
|
134 |
-
st.session_state.current_text_type = text_type
|
135 |
-
|
136 |
-
st.markdown("---")
|
137 |
-
|
138 |
-
# ---------------------------------------------------------------------
|
139 |
-
# CONTENEDOR-1: Expanders para métricas base e iteración
|
140 |
-
# ---------------------------------------------------------------------
|
141 |
-
with st.container():
|
142 |
-
# --- Expander para la línea base ---
|
143 |
-
with st.expander("Métricas de la línea base", expanded=False):
|
144 |
-
if st.session_state.show_base and st.session_state.base_metrics:
|
145 |
-
# Mostramos los valores reales
|
146 |
-
display_metrics_in_one_row(st.session_state.base_metrics, text_type)
|
147 |
-
else:
|
148 |
-
# Mostramos la maqueta vacía
|
149 |
-
display_empty_metrics_row()
|
150 |
-
|
151 |
-
# --- Expander para la iteración ---
|
152 |
-
with st.expander("Métricas de la iteración", expanded=False):
|
153 |
-
if st.session_state.show_iter and st.session_state.iter_metrics:
|
154 |
-
display_metrics_in_one_row(st.session_state.iter_metrics, text_type)
|
155 |
-
else:
|
156 |
-
display_empty_metrics_row()
|
157 |
-
|
158 |
-
st.markdown("---")
|
159 |
-
|
160 |
-
# ---------------------------------------------------------------------
|
161 |
-
# CONTENEDOR-2: 2 columnas (texto base | texto iteración)
|
162 |
-
# ---------------------------------------------------------------------
|
163 |
-
with st.container():
|
164 |
-
col_left, col_right = st.columns(2)
|
165 |
-
|
166 |
-
# Columna izquierda: Texto base
|
167 |
-
with col_left:
|
168 |
-
st.markdown("**Texto base**")
|
169 |
-
text_base = st.text_area(
|
170 |
-
label="",
|
171 |
-
value=st.session_state.base_text,
|
172 |
-
key="text_base_area",
|
173 |
-
placeholder="Pega aquí tu texto base",
|
174 |
-
)
|
175 |
-
if st.button("Analizar Base"):
|
176 |
-
with st.spinner("Analizando texto base..."):
|
177 |
-
doc = nlp_models[lang_code](text_base)
|
178 |
-
metrics = analyze_text_dimensions(doc)
|
179 |
-
|
180 |
-
st.session_state.base_text = text_base
|
181 |
-
st.session_state.base_metrics = metrics
|
182 |
-
st.session_state.show_base = True
|
183 |
-
# Al analizar base, reiniciamos la iteración
|
184 |
-
st.session_state.show_iter = False
|
185 |
-
|
186 |
-
# Columna derecha: Texto iteración
|
187 |
-
with col_right:
|
188 |
-
st.markdown("**Texto de iteración**")
|
189 |
-
text_iter = st.text_area(
|
190 |
-
label="",
|
191 |
-
value=st.session_state.iter_text,
|
192 |
-
key="text_iter_area",
|
193 |
-
placeholder="Edita y mejora tu texto...",
|
194 |
-
disabled=not st.session_state.show_base
|
195 |
-
)
|
196 |
-
if st.button("Analizar Iteración", disabled=not st.session_state.show_base):
|
197 |
-
with st.spinner("Analizando iteración..."):
|
198 |
-
doc = nlp_models[lang_code](text_iter)
|
199 |
-
metrics = analyze_text_dimensions(doc)
|
200 |
-
|
201 |
-
st.session_state.iter_text = text_iter
|
202 |
-
st.session_state.iter_metrics = metrics
|
203 |
-
st.session_state.show_iter = True
|
204 |
-
|
205 |
-
# ---------------------------------------------------------------------
|
206 |
-
# Recomendaciones al final en un expander (una sola “fila”)
|
207 |
-
# ---------------------------------------------------------------------
|
208 |
-
if st.session_state.show_iter:
|
209 |
-
with st.expander("Recomendaciones", expanded=False):
|
210 |
-
reco_list = []
|
211 |
-
for dimension, values in st.session_state.iter_metrics.items():
|
212 |
-
score = values['normalized_score']
|
213 |
-
target = TEXT_TYPES[text_type]['thresholds'][dimension]['target']
|
214 |
-
if score < target:
|
215 |
-
# Aquí, en lugar de get_dimension_suggestions, unificamos con:
|
216 |
-
suggestions = suggest_improvement_tools_list(dimension)
|
217 |
-
reco_list.extend(suggestions)
|
218 |
-
|
219 |
-
if reco_list:
|
220 |
-
# Todas en una sola línea
|
221 |
-
st.write(" | ".join(reco_list))
|
222 |
-
else:
|
223 |
-
st.info("¡No hay recomendaciones! Todas las métricas superan la meta.")
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
#Funciones de visualización ##################################
|
232 |
-
############################################################
|
233 |
-
# Funciones de visualización para las métricas
|
234 |
-
############################################################
|
235 |
-
|
236 |
-
def display_metrics_in_one_row(metrics, text_type):
|
237 |
-
"""
|
238 |
-
Muestra las cuatro dimensiones (Vocabulario, Estructura, Cohesión, Claridad)
|
239 |
-
en una sola línea, usando 4 columnas con ancho uniforme.
|
240 |
-
"""
|
241 |
-
thresholds = TEXT_TYPES[text_type]['thresholds']
|
242 |
-
dimensions = ["vocabulary", "structure", "cohesion", "clarity"]
|
243 |
-
|
244 |
-
col1, col2, col3, col4 = st.columns([1,1,1,1])
|
245 |
-
cols = [col1, col2, col3, col4]
|
246 |
-
|
247 |
-
for dim, col in zip(dimensions, cols):
|
248 |
-
score = metrics[dim]['normalized_score']
|
249 |
-
target = thresholds[dim]['target']
|
250 |
-
min_val = thresholds[dim]['min']
|
251 |
-
|
252 |
-
if score < min_val:
|
253 |
-
status = "⚠️ Por mejorar"
|
254 |
-
color = "inverse"
|
255 |
-
elif score < target:
|
256 |
-
status = "📈 Aceptable"
|
257 |
-
color = "off"
|
258 |
-
else:
|
259 |
-
status = "✅ Óptimo"
|
260 |
-
color = "normal"
|
261 |
-
|
262 |
-
with col:
|
263 |
-
col.metric(
|
264 |
-
label=dim.capitalize(),
|
265 |
-
value=f"{score:.2f}",
|
266 |
-
delta=f"{status} (Meta: {target:.2f})",
|
267 |
-
delta_color=color,
|
268 |
-
border=True
|
269 |
-
)
|
270 |
-
|
271 |
-
|
272 |
-
# -------------------------------------------------------------------------
|
273 |
-
# Función que muestra una fila de 4 columnas “vacías”
|
274 |
-
# -------------------------------------------------------------------------
|
275 |
-
def display_empty_metrics_row():
|
276 |
-
"""
|
277 |
-
Muestra una fila de 4 columnas vacías (Vocabulario, Estructura, Cohesión, Claridad).
|
278 |
-
Cada columna se dibuja con st.metric en blanco (“-”).
|
279 |
-
"""
|
280 |
-
empty_cols = st.columns([1,1,1,1])
|
281 |
-
labels = ["Vocabulario", "Estructura", "Cohesión", "Claridad"]
|
282 |
-
|
283 |
-
for col, lbl in zip(empty_cols, labels):
|
284 |
-
with col:
|
285 |
-
col.metric(
|
286 |
-
label=lbl,
|
287 |
-
value="-",
|
288 |
-
delta="",
|
289 |
-
border=True
|
290 |
-
)
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
####################################################################
|
295 |
-
|
296 |
-
def display_metrics_analysis(metrics, text_type=None):
|
297 |
-
"""
|
298 |
-
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
299 |
-
"""
|
300 |
-
try:
|
301 |
-
# Usar valor por defecto si no se especifica tipo
|
302 |
-
text_type = text_type or 'student_essay'
|
303 |
-
|
304 |
-
# Obtener umbrales según el tipo de texto
|
305 |
-
thresholds = TEXT_TYPES[text_type]['thresholds']
|
306 |
-
|
307 |
-
# Crear dos columnas para las métricas y el gráfico
|
308 |
-
metrics_col, graph_col = st.columns([1, 1.5])
|
309 |
-
|
310 |
-
# Columna de métricas
|
311 |
-
with metrics_col:
|
312 |
-
metrics_config = [
|
313 |
-
{
|
314 |
-
'label': "Vocabulario",
|
315 |
-
'key': 'vocabulary',
|
316 |
-
'value': metrics['vocabulary']['normalized_score'],
|
317 |
-
'help': "Riqueza y variedad del vocabulario",
|
318 |
-
'thresholds': thresholds['vocabulary']
|
319 |
-
},
|
320 |
-
{
|
321 |
-
'label': "Estructura",
|
322 |
-
'key': 'structure',
|
323 |
-
'value': metrics['structure']['normalized_score'],
|
324 |
-
'help': "Organización y complejidad de oraciones",
|
325 |
-
'thresholds': thresholds['structure']
|
326 |
-
},
|
327 |
-
{
|
328 |
-
'label': "Cohesión",
|
329 |
-
'key': 'cohesion',
|
330 |
-
'value': metrics['cohesion']['normalized_score'],
|
331 |
-
'help': "Conexión y fluidez entre ideas",
|
332 |
-
'thresholds': thresholds['cohesion']
|
333 |
-
},
|
334 |
-
{
|
335 |
-
'label': "Claridad",
|
336 |
-
'key': 'clarity',
|
337 |
-
'value': metrics['clarity']['normalized_score'],
|
338 |
-
'help': "Facilidad de comprensión del texto",
|
339 |
-
'thresholds': thresholds['clarity']
|
340 |
-
}
|
341 |
-
]
|
342 |
-
|
343 |
-
# Mostrar métricas
|
344 |
-
for metric in metrics_config:
|
345 |
-
value = metric['value']
|
346 |
-
if value < metric['thresholds']['min']:
|
347 |
-
status = "⚠️ Por mejorar"
|
348 |
-
color = "inverse"
|
349 |
-
elif value < metric['thresholds']['target']:
|
350 |
-
status = "📈 Aceptable"
|
351 |
-
color = "off"
|
352 |
-
else:
|
353 |
-
status = "✅ Óptimo"
|
354 |
-
color = "normal"
|
355 |
-
|
356 |
-
st.metric(
|
357 |
-
metric['label'],
|
358 |
-
f"{value:.2f}",
|
359 |
-
f"{status} (Meta: {metric['thresholds']['target']:.2f})",
|
360 |
-
delta_color=color,
|
361 |
-
help=metric['help']
|
362 |
-
)
|
363 |
-
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
|
364 |
-
|
365 |
-
except Exception as e:
|
366 |
-
logger.error(f"Error mostrando resultados: {str(e)}")
|
367 |
-
st.error("Error al mostrar los resultados")
|
368 |
-
|
369 |
-
def display_comparison_results(baseline_metrics, current_metrics):
|
370 |
-
"""Muestra comparación entre línea base y métricas actuales"""
|
371 |
-
|
372 |
-
# Crear columnas para métricas y gráfico
|
373 |
-
metrics_col, graph_col = st.columns([1, 1.5])
|
374 |
-
|
375 |
-
with metrics_col:
|
376 |
-
for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']:
|
377 |
-
baseline = baseline_metrics[dimension]['normalized_score']
|
378 |
-
current = current_metrics[dimension]['normalized_score']
|
379 |
-
delta = current - baseline
|
380 |
-
|
381 |
-
st.metric(
|
382 |
-
dimension.title(),
|
383 |
-
f"{current:.2f}",
|
384 |
-
f"{delta:+.2f}",
|
385 |
-
delta_color="normal" if delta >= 0 else "inverse"
|
386 |
-
)
|
387 |
-
|
388 |
-
# Sugerir herramientas de mejora
|
389 |
-
if delta < 0:
|
390 |
-
suggest_improvement_tools(dimension)
|
391 |
-
|
392 |
-
with graph_col:
|
393 |
-
display_radar_chart_comparison(
|
394 |
-
baseline_metrics,
|
395 |
-
current_metrics
|
396 |
-
)
|
397 |
-
|
398 |
-
def display_metrics_and_suggestions(metrics, text_type, title, show_suggestions=False):
|
399 |
-
"""
|
400 |
-
Muestra métricas y opcionalmente sugerencias de mejora.
|
401 |
-
Args:
|
402 |
-
metrics: Diccionario con las métricas analizadas
|
403 |
-
text_type: Tipo de texto seleccionado
|
404 |
-
title: Título para las métricas ("Base" o "Iteración")
|
405 |
-
show_suggestions: Booleano para mostrar sugerencias
|
406 |
-
"""
|
407 |
-
try:
|
408 |
-
thresholds = TEXT_TYPES[text_type]['thresholds']
|
409 |
-
|
410 |
-
st.markdown(f"### Métricas {title}")
|
411 |
-
|
412 |
-
for dimension, values in metrics.items():
|
413 |
-
score = values['normalized_score']
|
414 |
-
target = thresholds[dimension]['target']
|
415 |
-
min_val = thresholds[dimension]['min']
|
416 |
-
|
417 |
-
# Determinar estado y color
|
418 |
-
if score < min_val:
|
419 |
-
status = "⚠️ Por mejorar"
|
420 |
-
color = "inverse"
|
421 |
-
elif score < target:
|
422 |
-
status = "📈 Aceptable"
|
423 |
-
color = "off"
|
424 |
-
else:
|
425 |
-
status = "✅ Óptimo"
|
426 |
-
color = "normal"
|
427 |
-
|
428 |
-
# Mostrar métrica
|
429 |
-
st.metric(
|
430 |
-
dimension.title(),
|
431 |
-
f"{score:.2f}",
|
432 |
-
f"{status} (Meta: {target:.2f})",
|
433 |
-
delta_color=color,
|
434 |
-
help=f"Meta: {target:.2f}, Mínimo: {min_val:.2f}"
|
435 |
-
)
|
436 |
-
|
437 |
-
# Mostrar sugerencias si es necesario
|
438 |
-
if show_suggestions and score < target:
|
439 |
-
suggest_improvement_tools(dimension)
|
440 |
-
|
441 |
-
# Agregar espacio entre métricas
|
442 |
-
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
|
443 |
-
|
444 |
-
except Exception as e:
|
445 |
-
logger.error(f"Error mostrando métricas: {str(e)}")
|
446 |
-
st.error("Error al mostrar métricas")
|
447 |
-
|
448 |
-
def display_radar_chart(metrics_config, thresholds, baseline_metrics=None):
|
449 |
-
"""
|
450 |
-
Muestra el gráfico radar con los resultados.
|
451 |
-
Args:
|
452 |
-
metrics_config: Configuración actual de métricas
|
453 |
-
thresholds: Umbrales para las métricas
|
454 |
-
baseline_metrics: Métricas de línea base (opcional)
|
455 |
-
"""
|
456 |
-
try:
|
457 |
-
# Preparar datos para el gráfico
|
458 |
-
categories = [m['label'] for m in metrics_config]
|
459 |
-
values_current = [m['value'] for m in metrics_config]
|
460 |
-
min_values = [m['thresholds']['min'] for m in metrics_config]
|
461 |
-
target_values = [m['thresholds']['target'] for m in metrics_config]
|
462 |
-
|
463 |
-
# Crear y configurar gráfico
|
464 |
-
fig = plt.figure(figsize=(8, 8))
|
465 |
-
ax = fig.add_subplot(111, projection='polar')
|
466 |
-
|
467 |
-
# Configurar radar
|
468 |
-
angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))]
|
469 |
-
angles += angles[:1]
|
470 |
-
values_current += values_current[:1]
|
471 |
-
min_values += min_values[:1]
|
472 |
-
target_values += target_values[:1]
|
473 |
-
|
474 |
-
# Configurar ejes
|
475 |
-
ax.set_xticks(angles[:-1])
|
476 |
-
ax.set_xticklabels(categories, fontsize=10)
|
477 |
-
circle_ticks = np.arange(0, 1.1, 0.2)
|
478 |
-
ax.set_yticks(circle_ticks)
|
479 |
-
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
|
480 |
-
ax.set_ylim(0, 1)
|
481 |
-
|
482 |
-
# Dibujar áreas de umbrales
|
483 |
-
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1,
|
484 |
-
label='Mínimo', alpha=0.5)
|
485 |
-
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1,
|
486 |
-
label='Meta', alpha=0.5)
|
487 |
-
ax.fill_between(angles, target_values, [1]*len(angles),
|
488 |
-
color='#2ecc71', alpha=0.1)
|
489 |
-
ax.fill_between(angles, [0]*len(angles), min_values,
|
490 |
-
color='#e74c3c', alpha=0.1)
|
491 |
-
|
492 |
-
# Si hay línea base, dibujarla primero
|
493 |
-
if baseline_metrics is not None:
|
494 |
-
values_baseline = [baseline_metrics[m['key']]['normalized_score']
|
495 |
-
for m in metrics_config]
|
496 |
-
values_baseline += values_baseline[:1]
|
497 |
-
ax.plot(angles, values_baseline, '#888888', linewidth=2,
|
498 |
-
label='Línea base', linestyle='--')
|
499 |
-
ax.fill(angles, values_baseline, '#888888', alpha=0.1)
|
500 |
-
|
501 |
-
# Dibujar valores actuales
|
502 |
-
label = 'Actual' if baseline_metrics else 'Tu escritura'
|
503 |
-
color = '#3498db' if baseline_metrics else '#3498db'
|
504 |
-
|
505 |
-
ax.plot(angles, values_current, color, linewidth=2, label=label)
|
506 |
-
ax.fill(angles, values_current, color, alpha=0.2)
|
507 |
-
|
508 |
-
# Ajustar leyenda
|
509 |
-
legend_handles = []
|
510 |
-
if baseline_metrics:
|
511 |
-
legend_handles.extend([
|
512 |
-
plt.Line2D([], [], color='#888888', linestyle='--',
|
513 |
-
label='Línea base'),
|
514 |
-
plt.Line2D([], [], color='#3498db', label='Actual')
|
515 |
-
])
|
516 |
-
else:
|
517 |
-
legend_handles.extend([
|
518 |
-
plt.Line2D([], [], color='#3498db', label='Tu escritura')
|
519 |
-
])
|
520 |
-
|
521 |
-
legend_handles.extend([
|
522 |
-
plt.Line2D([], [], color='#e74c3c', linestyle='--', label='Mínimo'),
|
523 |
-
plt.Line2D([], [], color='#2ecc71', linestyle='--', label='Meta')
|
524 |
-
])
|
525 |
-
|
526 |
-
ax.legend(
|
527 |
-
handles=legend_handles,
|
528 |
-
loc='upper right',
|
529 |
-
bbox_to_anchor=(1.3, 1.1),
|
530 |
-
fontsize=10,
|
531 |
-
frameon=True,
|
532 |
-
facecolor='white',
|
533 |
-
edgecolor='none',
|
534 |
-
shadow=True
|
535 |
-
)
|
536 |
-
|
537 |
-
plt.tight_layout()
|
538 |
-
st.pyplot(fig)
|
539 |
-
plt.close()
|
540 |
-
|
541 |
-
except Exception as e:
|
542 |
-
logger.error(f"Error mostrando gráfico radar: {str(e)}")
|
543 |
-
st.error("Error al mostrar el gráfico")
|
544 |
-
|
545 |
-
#Funciones auxiliares ##################################
|
546 |
-
|
547 |
-
|
548 |
-
############################################################
|
549 |
-
# Unificamos la lógica de sugerencias en una función
|
550 |
-
############################################################
|
551 |
-
def suggest_improvement_tools_list(dimension):
|
552 |
-
"""
|
553 |
-
Retorna en forma de lista las herramientas sugeridas
|
554 |
-
basadas en 'ANALYSIS_DIMENSION_MAPPING'.
|
555 |
-
"""
|
556 |
-
suggestions = []
|
557 |
-
for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items():
|
558 |
-
# Verificamos si la dimensión está en primary o secondary
|
559 |
-
if dimension in mapping['primary'] or dimension in mapping['secondary']:
|
560 |
-
suggestions.extend(mapping['tools'])
|
561 |
-
# Si no hay nada, al menos retornamos un placeholder
|
562 |
-
return suggestions if suggestions else ["Sin sugerencias específicas."]
|
563 |
-
|
564 |
-
|
565 |
-
def prepare_metrics_config(metrics, text_type='student_essay'):
|
566 |
-
"""
|
567 |
-
Prepara la configuración de métricas en el mismo formato que display_results.
|
568 |
-
Args:
|
569 |
-
metrics: Diccionario con las métricas analizadas
|
570 |
-
text_type: Tipo de texto para los umbrales
|
571 |
-
Returns:
|
572 |
-
list: Lista de configuraciones de métricas
|
573 |
-
"""
|
574 |
-
# Obtener umbrales según el tipo de texto
|
575 |
-
thresholds = TEXT_TYPES[text_type]['thresholds']
|
576 |
-
|
577 |
-
# Usar la misma estructura que en display_results
|
578 |
-
return [
|
579 |
-
{
|
580 |
-
'label': "Vocabulario",
|
581 |
-
'key': 'vocabulary',
|
582 |
-
'value': metrics['vocabulary']['normalized_score'],
|
583 |
-
'help': "Riqueza y variedad del vocabulario",
|
584 |
-
'thresholds': thresholds['vocabulary']
|
585 |
-
},
|
586 |
-
{
|
587 |
-
'label': "Estructura",
|
588 |
-
'key': 'structure',
|
589 |
-
'value': metrics['structure']['normalized_score'],
|
590 |
-
'help': "Organización y complejidad de oraciones",
|
591 |
-
'thresholds': thresholds['structure']
|
592 |
-
},
|
593 |
-
{
|
594 |
-
'label': "Cohesión",
|
595 |
-
'key': 'cohesion',
|
596 |
-
'value': metrics['cohesion']['normalized_score'],
|
597 |
-
'help': "Conexión y fluidez entre ideas",
|
598 |
-
'thresholds': thresholds['cohesion']
|
599 |
-
},
|
600 |
-
{
|
601 |
-
'label': "Claridad",
|
602 |
-
'key': 'clarity',
|
603 |
-
'value': metrics['clarity']['normalized_score'],
|
604 |
-
'help': "Facilidad de comprensión del texto",
|
605 |
-
'thresholds': thresholds['clarity']
|
606 |
-
}
|
607 |
-
]
|
608 |
-
|
|
|
1 |
+
# modules/studentact/current_situation_interface.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import logging
|
5 |
+
from ..utils.widget_utils import generate_unique_key
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from ..database.current_situation_mongo_db import store_current_situation_result
|
10 |
+
|
11 |
+
from ..database.writing_progress_mongo_db import (
|
12 |
+
store_writing_baseline,
|
13 |
+
store_writing_progress,
|
14 |
+
get_writing_baseline,
|
15 |
+
get_writing_progress,
|
16 |
+
get_latest_writing_metrics
|
17 |
+
)
|
18 |
+
|
19 |
+
from .current_situation_analysis import (
|
20 |
+
analyze_text_dimensions,
|
21 |
+
analyze_clarity,
|
22 |
+
analyze_vocabulary_diversity,
|
23 |
+
analyze_cohesion,
|
24 |
+
analyze_structure,
|
25 |
+
get_dependency_depths,
|
26 |
+
normalize_score,
|
27 |
+
generate_sentence_graphs,
|
28 |
+
generate_word_connections,
|
29 |
+
generate_connection_paths,
|
30 |
+
create_vocabulary_network,
|
31 |
+
create_syntax_complexity_graph,
|
32 |
+
create_cohesion_heatmap
|
33 |
+
)
|
34 |
+
|
35 |
+
# Configuración del estilo de matplotlib para el gráfico de radar
|
36 |
+
plt.rcParams['font.family'] = 'sans-serif'
|
37 |
+
plt.rcParams['axes.grid'] = True
|
38 |
+
plt.rcParams['axes.spines.top'] = False
|
39 |
+
plt.rcParams['axes.spines.right'] = False
|
40 |
+
|
41 |
+
logger = logging.getLogger(__name__)
|
42 |
+
####################################
|
43 |
+
|
44 |
+
TEXT_TYPES = {
|
45 |
+
'academic_article': {
|
46 |
+
'name': 'Artículo Académico',
|
47 |
+
'thresholds': {
|
48 |
+
'vocabulary': {'min': 0.70, 'target': 0.85},
|
49 |
+
'structure': {'min': 0.75, 'target': 0.90},
|
50 |
+
'cohesion': {'min': 0.65, 'target': 0.80},
|
51 |
+
'clarity': {'min': 0.70, 'target': 0.85}
|
52 |
+
}
|
53 |
+
},
|
54 |
+
'student_essay': {
|
55 |
+
'name': 'Trabajo Universitario',
|
56 |
+
'thresholds': {
|
57 |
+
'vocabulary': {'min': 0.60, 'target': 0.75},
|
58 |
+
'structure': {'min': 0.65, 'target': 0.80},
|
59 |
+
'cohesion': {'min': 0.55, 'target': 0.70},
|
60 |
+
'clarity': {'min': 0.60, 'target': 0.75}
|
61 |
+
}
|
62 |
+
},
|
63 |
+
'general_communication': {
|
64 |
+
'name': 'Comunicación General',
|
65 |
+
'thresholds': {
|
66 |
+
'vocabulary': {'min': 0.50, 'target': 0.65},
|
67 |
+
'structure': {'min': 0.55, 'target': 0.70},
|
68 |
+
'cohesion': {'min': 0.45, 'target': 0.60},
|
69 |
+
'clarity': {'min': 0.50, 'target': 0.65}
|
70 |
+
}
|
71 |
+
}
|
72 |
+
}
|
73 |
+
####################################
|
74 |
+
|
75 |
+
ANALYSIS_DIMENSION_MAPPING = {
|
76 |
+
'morphosyntactic': {
|
77 |
+
'primary': ['vocabulary', 'clarity'],
|
78 |
+
'secondary': ['structure'],
|
79 |
+
'tools': ['arc_diagrams', 'word_repetition']
|
80 |
+
},
|
81 |
+
'semantic': {
|
82 |
+
'primary': ['cohesion', 'structure'],
|
83 |
+
'secondary': ['vocabulary'],
|
84 |
+
'tools': ['concept_graphs', 'semantic_networks']
|
85 |
+
},
|
86 |
+
'discourse': {
|
87 |
+
'primary': ['cohesion', 'structure'],
|
88 |
+
'secondary': ['clarity'],
|
89 |
+
'tools': ['comparative_analysis']
|
90 |
+
}
|
91 |
+
}
|
92 |
+
|
93 |
+
##############################################################################
|
94 |
+
# FUNCIÓN PRINCIPAL
|
95 |
+
##############################################################################
|
96 |
+
def display_current_situation_interface(lang_code, nlp_models, t):
|
97 |
+
"""
|
98 |
+
TAB:
|
99 |
+
- Expander con radio para tipo de texto
|
100 |
+
Contenedor-1 con expanders:
|
101 |
+
- Expander "Métricas de la línea base"
|
102 |
+
- Expander "Métricas de la iteración"
|
103 |
+
Contenedor-2 (2 columnas):
|
104 |
+
- Col1: Texto base
|
105 |
+
- Col2: Texto iteración
|
106 |
+
Al final, Recomendaciones en un expander (una sola “fila”).
|
107 |
+
"""
|
108 |
+
|
109 |
+
# --- Inicializar session_state ---
|
110 |
+
if 'base_text' not in st.session_state:
|
111 |
+
st.session_state.base_text = ""
|
112 |
+
if 'iter_text' not in st.session_state:
|
113 |
+
st.session_state.iter_text = ""
|
114 |
+
if 'base_metrics' not in st.session_state:
|
115 |
+
st.session_state.base_metrics = {}
|
116 |
+
if 'iter_metrics' not in st.session_state:
|
117 |
+
st.session_state.iter_metrics = {}
|
118 |
+
if 'show_base' not in st.session_state:
|
119 |
+
st.session_state.show_base = False
|
120 |
+
if 'show_iter' not in st.session_state:
|
121 |
+
st.session_state.show_iter = False
|
122 |
+
|
123 |
+
# Creamos un tab
|
124 |
+
tabs = st.tabs(["Análisis de Texto"])
|
125 |
+
with tabs[0]:
|
126 |
+
# [1] Expander con radio para seleccionar tipo de texto
|
127 |
+
with st.expander("Selecciona el tipo de texto", expanded=True):
|
128 |
+
text_type = st.radio(
|
129 |
+
"¿Qué tipo de texto quieres analizar?",
|
130 |
+
options=list(TEXT_TYPES.keys()),
|
131 |
+
format_func=lambda x: TEXT_TYPES[x]['name'],
|
132 |
+
index=0
|
133 |
+
)
|
134 |
+
st.session_state.current_text_type = text_type
|
135 |
+
|
136 |
+
st.markdown("---")
|
137 |
+
|
138 |
+
# ---------------------------------------------------------------------
|
139 |
+
# CONTENEDOR-1: Expanders para métricas base e iteración
|
140 |
+
# ---------------------------------------------------------------------
|
141 |
+
with st.container():
|
142 |
+
# --- Expander para la línea base ---
|
143 |
+
with st.expander("Métricas de la línea base", expanded=False):
|
144 |
+
if st.session_state.show_base and st.session_state.base_metrics:
|
145 |
+
# Mostramos los valores reales
|
146 |
+
display_metrics_in_one_row(st.session_state.base_metrics, text_type)
|
147 |
+
else:
|
148 |
+
# Mostramos la maqueta vacía
|
149 |
+
display_empty_metrics_row()
|
150 |
+
|
151 |
+
# --- Expander para la iteración ---
|
152 |
+
with st.expander("Métricas de la iteración", expanded=False):
|
153 |
+
if st.session_state.show_iter and st.session_state.iter_metrics:
|
154 |
+
display_metrics_in_one_row(st.session_state.iter_metrics, text_type)
|
155 |
+
else:
|
156 |
+
display_empty_metrics_row()
|
157 |
+
|
158 |
+
st.markdown("---")
|
159 |
+
|
160 |
+
# ---------------------------------------------------------------------
|
161 |
+
# CONTENEDOR-2: 2 columnas (texto base | texto iteración)
|
162 |
+
# ---------------------------------------------------------------------
|
163 |
+
with st.container():
|
164 |
+
col_left, col_right = st.columns(2)
|
165 |
+
|
166 |
+
# Columna izquierda: Texto base
|
167 |
+
with col_left:
|
168 |
+
st.markdown("**Texto base**")
|
169 |
+
text_base = st.text_area(
|
170 |
+
label="",
|
171 |
+
value=st.session_state.base_text,
|
172 |
+
key="text_base_area",
|
173 |
+
placeholder="Pega aquí tu texto base",
|
174 |
+
)
|
175 |
+
if st.button("Analizar Base"):
|
176 |
+
with st.spinner("Analizando texto base..."):
|
177 |
+
doc = nlp_models[lang_code](text_base)
|
178 |
+
metrics = analyze_text_dimensions(doc)
|
179 |
+
|
180 |
+
st.session_state.base_text = text_base
|
181 |
+
st.session_state.base_metrics = metrics
|
182 |
+
st.session_state.show_base = True
|
183 |
+
# Al analizar base, reiniciamos la iteración
|
184 |
+
st.session_state.show_iter = False
|
185 |
+
|
186 |
+
# Columna derecha: Texto iteración
|
187 |
+
with col_right:
|
188 |
+
st.markdown("**Texto de iteración**")
|
189 |
+
text_iter = st.text_area(
|
190 |
+
label="",
|
191 |
+
value=st.session_state.iter_text,
|
192 |
+
key="text_iter_area",
|
193 |
+
placeholder="Edita y mejora tu texto...",
|
194 |
+
disabled=not st.session_state.show_base
|
195 |
+
)
|
196 |
+
if st.button("Analizar Iteración", disabled=not st.session_state.show_base):
|
197 |
+
with st.spinner("Analizando iteración..."):
|
198 |
+
doc = nlp_models[lang_code](text_iter)
|
199 |
+
metrics = analyze_text_dimensions(doc)
|
200 |
+
|
201 |
+
st.session_state.iter_text = text_iter
|
202 |
+
st.session_state.iter_metrics = metrics
|
203 |
+
st.session_state.show_iter = True
|
204 |
+
|
205 |
+
# ---------------------------------------------------------------------
|
206 |
+
# Recomendaciones al final en un expander (una sola “fila”)
|
207 |
+
# ---------------------------------------------------------------------
|
208 |
+
if st.session_state.show_iter:
|
209 |
+
with st.expander("Recomendaciones", expanded=False):
|
210 |
+
reco_list = []
|
211 |
+
for dimension, values in st.session_state.iter_metrics.items():
|
212 |
+
score = values['normalized_score']
|
213 |
+
target = TEXT_TYPES[text_type]['thresholds'][dimension]['target']
|
214 |
+
if score < target:
|
215 |
+
# Aquí, en lugar de get_dimension_suggestions, unificamos con:
|
216 |
+
suggestions = suggest_improvement_tools_list(dimension)
|
217 |
+
reco_list.extend(suggestions)
|
218 |
+
|
219 |
+
if reco_list:
|
220 |
+
# Todas en una sola línea
|
221 |
+
st.write(" | ".join(reco_list))
|
222 |
+
else:
|
223 |
+
st.info("¡No hay recomendaciones! Todas las métricas superan la meta.")
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
#Funciones de visualización ##################################
|
232 |
+
############################################################
|
233 |
+
# Funciones de visualización para las métricas
|
234 |
+
############################################################
|
235 |
+
|
236 |
+
def display_metrics_in_one_row(metrics, text_type):
|
237 |
+
"""
|
238 |
+
Muestra las cuatro dimensiones (Vocabulario, Estructura, Cohesión, Claridad)
|
239 |
+
en una sola línea, usando 4 columnas con ancho uniforme.
|
240 |
+
"""
|
241 |
+
thresholds = TEXT_TYPES[text_type]['thresholds']
|
242 |
+
dimensions = ["vocabulary", "structure", "cohesion", "clarity"]
|
243 |
+
|
244 |
+
col1, col2, col3, col4 = st.columns([1,1,1,1])
|
245 |
+
cols = [col1, col2, col3, col4]
|
246 |
+
|
247 |
+
for dim, col in zip(dimensions, cols):
|
248 |
+
score = metrics[dim]['normalized_score']
|
249 |
+
target = thresholds[dim]['target']
|
250 |
+
min_val = thresholds[dim]['min']
|
251 |
+
|
252 |
+
if score < min_val:
|
253 |
+
status = "⚠️ Por mejorar"
|
254 |
+
color = "inverse"
|
255 |
+
elif score < target:
|
256 |
+
status = "📈 Aceptable"
|
257 |
+
color = "off"
|
258 |
+
else:
|
259 |
+
status = "✅ Óptimo"
|
260 |
+
color = "normal"
|
261 |
+
|
262 |
+
with col:
|
263 |
+
col.metric(
|
264 |
+
label=dim.capitalize(),
|
265 |
+
value=f"{score:.2f}",
|
266 |
+
delta=f"{status} (Meta: {target:.2f})",
|
267 |
+
delta_color=color,
|
268 |
+
border=True
|
269 |
+
)
|
270 |
+
|
271 |
+
|
272 |
+
# -------------------------------------------------------------------------
|
273 |
+
# Función que muestra una fila de 4 columnas “vacías”
|
274 |
+
# -------------------------------------------------------------------------
|
275 |
+
def display_empty_metrics_row():
|
276 |
+
"""
|
277 |
+
Muestra una fila de 4 columnas vacías (Vocabulario, Estructura, Cohesión, Claridad).
|
278 |
+
Cada columna se dibuja con st.metric en blanco (“-”).
|
279 |
+
"""
|
280 |
+
empty_cols = st.columns([1,1,1,1])
|
281 |
+
labels = ["Vocabulario", "Estructura", "Cohesión", "Claridad"]
|
282 |
+
|
283 |
+
for col, lbl in zip(empty_cols, labels):
|
284 |
+
with col:
|
285 |
+
col.metric(
|
286 |
+
label=lbl,
|
287 |
+
value="-",
|
288 |
+
delta="",
|
289 |
+
border=True
|
290 |
+
)
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
####################################################################
|
295 |
+
|
296 |
+
def display_metrics_analysis(metrics, text_type=None):
|
297 |
+
"""
|
298 |
+
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
299 |
+
"""
|
300 |
+
try:
|
301 |
+
# Usar valor por defecto si no se especifica tipo
|
302 |
+
text_type = text_type or 'student_essay'
|
303 |
+
|
304 |
+
# Obtener umbrales según el tipo de texto
|
305 |
+
thresholds = TEXT_TYPES[text_type]['thresholds']
|
306 |
+
|
307 |
+
# Crear dos columnas para las métricas y el gráfico
|
308 |
+
metrics_col, graph_col = st.columns([1, 1.5])
|
309 |
+
|
310 |
+
# Columna de métricas
|
311 |
+
with metrics_col:
|
312 |
+
metrics_config = [
|
313 |
+
{
|
314 |
+
'label': "Vocabulario",
|
315 |
+
'key': 'vocabulary',
|
316 |
+
'value': metrics['vocabulary']['normalized_score'],
|
317 |
+
'help': "Riqueza y variedad del vocabulario",
|
318 |
+
'thresholds': thresholds['vocabulary']
|
319 |
+
},
|
320 |
+
{
|
321 |
+
'label': "Estructura",
|
322 |
+
'key': 'structure',
|
323 |
+
'value': metrics['structure']['normalized_score'],
|
324 |
+
'help': "Organización y complejidad de oraciones",
|
325 |
+
'thresholds': thresholds['structure']
|
326 |
+
},
|
327 |
+
{
|
328 |
+
'label': "Cohesión",
|
329 |
+
'key': 'cohesion',
|
330 |
+
'value': metrics['cohesion']['normalized_score'],
|
331 |
+
'help': "Conexión y fluidez entre ideas",
|
332 |
+
'thresholds': thresholds['cohesion']
|
333 |
+
},
|
334 |
+
{
|
335 |
+
'label': "Claridad",
|
336 |
+
'key': 'clarity',
|
337 |
+
'value': metrics['clarity']['normalized_score'],
|
338 |
+
'help': "Facilidad de comprensión del texto",
|
339 |
+
'thresholds': thresholds['clarity']
|
340 |
+
}
|
341 |
+
]
|
342 |
+
|
343 |
+
# Mostrar métricas
|
344 |
+
for metric in metrics_config:
|
345 |
+
value = metric['value']
|
346 |
+
if value < metric['thresholds']['min']:
|
347 |
+
status = "⚠️ Por mejorar"
|
348 |
+
color = "inverse"
|
349 |
+
elif value < metric['thresholds']['target']:
|
350 |
+
status = "📈 Aceptable"
|
351 |
+
color = "off"
|
352 |
+
else:
|
353 |
+
status = "✅ Óptimo"
|
354 |
+
color = "normal"
|
355 |
+
|
356 |
+
st.metric(
|
357 |
+
metric['label'],
|
358 |
+
f"{value:.2f}",
|
359 |
+
f"{status} (Meta: {metric['thresholds']['target']:.2f})",
|
360 |
+
delta_color=color,
|
361 |
+
help=metric['help']
|
362 |
+
)
|
363 |
+
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
|
364 |
+
|
365 |
+
except Exception as e:
|
366 |
+
logger.error(f"Error mostrando resultados: {str(e)}")
|
367 |
+
st.error("Error al mostrar los resultados")
|
368 |
+
|
369 |
+
def display_comparison_results(baseline_metrics, current_metrics):
|
370 |
+
"""Muestra comparación entre línea base y métricas actuales"""
|
371 |
+
|
372 |
+
# Crear columnas para métricas y gráfico
|
373 |
+
metrics_col, graph_col = st.columns([1, 1.5])
|
374 |
+
|
375 |
+
with metrics_col:
|
376 |
+
for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']:
|
377 |
+
baseline = baseline_metrics[dimension]['normalized_score']
|
378 |
+
current = current_metrics[dimension]['normalized_score']
|
379 |
+
delta = current - baseline
|
380 |
+
|
381 |
+
st.metric(
|
382 |
+
dimension.title(),
|
383 |
+
f"{current:.2f}",
|
384 |
+
f"{delta:+.2f}",
|
385 |
+
delta_color="normal" if delta >= 0 else "inverse"
|
386 |
+
)
|
387 |
+
|
388 |
+
# Sugerir herramientas de mejora
|
389 |
+
if delta < 0:
|
390 |
+
suggest_improvement_tools(dimension)
|
391 |
+
|
392 |
+
with graph_col:
|
393 |
+
display_radar_chart_comparison(
|
394 |
+
baseline_metrics,
|
395 |
+
current_metrics
|
396 |
+
)
|
397 |
+
|
398 |
+
def display_metrics_and_suggestions(metrics, text_type, title, show_suggestions=False):
|
399 |
+
"""
|
400 |
+
Muestra métricas y opcionalmente sugerencias de mejora.
|
401 |
+
Args:
|
402 |
+
metrics: Diccionario con las métricas analizadas
|
403 |
+
text_type: Tipo de texto seleccionado
|
404 |
+
title: Título para las métricas ("Base" o "Iteración")
|
405 |
+
show_suggestions: Booleano para mostrar sugerencias
|
406 |
+
"""
|
407 |
+
try:
|
408 |
+
thresholds = TEXT_TYPES[text_type]['thresholds']
|
409 |
+
|
410 |
+
st.markdown(f"### Métricas {title}")
|
411 |
+
|
412 |
+
for dimension, values in metrics.items():
|
413 |
+
score = values['normalized_score']
|
414 |
+
target = thresholds[dimension]['target']
|
415 |
+
min_val = thresholds[dimension]['min']
|
416 |
+
|
417 |
+
# Determinar estado y color
|
418 |
+
if score < min_val:
|
419 |
+
status = "⚠️ Por mejorar"
|
420 |
+
color = "inverse"
|
421 |
+
elif score < target:
|
422 |
+
status = "📈 Aceptable"
|
423 |
+
color = "off"
|
424 |
+
else:
|
425 |
+
status = "✅ Óptimo"
|
426 |
+
color = "normal"
|
427 |
+
|
428 |
+
# Mostrar métrica
|
429 |
+
st.metric(
|
430 |
+
dimension.title(),
|
431 |
+
f"{score:.2f}",
|
432 |
+
f"{status} (Meta: {target:.2f})",
|
433 |
+
delta_color=color,
|
434 |
+
help=f"Meta: {target:.2f}, Mínimo: {min_val:.2f}"
|
435 |
+
)
|
436 |
+
|
437 |
+
# Mostrar sugerencias si es necesario
|
438 |
+
if show_suggestions and score < target:
|
439 |
+
suggest_improvement_tools(dimension)
|
440 |
+
|
441 |
+
# Agregar espacio entre métricas
|
442 |
+
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
|
443 |
+
|
444 |
+
except Exception as e:
|
445 |
+
logger.error(f"Error mostrando métricas: {str(e)}")
|
446 |
+
st.error("Error al mostrar métricas")
|
447 |
+
|
448 |
+
def display_radar_chart(metrics_config, thresholds, baseline_metrics=None):
|
449 |
+
"""
|
450 |
+
Muestra el gráfico radar con los resultados.
|
451 |
+
Args:
|
452 |
+
metrics_config: Configuración actual de métricas
|
453 |
+
thresholds: Umbrales para las métricas
|
454 |
+
baseline_metrics: Métricas de línea base (opcional)
|
455 |
+
"""
|
456 |
+
try:
|
457 |
+
# Preparar datos para el gráfico
|
458 |
+
categories = [m['label'] for m in metrics_config]
|
459 |
+
values_current = [m['value'] for m in metrics_config]
|
460 |
+
min_values = [m['thresholds']['min'] for m in metrics_config]
|
461 |
+
target_values = [m['thresholds']['target'] for m in metrics_config]
|
462 |
+
|
463 |
+
# Crear y configurar gráfico
|
464 |
+
fig = plt.figure(figsize=(8, 8))
|
465 |
+
ax = fig.add_subplot(111, projection='polar')
|
466 |
+
|
467 |
+
# Configurar radar
|
468 |
+
angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))]
|
469 |
+
angles += angles[:1]
|
470 |
+
values_current += values_current[:1]
|
471 |
+
min_values += min_values[:1]
|
472 |
+
target_values += target_values[:1]
|
473 |
+
|
474 |
+
# Configurar ejes
|
475 |
+
ax.set_xticks(angles[:-1])
|
476 |
+
ax.set_xticklabels(categories, fontsize=10)
|
477 |
+
circle_ticks = np.arange(0, 1.1, 0.2)
|
478 |
+
ax.set_yticks(circle_ticks)
|
479 |
+
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
|
480 |
+
ax.set_ylim(0, 1)
|
481 |
+
|
482 |
+
# Dibujar áreas de umbrales
|
483 |
+
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1,
|
484 |
+
label='Mínimo', alpha=0.5)
|
485 |
+
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1,
|
486 |
+
label='Meta', alpha=0.5)
|
487 |
+
ax.fill_between(angles, target_values, [1]*len(angles),
|
488 |
+
color='#2ecc71', alpha=0.1)
|
489 |
+
ax.fill_between(angles, [0]*len(angles), min_values,
|
490 |
+
color='#e74c3c', alpha=0.1)
|
491 |
+
|
492 |
+
# Si hay línea base, dibujarla primero
|
493 |
+
if baseline_metrics is not None:
|
494 |
+
values_baseline = [baseline_metrics[m['key']]['normalized_score']
|
495 |
+
for m in metrics_config]
|
496 |
+
values_baseline += values_baseline[:1]
|
497 |
+
ax.plot(angles, values_baseline, '#888888', linewidth=2,
|
498 |
+
label='Línea base', linestyle='--')
|
499 |
+
ax.fill(angles, values_baseline, '#888888', alpha=0.1)
|
500 |
+
|
501 |
+
# Dibujar valores actuales
|
502 |
+
label = 'Actual' if baseline_metrics else 'Tu escritura'
|
503 |
+
color = '#3498db' if baseline_metrics else '#3498db'
|
504 |
+
|
505 |
+
ax.plot(angles, values_current, color, linewidth=2, label=label)
|
506 |
+
ax.fill(angles, values_current, color, alpha=0.2)
|
507 |
+
|
508 |
+
# Ajustar leyenda
|
509 |
+
legend_handles = []
|
510 |
+
if baseline_metrics:
|
511 |
+
legend_handles.extend([
|
512 |
+
plt.Line2D([], [], color='#888888', linestyle='--',
|
513 |
+
label='Línea base'),
|
514 |
+
plt.Line2D([], [], color='#3498db', label='Actual')
|
515 |
+
])
|
516 |
+
else:
|
517 |
+
legend_handles.extend([
|
518 |
+
plt.Line2D([], [], color='#3498db', label='Tu escritura')
|
519 |
+
])
|
520 |
+
|
521 |
+
legend_handles.extend([
|
522 |
+
plt.Line2D([], [], color='#e74c3c', linestyle='--', label='Mínimo'),
|
523 |
+
plt.Line2D([], [], color='#2ecc71', linestyle='--', label='Meta')
|
524 |
+
])
|
525 |
+
|
526 |
+
ax.legend(
|
527 |
+
handles=legend_handles,
|
528 |
+
loc='upper right',
|
529 |
+
bbox_to_anchor=(1.3, 1.1),
|
530 |
+
fontsize=10,
|
531 |
+
frameon=True,
|
532 |
+
facecolor='white',
|
533 |
+
edgecolor='none',
|
534 |
+
shadow=True
|
535 |
+
)
|
536 |
+
|
537 |
+
plt.tight_layout()
|
538 |
+
st.pyplot(fig)
|
539 |
+
plt.close()
|
540 |
+
|
541 |
+
except Exception as e:
|
542 |
+
logger.error(f"Error mostrando gráfico radar: {str(e)}")
|
543 |
+
st.error("Error al mostrar el gráfico")
|
544 |
+
|
545 |
+
#Funciones auxiliares ##################################
|
546 |
+
|
547 |
+
|
548 |
+
############################################################
|
549 |
+
# Unificamos la lógica de sugerencias en una función
|
550 |
+
############################################################
|
551 |
+
def suggest_improvement_tools_list(dimension):
|
552 |
+
"""
|
553 |
+
Retorna en forma de lista las herramientas sugeridas
|
554 |
+
basadas en 'ANALYSIS_DIMENSION_MAPPING'.
|
555 |
+
"""
|
556 |
+
suggestions = []
|
557 |
+
for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items():
|
558 |
+
# Verificamos si la dimensión está en primary o secondary
|
559 |
+
if dimension in mapping['primary'] or dimension in mapping['secondary']:
|
560 |
+
suggestions.extend(mapping['tools'])
|
561 |
+
# Si no hay nada, al menos retornamos un placeholder
|
562 |
+
return suggestions if suggestions else ["Sin sugerencias específicas."]
|
563 |
+
|
564 |
+
|
565 |
+
def prepare_metrics_config(metrics, text_type='student_essay'):
|
566 |
+
"""
|
567 |
+
Prepara la configuración de métricas en el mismo formato que display_results.
|
568 |
+
Args:
|
569 |
+
metrics: Diccionario con las métricas analizadas
|
570 |
+
text_type: Tipo de texto para los umbrales
|
571 |
+
Returns:
|
572 |
+
list: Lista de configuraciones de métricas
|
573 |
+
"""
|
574 |
+
# Obtener umbrales según el tipo de texto
|
575 |
+
thresholds = TEXT_TYPES[text_type]['thresholds']
|
576 |
+
|
577 |
+
# Usar la misma estructura que en display_results
|
578 |
+
return [
|
579 |
+
{
|
580 |
+
'label': "Vocabulario",
|
581 |
+
'key': 'vocabulary',
|
582 |
+
'value': metrics['vocabulary']['normalized_score'],
|
583 |
+
'help': "Riqueza y variedad del vocabulario",
|
584 |
+
'thresholds': thresholds['vocabulary']
|
585 |
+
},
|
586 |
+
{
|
587 |
+
'label': "Estructura",
|
588 |
+
'key': 'structure',
|
589 |
+
'value': metrics['structure']['normalized_score'],
|
590 |
+
'help': "Organización y complejidad de oraciones",
|
591 |
+
'thresholds': thresholds['structure']
|
592 |
+
},
|
593 |
+
{
|
594 |
+
'label': "Cohesión",
|
595 |
+
'key': 'cohesion',
|
596 |
+
'value': metrics['cohesion']['normalized_score'],
|
597 |
+
'help': "Conexión y fluidez entre ideas",
|
598 |
+
'thresholds': thresholds['cohesion']
|
599 |
+
},
|
600 |
+
{
|
601 |
+
'label': "Claridad",
|
602 |
+
'key': 'clarity',
|
603 |
+
'value': metrics['clarity']['normalized_score'],
|
604 |
+
'help': "Facilidad de comprensión del texto",
|
605 |
+
'thresholds': thresholds['clarity']
|
606 |
+
}
|
607 |
+
]
|
608 |
+
|
modules/studentact/current_situation_interface-v1.py
CHANGED
@@ -1,272 +1,272 @@
|
|
1 |
-
# modules/studentact/current_situation_interface.py
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import logging
|
5 |
-
from ..utils.widget_utils import generate_unique_key
|
6 |
-
from .current_situation_analysis import (
|
7 |
-
analyze_text_dimensions,
|
8 |
-
analyze_clarity,
|
9 |
-
analyze_reference_clarity,
|
10 |
-
analyze_vocabulary_diversity,
|
11 |
-
analyze_cohesion,
|
12 |
-
analyze_structure,
|
13 |
-
get_dependency_depths,
|
14 |
-
normalize_score,
|
15 |
-
generate_sentence_graphs,
|
16 |
-
generate_word_connections,
|
17 |
-
generate_connection_paths,
|
18 |
-
create_vocabulary_network,
|
19 |
-
create_syntax_complexity_graph,
|
20 |
-
create_cohesion_heatmap,
|
21 |
-
)
|
22 |
-
|
23 |
-
logger = logging.getLogger(__name__)
|
24 |
-
####################################
|
25 |
-
def display_current_situation_interface(lang_code, nlp_models, t):
|
26 |
-
"""
|
27 |
-
Interfaz simplificada para el análisis inicial, enfocada en recomendaciones directas.
|
28 |
-
"""
|
29 |
-
# Inicializar estados si no existen
|
30 |
-
if 'text_input' not in st.session_state:
|
31 |
-
st.session_state.text_input = ""
|
32 |
-
if 'show_results' not in st.session_state:
|
33 |
-
st.session_state.show_results = False
|
34 |
-
if 'current_doc' not in st.session_state:
|
35 |
-
st.session_state.current_doc = None
|
36 |
-
if 'current_metrics' not in st.session_state:
|
37 |
-
st.session_state.current_metrics = None
|
38 |
-
|
39 |
-
st.markdown("## Análisis Inicial de Escritura")
|
40 |
-
|
41 |
-
# Container principal con dos columnas
|
42 |
-
with st.container():
|
43 |
-
input_col, results_col = st.columns([1,2])
|
44 |
-
|
45 |
-
with input_col:
|
46 |
-
st.markdown("### Ingresa tu texto")
|
47 |
-
|
48 |
-
# Función para manejar cambios en el texto
|
49 |
-
def on_text_change():
|
50 |
-
st.session_state.text_input = st.session_state.text_area
|
51 |
-
st.session_state.show_results = False # Resetear resultados cuando el texto cambia
|
52 |
-
|
53 |
-
# Text area con manejo de estado
|
54 |
-
text_input = st.text_area(
|
55 |
-
t.get('input_prompt', "Escribe o pega tu texto aquí:"),
|
56 |
-
height=400,
|
57 |
-
key="text_area",
|
58 |
-
value=st.session_state.text_input,
|
59 |
-
on_change=on_text_change,
|
60 |
-
help="Este texto será analizado para darte recomendaciones personalizadas"
|
61 |
-
)
|
62 |
-
|
63 |
-
# Botón de análisis
|
64 |
-
if st.button(
|
65 |
-
t.get('analyze_button', "Analizar mi escritura"),
|
66 |
-
type="primary",
|
67 |
-
disabled=not text_input.strip(),
|
68 |
-
use_container_width=True,
|
69 |
-
):
|
70 |
-
try:
|
71 |
-
with st.spinner(t.get('processing', "Analizando...")):
|
72 |
-
# Procesar texto y obtener métricas
|
73 |
-
doc = nlp_models[lang_code](text_input)
|
74 |
-
metrics = analyze_text_dimensions(doc)
|
75 |
-
|
76 |
-
# Actualizar estado con nuevos resultados
|
77 |
-
st.session_state.current_doc = doc
|
78 |
-
st.session_state.current_metrics = metrics
|
79 |
-
st.session_state.show_results = True
|
80 |
-
|
81 |
-
# Mantener el texto en el estado
|
82 |
-
st.session_state.text_input = text_input
|
83 |
-
|
84 |
-
except Exception as e:
|
85 |
-
logger.error(f"Error en análisis: {str(e)}")
|
86 |
-
st.error(t.get('analysis_error', "Error al analizar el texto"))
|
87 |
-
|
88 |
-
# Mostrar resultados en la columna derecha
|
89 |
-
with results_col:
|
90 |
-
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
91 |
-
display_recommendations(st.session_state.current_metrics, t)
|
92 |
-
|
93 |
-
# Opción para ver detalles
|
94 |
-
with st.expander("🔍 Ver análisis detallado", expanded=False):
|
95 |
-
display_current_situation_visual(
|
96 |
-
st.session_state.current_doc,
|
97 |
-
st.session_state.current_metrics
|
98 |
-
)
|
99 |
-
|
100 |
-
def display_current_situation_visual(doc, metrics):
|
101 |
-
"""
|
102 |
-
Muestra visualizaciones detalladas del análisis.
|
103 |
-
"""
|
104 |
-
try:
|
105 |
-
st.markdown("### 📊 Visualizaciones Detalladas")
|
106 |
-
|
107 |
-
# 1. Visualización de vocabulario
|
108 |
-
with st.expander("Análisis de Vocabulario", expanded=True):
|
109 |
-
vocab_graph = create_vocabulary_network(doc)
|
110 |
-
if vocab_graph:
|
111 |
-
st.pyplot(vocab_graph)
|
112 |
-
plt.close(vocab_graph)
|
113 |
-
|
114 |
-
# 2. Visualización de estructura
|
115 |
-
with st.expander("Análisis de Estructura", expanded=True):
|
116 |
-
syntax_graph = create_syntax_complexity_graph(doc)
|
117 |
-
if syntax_graph:
|
118 |
-
st.pyplot(syntax_graph)
|
119 |
-
plt.close(syntax_graph)
|
120 |
-
|
121 |
-
# 3. Visualización de cohesión
|
122 |
-
with st.expander("Análisis de Cohesión", expanded=True):
|
123 |
-
cohesion_graph = create_cohesion_heatmap(doc)
|
124 |
-
if cohesion_graph:
|
125 |
-
st.pyplot(cohesion_graph)
|
126 |
-
plt.close(cohesion_graph)
|
127 |
-
|
128 |
-
except Exception as e:
|
129 |
-
logger.error(f"Error en visualización: {str(e)}")
|
130 |
-
st.error("Error al generar las visualizaciones")
|
131 |
-
|
132 |
-
|
133 |
-
####################################
|
134 |
-
def display_recommendations(metrics, t):
|
135 |
-
"""
|
136 |
-
Muestra recomendaciones basadas en las métricas del texto.
|
137 |
-
"""
|
138 |
-
# 1. Resumen Visual con Explicación
|
139 |
-
st.markdown("### 📊 Resumen de tu Análisis")
|
140 |
-
|
141 |
-
# Explicación del sistema de medición
|
142 |
-
st.markdown("""
|
143 |
-
**¿Cómo interpretar los resultados?**
|
144 |
-
|
145 |
-
Cada métrica se mide en una escala de 0.0 a 1.0, donde:
|
146 |
-
- 0.0 - 0.4: Necesita atención prioritaria
|
147 |
-
- 0.4 - 0.6: En desarrollo
|
148 |
-
- 0.6 - 0.8: Buen nivel
|
149 |
-
- 0.8 - 1.0: Nivel avanzado
|
150 |
-
""")
|
151 |
-
|
152 |
-
# Métricas con explicaciones detalladas
|
153 |
-
col1, col2, col3, col4 = st.columns(4)
|
154 |
-
|
155 |
-
with col1:
|
156 |
-
st.metric(
|
157 |
-
"Vocabulario",
|
158 |
-
f"{metrics['vocabulary']['normalized_score']:.2f}",
|
159 |
-
help="Mide la variedad y riqueza de tu vocabulario. Un valor alto indica un uso diverso de palabras sin repeticiones excesivas."
|
160 |
-
)
|
161 |
-
with st.expander("ℹ️ Detalles"):
|
162 |
-
st.write("""
|
163 |
-
**Vocabulario**
|
164 |
-
- Evalúa la diversidad léxica
|
165 |
-
- Considera palabras únicas vs. totales
|
166 |
-
- Detecta repeticiones innecesarias
|
167 |
-
- Valor óptimo: > 0.7
|
168 |
-
""")
|
169 |
-
|
170 |
-
with col2:
|
171 |
-
st.metric(
|
172 |
-
"Estructura",
|
173 |
-
f"{metrics['structure']['normalized_score']:.2f}",
|
174 |
-
help="Evalúa la complejidad y variedad de las estructuras sintácticas en tus oraciones."
|
175 |
-
)
|
176 |
-
with st.expander("ℹ️ Detalles"):
|
177 |
-
st.write("""
|
178 |
-
**Estructura**
|
179 |
-
- Analiza la complejidad sintáctica
|
180 |
-
- Mide variación en construcciones
|
181 |
-
- Evalúa longitud de oraciones
|
182 |
-
- Valor óptimo: > 0.6
|
183 |
-
""")
|
184 |
-
|
185 |
-
with col3:
|
186 |
-
st.metric(
|
187 |
-
"Cohesión",
|
188 |
-
f"{metrics['cohesion']['normalized_score']:.2f}",
|
189 |
-
help="Indica qué tan bien conectadas están tus ideas y párrafos entre sí."
|
190 |
-
)
|
191 |
-
with st.expander("ℹ️ Detalles"):
|
192 |
-
st.write("""
|
193 |
-
**Cohesión**
|
194 |
-
- Mide conexiones entre ideas
|
195 |
-
- Evalúa uso de conectores
|
196 |
-
- Analiza progresión temática
|
197 |
-
- Valor óptimo: > 0.65
|
198 |
-
""")
|
199 |
-
|
200 |
-
with col4:
|
201 |
-
st.metric(
|
202 |
-
"Claridad",
|
203 |
-
f"{metrics['clarity']['normalized_score']:.2f}",
|
204 |
-
help="Evalúa la facilidad de comprensión general de tu texto."
|
205 |
-
)
|
206 |
-
with st.expander("ℹ️ Detalles"):
|
207 |
-
st.write("""
|
208 |
-
**Claridad**
|
209 |
-
- Evalúa comprensibilidad
|
210 |
-
- Considera estructura lógica
|
211 |
-
- Mide precisión expresiva
|
212 |
-
- Valor óptimo: > 0.7
|
213 |
-
""")
|
214 |
-
|
215 |
-
st.markdown("---")
|
216 |
-
|
217 |
-
# 2. Recomendaciones basadas en puntuaciones
|
218 |
-
st.markdown("### 💡 Recomendaciones Personalizadas")
|
219 |
-
|
220 |
-
# Recomendaciones morfosintácticas
|
221 |
-
if metrics['structure']['normalized_score'] < 0.6:
|
222 |
-
st.warning("""
|
223 |
-
#### 📝 Análisis Morfosintáctico Recomendado
|
224 |
-
|
225 |
-
**Tu nivel actual sugiere que sería beneficioso:**
|
226 |
-
1. Realizar el análisis morfosintáctico de 3 párrafos diferentes
|
227 |
-
2. Practicar la combinación de oraciones simples en compuestas
|
228 |
-
3. Identificar y clasificar tipos de oraciones en textos académicos
|
229 |
-
4. Ejercitar la variación sintáctica
|
230 |
-
|
231 |
-
*Hacer clic en "Comenzar ejercicios" para acceder al módulo morfosintáctico*
|
232 |
-
""")
|
233 |
-
|
234 |
-
# Recomendaciones semánticas
|
235 |
-
if metrics['vocabulary']['normalized_score'] < 0.7:
|
236 |
-
st.warning("""
|
237 |
-
#### 📚 Análisis Semántico Recomendado
|
238 |
-
|
239 |
-
**Para mejorar tu vocabulario y expresión:**
|
240 |
-
A. Realiza el análisis semántico de un texto académico
|
241 |
-
B. Identifica y agrupa campos semánticos relacionados
|
242 |
-
C. Practica la sustitución léxica en tus párrafos
|
243 |
-
D. Construye redes de conceptos sobre tu tema
|
244 |
-
E. Analiza las relaciones entre ideas principales
|
245 |
-
|
246 |
-
*Hacer clic en "Comenzar ejercicios" para acceder al módulo semántico*
|
247 |
-
""")
|
248 |
-
|
249 |
-
# Recomendaciones de cohesión
|
250 |
-
if metrics['cohesion']['normalized_score'] < 0.65:
|
251 |
-
st.warning("""
|
252 |
-
#### 🔄 Análisis del Discurso Recomendado
|
253 |
-
|
254 |
-
**Para mejorar la conexión entre ideas:**
|
255 |
-
1. Realizar el análisis del discurso de un texto modelo
|
256 |
-
2. Practicar el uso de diferentes conectores textuales
|
257 |
-
3. Identificar cadenas de referencia en textos académicos
|
258 |
-
4. Ejercitar la progresión temática en tus escritos
|
259 |
-
|
260 |
-
*Hacer clic en "Comenzar ejercicios" para acceder al módulo de análisis del discurso*
|
261 |
-
""")
|
262 |
-
|
263 |
-
# Botón de acción
|
264 |
-
st.markdown("---")
|
265 |
-
col1, col2, col3 = st.columns([1,2,1])
|
266 |
-
with col2:
|
267 |
-
st.button(
|
268 |
-
"🎯 Comenzar ejercicios recomendados",
|
269 |
-
type="primary",
|
270 |
-
use_container_width=True,
|
271 |
-
key="start_exercises"
|
272 |
)
|
|
|
1 |
+
# modules/studentact/current_situation_interface.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import logging
|
5 |
+
from ..utils.widget_utils import generate_unique_key
|
6 |
+
from .current_situation_analysis import (
|
7 |
+
analyze_text_dimensions,
|
8 |
+
analyze_clarity,
|
9 |
+
analyze_reference_clarity,
|
10 |
+
analyze_vocabulary_diversity,
|
11 |
+
analyze_cohesion,
|
12 |
+
analyze_structure,
|
13 |
+
get_dependency_depths,
|
14 |
+
normalize_score,
|
15 |
+
generate_sentence_graphs,
|
16 |
+
generate_word_connections,
|
17 |
+
generate_connection_paths,
|
18 |
+
create_vocabulary_network,
|
19 |
+
create_syntax_complexity_graph,
|
20 |
+
create_cohesion_heatmap,
|
21 |
+
)
|
22 |
+
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
####################################
|
25 |
+
def display_current_situation_interface(lang_code, nlp_models, t):
|
26 |
+
"""
|
27 |
+
Interfaz simplificada para el análisis inicial, enfocada en recomendaciones directas.
|
28 |
+
"""
|
29 |
+
# Inicializar estados si no existen
|
30 |
+
if 'text_input' not in st.session_state:
|
31 |
+
st.session_state.text_input = ""
|
32 |
+
if 'show_results' not in st.session_state:
|
33 |
+
st.session_state.show_results = False
|
34 |
+
if 'current_doc' not in st.session_state:
|
35 |
+
st.session_state.current_doc = None
|
36 |
+
if 'current_metrics' not in st.session_state:
|
37 |
+
st.session_state.current_metrics = None
|
38 |
+
|
39 |
+
st.markdown("## Análisis Inicial de Escritura")
|
40 |
+
|
41 |
+
# Container principal con dos columnas
|
42 |
+
with st.container():
|
43 |
+
input_col, results_col = st.columns([1,2])
|
44 |
+
|
45 |
+
with input_col:
|
46 |
+
st.markdown("### Ingresa tu texto")
|
47 |
+
|
48 |
+
# Función para manejar cambios en el texto
|
49 |
+
def on_text_change():
|
50 |
+
st.session_state.text_input = st.session_state.text_area
|
51 |
+
st.session_state.show_results = False # Resetear resultados cuando el texto cambia
|
52 |
+
|
53 |
+
# Text area con manejo de estado
|
54 |
+
text_input = st.text_area(
|
55 |
+
t.get('input_prompt', "Escribe o pega tu texto aquí:"),
|
56 |
+
height=400,
|
57 |
+
key="text_area",
|
58 |
+
value=st.session_state.text_input,
|
59 |
+
on_change=on_text_change,
|
60 |
+
help="Este texto será analizado para darte recomendaciones personalizadas"
|
61 |
+
)
|
62 |
+
|
63 |
+
# Botón de análisis
|
64 |
+
if st.button(
|
65 |
+
t.get('analyze_button', "Analizar mi escritura"),
|
66 |
+
type="primary",
|
67 |
+
disabled=not text_input.strip(),
|
68 |
+
use_container_width=True,
|
69 |
+
):
|
70 |
+
try:
|
71 |
+
with st.spinner(t.get('processing', "Analizando...")):
|
72 |
+
# Procesar texto y obtener métricas
|
73 |
+
doc = nlp_models[lang_code](text_input)
|
74 |
+
metrics = analyze_text_dimensions(doc)
|
75 |
+
|
76 |
+
# Actualizar estado con nuevos resultados
|
77 |
+
st.session_state.current_doc = doc
|
78 |
+
st.session_state.current_metrics = metrics
|
79 |
+
st.session_state.show_results = True
|
80 |
+
|
81 |
+
# Mantener el texto en el estado
|
82 |
+
st.session_state.text_input = text_input
|
83 |
+
|
84 |
+
except Exception as e:
|
85 |
+
logger.error(f"Error en análisis: {str(e)}")
|
86 |
+
st.error(t.get('analysis_error', "Error al analizar el texto"))
|
87 |
+
|
88 |
+
# Mostrar resultados en la columna derecha
|
89 |
+
with results_col:
|
90 |
+
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
91 |
+
display_recommendations(st.session_state.current_metrics, t)
|
92 |
+
|
93 |
+
# Opción para ver detalles
|
94 |
+
with st.expander("🔍 Ver análisis detallado", expanded=False):
|
95 |
+
display_current_situation_visual(
|
96 |
+
st.session_state.current_doc,
|
97 |
+
st.session_state.current_metrics
|
98 |
+
)
|
99 |
+
|
100 |
+
def display_current_situation_visual(doc, metrics):
|
101 |
+
"""
|
102 |
+
Muestra visualizaciones detalladas del análisis.
|
103 |
+
"""
|
104 |
+
try:
|
105 |
+
st.markdown("### 📊 Visualizaciones Detalladas")
|
106 |
+
|
107 |
+
# 1. Visualización de vocabulario
|
108 |
+
with st.expander("Análisis de Vocabulario", expanded=True):
|
109 |
+
vocab_graph = create_vocabulary_network(doc)
|
110 |
+
if vocab_graph:
|
111 |
+
st.pyplot(vocab_graph)
|
112 |
+
plt.close(vocab_graph)
|
113 |
+
|
114 |
+
# 2. Visualización de estructura
|
115 |
+
with st.expander("Análisis de Estructura", expanded=True):
|
116 |
+
syntax_graph = create_syntax_complexity_graph(doc)
|
117 |
+
if syntax_graph:
|
118 |
+
st.pyplot(syntax_graph)
|
119 |
+
plt.close(syntax_graph)
|
120 |
+
|
121 |
+
# 3. Visualización de cohesión
|
122 |
+
with st.expander("Análisis de Cohesión", expanded=True):
|
123 |
+
cohesion_graph = create_cohesion_heatmap(doc)
|
124 |
+
if cohesion_graph:
|
125 |
+
st.pyplot(cohesion_graph)
|
126 |
+
plt.close(cohesion_graph)
|
127 |
+
|
128 |
+
except Exception as e:
|
129 |
+
logger.error(f"Error en visualización: {str(e)}")
|
130 |
+
st.error("Error al generar las visualizaciones")
|
131 |
+
|
132 |
+
|
133 |
+
####################################
|
134 |
+
def display_recommendations(metrics, t):
|
135 |
+
"""
|
136 |
+
Muestra recomendaciones basadas en las métricas del texto.
|
137 |
+
"""
|
138 |
+
# 1. Resumen Visual con Explicación
|
139 |
+
st.markdown("### 📊 Resumen de tu Análisis")
|
140 |
+
|
141 |
+
# Explicación del sistema de medición
|
142 |
+
st.markdown("""
|
143 |
+
**¿Cómo interpretar los resultados?**
|
144 |
+
|
145 |
+
Cada métrica se mide en una escala de 0.0 a 1.0, donde:
|
146 |
+
- 0.0 - 0.4: Necesita atención prioritaria
|
147 |
+
- 0.4 - 0.6: En desarrollo
|
148 |
+
- 0.6 - 0.8: Buen nivel
|
149 |
+
- 0.8 - 1.0: Nivel avanzado
|
150 |
+
""")
|
151 |
+
|
152 |
+
# Métricas con explicaciones detalladas
|
153 |
+
col1, col2, col3, col4 = st.columns(4)
|
154 |
+
|
155 |
+
with col1:
|
156 |
+
st.metric(
|
157 |
+
"Vocabulario",
|
158 |
+
f"{metrics['vocabulary']['normalized_score']:.2f}",
|
159 |
+
help="Mide la variedad y riqueza de tu vocabulario. Un valor alto indica un uso diverso de palabras sin repeticiones excesivas."
|
160 |
+
)
|
161 |
+
with st.expander("ℹ️ Detalles"):
|
162 |
+
st.write("""
|
163 |
+
**Vocabulario**
|
164 |
+
- Evalúa la diversidad léxica
|
165 |
+
- Considera palabras únicas vs. totales
|
166 |
+
- Detecta repeticiones innecesarias
|
167 |
+
- Valor óptimo: > 0.7
|
168 |
+
""")
|
169 |
+
|
170 |
+
with col2:
|
171 |
+
st.metric(
|
172 |
+
"Estructura",
|
173 |
+
f"{metrics['structure']['normalized_score']:.2f}",
|
174 |
+
help="Evalúa la complejidad y variedad de las estructuras sintácticas en tus oraciones."
|
175 |
+
)
|
176 |
+
with st.expander("ℹ️ Detalles"):
|
177 |
+
st.write("""
|
178 |
+
**Estructura**
|
179 |
+
- Analiza la complejidad sintáctica
|
180 |
+
- Mide variación en construcciones
|
181 |
+
- Evalúa longitud de oraciones
|
182 |
+
- Valor óptimo: > 0.6
|
183 |
+
""")
|
184 |
+
|
185 |
+
with col3:
|
186 |
+
st.metric(
|
187 |
+
"Cohesión",
|
188 |
+
f"{metrics['cohesion']['normalized_score']:.2f}",
|
189 |
+
help="Indica qué tan bien conectadas están tus ideas y párrafos entre sí."
|
190 |
+
)
|
191 |
+
with st.expander("ℹ️ Detalles"):
|
192 |
+
st.write("""
|
193 |
+
**Cohesión**
|
194 |
+
- Mide conexiones entre ideas
|
195 |
+
- Evalúa uso de conectores
|
196 |
+
- Analiza progresión temática
|
197 |
+
- Valor óptimo: > 0.65
|
198 |
+
""")
|
199 |
+
|
200 |
+
with col4:
|
201 |
+
st.metric(
|
202 |
+
"Claridad",
|
203 |
+
f"{metrics['clarity']['normalized_score']:.2f}",
|
204 |
+
help="Evalúa la facilidad de comprensión general de tu texto."
|
205 |
+
)
|
206 |
+
with st.expander("ℹ️ Detalles"):
|
207 |
+
st.write("""
|
208 |
+
**Claridad**
|
209 |
+
- Evalúa comprensibilidad
|
210 |
+
- Considera estructura lógica
|
211 |
+
- Mide precisión expresiva
|
212 |
+
- Valor óptimo: > 0.7
|
213 |
+
""")
|
214 |
+
|
215 |
+
st.markdown("---")
|
216 |
+
|
217 |
+
# 2. Recomendaciones basadas en puntuaciones
|
218 |
+
st.markdown("### 💡 Recomendaciones Personalizadas")
|
219 |
+
|
220 |
+
# Recomendaciones morfosintácticas
|
221 |
+
if metrics['structure']['normalized_score'] < 0.6:
|
222 |
+
st.warning("""
|
223 |
+
#### 📝 Análisis Morfosintáctico Recomendado
|
224 |
+
|
225 |
+
**Tu nivel actual sugiere que sería beneficioso:**
|
226 |
+
1. Realizar el análisis morfosintáctico de 3 párrafos diferentes
|
227 |
+
2. Practicar la combinación de oraciones simples en compuestas
|
228 |
+
3. Identificar y clasificar tipos de oraciones en textos académicos
|
229 |
+
4. Ejercitar la variación sintáctica
|
230 |
+
|
231 |
+
*Hacer clic en "Comenzar ejercicios" para acceder al módulo morfosintáctico*
|
232 |
+
""")
|
233 |
+
|
234 |
+
# Recomendaciones semánticas
|
235 |
+
if metrics['vocabulary']['normalized_score'] < 0.7:
|
236 |
+
st.warning("""
|
237 |
+
#### 📚 Análisis Semántico Recomendado
|
238 |
+
|
239 |
+
**Para mejorar tu vocabulario y expresión:**
|
240 |
+
A. Realiza el análisis semántico de un texto académico
|
241 |
+
B. Identifica y agrupa campos semánticos relacionados
|
242 |
+
C. Practica la sustitución léxica en tus párrafos
|
243 |
+
D. Construye redes de conceptos sobre tu tema
|
244 |
+
E. Analiza las relaciones entre ideas principales
|
245 |
+
|
246 |
+
*Hacer clic en "Comenzar ejercicios" para acceder al módulo semántico*
|
247 |
+
""")
|
248 |
+
|
249 |
+
# Recomendaciones de cohesión
|
250 |
+
if metrics['cohesion']['normalized_score'] < 0.65:
|
251 |
+
st.warning("""
|
252 |
+
#### 🔄 Análisis del Discurso Recomendado
|
253 |
+
|
254 |
+
**Para mejorar la conexión entre ideas:**
|
255 |
+
1. Realizar el análisis del discurso de un texto modelo
|
256 |
+
2. Practicar el uso de diferentes conectores textuales
|
257 |
+
3. Identificar cadenas de referencia en textos académicos
|
258 |
+
4. Ejercitar la progresión temática en tus escritos
|
259 |
+
|
260 |
+
*Hacer clic en "Comenzar ejercicios" para acceder al módulo de análisis del discurso*
|
261 |
+
""")
|
262 |
+
|
263 |
+
# Botón de acción
|
264 |
+
st.markdown("---")
|
265 |
+
col1, col2, col3 = st.columns([1,2,1])
|
266 |
+
with col2:
|
267 |
+
st.button(
|
268 |
+
"🎯 Comenzar ejercicios recomendados",
|
269 |
+
type="primary",
|
270 |
+
use_container_width=True,
|
271 |
+
key="start_exercises"
|
272 |
)
|
modules/studentact/current_situation_interface-v2.py
CHANGED
@@ -1,291 +1,291 @@
|
|
1 |
-
# modules/studentact/current_situation_interface.py
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import logging
|
5 |
-
from ..utils.widget_utils import generate_unique_key
|
6 |
-
|
7 |
-
from ..database.current_situation_mongo_db import store_current_situation_result
|
8 |
-
|
9 |
-
from .current_situation_analysis import (
|
10 |
-
analyze_text_dimensions,
|
11 |
-
analyze_clarity,
|
12 |
-
analyze_reference_clarity,
|
13 |
-
analyze_vocabulary_diversity,
|
14 |
-
analyze_cohesion,
|
15 |
-
analyze_structure,
|
16 |
-
get_dependency_depths,
|
17 |
-
normalize_score,
|
18 |
-
generate_sentence_graphs,
|
19 |
-
generate_word_connections,
|
20 |
-
generate_connection_paths,
|
21 |
-
create_vocabulary_network,
|
22 |
-
create_syntax_complexity_graph,
|
23 |
-
create_cohesion_heatmap,
|
24 |
-
)
|
25 |
-
|
26 |
-
logger = logging.getLogger(__name__)
|
27 |
-
####################################
|
28 |
-
|
29 |
-
def display_current_situation_interface(lang_code, nlp_models, t):
|
30 |
-
"""
|
31 |
-
Interfaz simplificada para el análisis inicial, enfocada en recomendaciones directas.
|
32 |
-
"""
|
33 |
-
try:
|
34 |
-
# Inicializar estados si no existen
|
35 |
-
if 'text_input' not in st.session_state:
|
36 |
-
st.session_state.text_input = ""
|
37 |
-
if 'show_results' not in st.session_state:
|
38 |
-
st.session_state.show_results = False
|
39 |
-
if 'current_doc' not in st.session_state:
|
40 |
-
st.session_state.current_doc = None
|
41 |
-
if 'current_metrics' not in st.session_state:
|
42 |
-
st.session_state.current_metrics = None
|
43 |
-
|
44 |
-
st.markdown("## Análisis Inicial de Escritura")
|
45 |
-
|
46 |
-
# Container principal con dos columnas
|
47 |
-
with st.container():
|
48 |
-
input_col, results_col = st.columns([1,2])
|
49 |
-
|
50 |
-
with input_col:
|
51 |
-
st.markdown("### Ingresa tu texto")
|
52 |
-
|
53 |
-
# Función para manejar cambios en el texto
|
54 |
-
def on_text_change():
|
55 |
-
st.session_state.text_input = st.session_state.text_area
|
56 |
-
st.session_state.show_results = False # Resetear resultados cuando el texto cambia
|
57 |
-
|
58 |
-
# Text area con manejo de estado
|
59 |
-
text_input = st.text_area(
|
60 |
-
t.get('input_prompt', "Escribe o pega tu texto aquí:"),
|
61 |
-
height=400,
|
62 |
-
key="text_area",
|
63 |
-
value=st.session_state.text_input,
|
64 |
-
on_change=on_text_change,
|
65 |
-
help="Este texto será analizado para darte recomendaciones personalizadas"
|
66 |
-
)
|
67 |
-
|
68 |
-
if st.button(
|
69 |
-
t.get('analyze_button', "Analizar mi escritura"),
|
70 |
-
type="primary",
|
71 |
-
disabled=not text_input.strip(),
|
72 |
-
use_container_width=True,
|
73 |
-
):
|
74 |
-
try:
|
75 |
-
with st.spinner(t.get('processing', "Analizando...")):
|
76 |
-
# Procesar texto y obtener métricas
|
77 |
-
doc = nlp_models[lang_code](text_input)
|
78 |
-
metrics = analyze_text_dimensions(doc)
|
79 |
-
|
80 |
-
# Guardar en MongoDB
|
81 |
-
storage_success = store_current_situation_result(
|
82 |
-
username=st.session_state.username,
|
83 |
-
text=text_input,
|
84 |
-
metrics=metrics,
|
85 |
-
feedback=None # Por ahora sin feedback
|
86 |
-
)
|
87 |
-
|
88 |
-
if not storage_success:
|
89 |
-
logger.warning("No se pudo guardar el análisis en la base de datos")
|
90 |
-
|
91 |
-
# Actualizar estado
|
92 |
-
st.session_state.current_doc = doc
|
93 |
-
st.session_state.current_metrics = metrics
|
94 |
-
st.session_state.show_results = True
|
95 |
-
st.session_state.text_input = text_input
|
96 |
-
|
97 |
-
except Exception as e:
|
98 |
-
logger.error(f"Error en análisis: {str(e)}")
|
99 |
-
st.error(t.get('analysis_error', "Error al analizar el texto"))
|
100 |
-
|
101 |
-
# Mostrar resultados en la columna derecha
|
102 |
-
with results_col:
|
103 |
-
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
104 |
-
display_recommendations(st.session_state.current_metrics, t)
|
105 |
-
|
106 |
-
# Opción para ver detalles
|
107 |
-
with st.expander("🔍 Ver análisis detallado", expanded=False):
|
108 |
-
display_current_situation_visual(
|
109 |
-
st.session_state.current_doc,
|
110 |
-
st.session_state.current_metrics
|
111 |
-
)
|
112 |
-
|
113 |
-
except Exception as e:
|
114 |
-
logger.error(f"Error en interfaz: {str(e)}")
|
115 |
-
st.error("Ocurrió un error. Por favor, intente de nuevo.")
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
def display_current_situation_visual(doc, metrics):
|
120 |
-
"""
|
121 |
-
Muestra visualizaciones detalladas del análisis.
|
122 |
-
"""
|
123 |
-
try:
|
124 |
-
st.markdown("### 📊 Visualizaciones Detalladas")
|
125 |
-
|
126 |
-
# 1. Visualización de vocabulario
|
127 |
-
with st.expander("Análisis de Vocabulario", expanded=True):
|
128 |
-
vocab_graph = create_vocabulary_network(doc)
|
129 |
-
if vocab_graph:
|
130 |
-
st.pyplot(vocab_graph)
|
131 |
-
plt.close(vocab_graph)
|
132 |
-
|
133 |
-
# 2. Visualización de estructura
|
134 |
-
with st.expander("Análisis de Estructura", expanded=True):
|
135 |
-
syntax_graph = create_syntax_complexity_graph(doc)
|
136 |
-
if syntax_graph:
|
137 |
-
st.pyplot(syntax_graph)
|
138 |
-
plt.close(syntax_graph)
|
139 |
-
|
140 |
-
# 3. Visualización de cohesión
|
141 |
-
with st.expander("Análisis de Cohesión", expanded=True):
|
142 |
-
cohesion_graph = create_cohesion_heatmap(doc)
|
143 |
-
if cohesion_graph:
|
144 |
-
st.pyplot(cohesion_graph)
|
145 |
-
plt.close(cohesion_graph)
|
146 |
-
|
147 |
-
except Exception as e:
|
148 |
-
logger.error(f"Error en visualización: {str(e)}")
|
149 |
-
st.error("Error al generar las visualizaciones")
|
150 |
-
|
151 |
-
|
152 |
-
####################################
|
153 |
-
def display_recommendations(metrics, t):
|
154 |
-
"""
|
155 |
-
Muestra recomendaciones basadas en las métricas del texto.
|
156 |
-
"""
|
157 |
-
# 1. Resumen Visual con Explicación
|
158 |
-
st.markdown("### 📊 Resumen de tu Análisis")
|
159 |
-
|
160 |
-
# Explicación del sistema de medición
|
161 |
-
st.markdown("""
|
162 |
-
**¿Cómo interpretar los resultados?**
|
163 |
-
|
164 |
-
Cada métrica se mide en una escala de 0.0 a 1.0, donde:
|
165 |
-
- 0.0 - 0.4: Necesita atención prioritaria
|
166 |
-
- 0.4 - 0.6: En desarrollo
|
167 |
-
- 0.6 - 0.8: Buen nivel
|
168 |
-
- 0.8 - 1.0: Nivel avanzado
|
169 |
-
""")
|
170 |
-
|
171 |
-
# Métricas con explicaciones detalladas
|
172 |
-
col1, col2, col3, col4 = st.columns(4)
|
173 |
-
|
174 |
-
with col1:
|
175 |
-
st.metric(
|
176 |
-
"Vocabulario",
|
177 |
-
f"{metrics['vocabulary']['normalized_score']:.2f}",
|
178 |
-
help="Mide la variedad y riqueza de tu vocabulario. Un valor alto indica un uso diverso de palabras sin repeticiones excesivas."
|
179 |
-
)
|
180 |
-
with st.expander("ℹ️ Detalles"):
|
181 |
-
st.write("""
|
182 |
-
**Vocabulario**
|
183 |
-
- Evalúa la diversidad léxica
|
184 |
-
- Considera palabras únicas vs. totales
|
185 |
-
- Detecta repeticiones innecesarias
|
186 |
-
- Valor óptimo: > 0.7
|
187 |
-
""")
|
188 |
-
|
189 |
-
with col2:
|
190 |
-
st.metric(
|
191 |
-
"Estructura",
|
192 |
-
f"{metrics['structure']['normalized_score']:.2f}",
|
193 |
-
help="Evalúa la complejidad y variedad de las estructuras sintácticas en tus oraciones."
|
194 |
-
)
|
195 |
-
with st.expander("ℹ️ Detalles"):
|
196 |
-
st.write("""
|
197 |
-
**Estructura**
|
198 |
-
- Analiza la complejidad sintáctica
|
199 |
-
- Mide variación en construcciones
|
200 |
-
- Evalúa longitud de oraciones
|
201 |
-
- Valor óptimo: > 0.6
|
202 |
-
""")
|
203 |
-
|
204 |
-
with col3:
|
205 |
-
st.metric(
|
206 |
-
"Cohesión",
|
207 |
-
f"{metrics['cohesion']['normalized_score']:.2f}",
|
208 |
-
help="Indica qué tan bien conectadas están tus ideas y párrafos entre sí."
|
209 |
-
)
|
210 |
-
with st.expander("ℹ️ Detalles"):
|
211 |
-
st.write("""
|
212 |
-
**Cohesión**
|
213 |
-
- Mide conexiones entre ideas
|
214 |
-
- Evalúa uso de conectores
|
215 |
-
- Analiza progresión temática
|
216 |
-
- Valor óptimo: > 0.65
|
217 |
-
""")
|
218 |
-
|
219 |
-
with col4:
|
220 |
-
st.metric(
|
221 |
-
"Claridad",
|
222 |
-
f"{metrics['clarity']['normalized_score']:.2f}",
|
223 |
-
help="Evalúa la facilidad de comprensión general de tu texto."
|
224 |
-
)
|
225 |
-
with st.expander("ℹ️ Detalles"):
|
226 |
-
st.write("""
|
227 |
-
**Claridad**
|
228 |
-
- Evalúa comprensibilidad
|
229 |
-
- Considera estructura lógica
|
230 |
-
- Mide precisión expresiva
|
231 |
-
- Valor óptimo: > 0.7
|
232 |
-
""")
|
233 |
-
|
234 |
-
st.markdown("---")
|
235 |
-
|
236 |
-
# 2. Recomendaciones basadas en puntuaciones
|
237 |
-
st.markdown("### 💡 Recomendaciones Personalizadas")
|
238 |
-
|
239 |
-
# Recomendaciones morfosintácticas
|
240 |
-
if metrics['structure']['normalized_score'] < 0.6:
|
241 |
-
st.warning("""
|
242 |
-
#### 📝 Análisis Morfosintáctico Recomendado
|
243 |
-
|
244 |
-
**Tu nivel actual sugiere que sería beneficioso:**
|
245 |
-
1. Realizar el análisis morfosintáctico de 3 párrafos diferentes
|
246 |
-
2. Practicar la combinación de oraciones simples en compuestas
|
247 |
-
3. Identificar y clasificar tipos de oraciones en textos académicos
|
248 |
-
4. Ejercitar la variación sintáctica
|
249 |
-
|
250 |
-
*Hacer clic en "Comenzar ejercicios" para acceder al módulo morfosintáctico*
|
251 |
-
""")
|
252 |
-
|
253 |
-
# Recomendaciones semánticas
|
254 |
-
if metrics['vocabulary']['normalized_score'] < 0.7:
|
255 |
-
st.warning("""
|
256 |
-
#### 📚 Análisis Semántico Recomendado
|
257 |
-
|
258 |
-
**Para mejorar tu vocabulario y expresión:**
|
259 |
-
A. Realiza el análisis semántico de un texto académico
|
260 |
-
B. Identifica y agrupa campos semánticos relacionados
|
261 |
-
C. Practica la sustitución léxica en tus párrafos
|
262 |
-
D. Construye redes de conceptos sobre tu tema
|
263 |
-
E. Analiza las relaciones entre ideas principales
|
264 |
-
|
265 |
-
*Hacer clic en "Comenzar ejercicios" para acceder al módulo semántico*
|
266 |
-
""")
|
267 |
-
|
268 |
-
# Recomendaciones de cohesión
|
269 |
-
if metrics['cohesion']['normalized_score'] < 0.65:
|
270 |
-
st.warning("""
|
271 |
-
#### 🔄 Análisis del Discurso Recomendado
|
272 |
-
|
273 |
-
**Para mejorar la conexión entre ideas:**
|
274 |
-
1. Realizar el análisis del discurso de un texto modelo
|
275 |
-
2. Practicar el uso de diferentes conectores textuales
|
276 |
-
3. Identificar cadenas de referencia en textos académicos
|
277 |
-
4. Ejercitar la progresión temática en tus escritos
|
278 |
-
|
279 |
-
*Hacer clic en "Comenzar ejercicios" para acceder al módulo de análisis del discurso*
|
280 |
-
""")
|
281 |
-
|
282 |
-
# Botón de acción
|
283 |
-
st.markdown("---")
|
284 |
-
col1, col2, col3 = st.columns([1,2,1])
|
285 |
-
with col2:
|
286 |
-
st.button(
|
287 |
-
"🎯 Comenzar ejercicios recomendados",
|
288 |
-
type="primary",
|
289 |
-
use_container_width=True,
|
290 |
-
key="start_exercises"
|
291 |
-
)
|
|
|
1 |
+
# modules/studentact/current_situation_interface.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import logging
|
5 |
+
from ..utils.widget_utils import generate_unique_key
|
6 |
+
|
7 |
+
from ..database.current_situation_mongo_db import store_current_situation_result
|
8 |
+
|
9 |
+
from .current_situation_analysis import (
|
10 |
+
analyze_text_dimensions,
|
11 |
+
analyze_clarity,
|
12 |
+
analyze_reference_clarity,
|
13 |
+
analyze_vocabulary_diversity,
|
14 |
+
analyze_cohesion,
|
15 |
+
analyze_structure,
|
16 |
+
get_dependency_depths,
|
17 |
+
normalize_score,
|
18 |
+
generate_sentence_graphs,
|
19 |
+
generate_word_connections,
|
20 |
+
generate_connection_paths,
|
21 |
+
create_vocabulary_network,
|
22 |
+
create_syntax_complexity_graph,
|
23 |
+
create_cohesion_heatmap,
|
24 |
+
)
|
25 |
+
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
####################################
|
28 |
+
|
29 |
+
def display_current_situation_interface(lang_code, nlp_models, t):
|
30 |
+
"""
|
31 |
+
Interfaz simplificada para el análisis inicial, enfocada en recomendaciones directas.
|
32 |
+
"""
|
33 |
+
try:
|
34 |
+
# Inicializar estados si no existen
|
35 |
+
if 'text_input' not in st.session_state:
|
36 |
+
st.session_state.text_input = ""
|
37 |
+
if 'show_results' not in st.session_state:
|
38 |
+
st.session_state.show_results = False
|
39 |
+
if 'current_doc' not in st.session_state:
|
40 |
+
st.session_state.current_doc = None
|
41 |
+
if 'current_metrics' not in st.session_state:
|
42 |
+
st.session_state.current_metrics = None
|
43 |
+
|
44 |
+
st.markdown("## Análisis Inicial de Escritura")
|
45 |
+
|
46 |
+
# Container principal con dos columnas
|
47 |
+
with st.container():
|
48 |
+
input_col, results_col = st.columns([1,2])
|
49 |
+
|
50 |
+
with input_col:
|
51 |
+
st.markdown("### Ingresa tu texto")
|
52 |
+
|
53 |
+
# Función para manejar cambios en el texto
|
54 |
+
def on_text_change():
|
55 |
+
st.session_state.text_input = st.session_state.text_area
|
56 |
+
st.session_state.show_results = False # Resetear resultados cuando el texto cambia
|
57 |
+
|
58 |
+
# Text area con manejo de estado
|
59 |
+
text_input = st.text_area(
|
60 |
+
t.get('input_prompt', "Escribe o pega tu texto aquí:"),
|
61 |
+
height=400,
|
62 |
+
key="text_area",
|
63 |
+
value=st.session_state.text_input,
|
64 |
+
on_change=on_text_change,
|
65 |
+
help="Este texto será analizado para darte recomendaciones personalizadas"
|
66 |
+
)
|
67 |
+
|
68 |
+
if st.button(
|
69 |
+
t.get('analyze_button', "Analizar mi escritura"),
|
70 |
+
type="primary",
|
71 |
+
disabled=not text_input.strip(),
|
72 |
+
use_container_width=True,
|
73 |
+
):
|
74 |
+
try:
|
75 |
+
with st.spinner(t.get('processing', "Analizando...")):
|
76 |
+
# Procesar texto y obtener métricas
|
77 |
+
doc = nlp_models[lang_code](text_input)
|
78 |
+
metrics = analyze_text_dimensions(doc)
|
79 |
+
|
80 |
+
# Guardar en MongoDB
|
81 |
+
storage_success = store_current_situation_result(
|
82 |
+
username=st.session_state.username,
|
83 |
+
text=text_input,
|
84 |
+
metrics=metrics,
|
85 |
+
feedback=None # Por ahora sin feedback
|
86 |
+
)
|
87 |
+
|
88 |
+
if not storage_success:
|
89 |
+
logger.warning("No se pudo guardar el análisis en la base de datos")
|
90 |
+
|
91 |
+
# Actualizar estado
|
92 |
+
st.session_state.current_doc = doc
|
93 |
+
st.session_state.current_metrics = metrics
|
94 |
+
st.session_state.show_results = True
|
95 |
+
st.session_state.text_input = text_input
|
96 |
+
|
97 |
+
except Exception as e:
|
98 |
+
logger.error(f"Error en análisis: {str(e)}")
|
99 |
+
st.error(t.get('analysis_error', "Error al analizar el texto"))
|
100 |
+
|
101 |
+
# Mostrar resultados en la columna derecha
|
102 |
+
with results_col:
|
103 |
+
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
104 |
+
display_recommendations(st.session_state.current_metrics, t)
|
105 |
+
|
106 |
+
# Opción para ver detalles
|
107 |
+
with st.expander("🔍 Ver análisis detallado", expanded=False):
|
108 |
+
display_current_situation_visual(
|
109 |
+
st.session_state.current_doc,
|
110 |
+
st.session_state.current_metrics
|
111 |
+
)
|
112 |
+
|
113 |
+
except Exception as e:
|
114 |
+
logger.error(f"Error en interfaz: {str(e)}")
|
115 |
+
st.error("Ocurrió un error. Por favor, intente de nuevo.")
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
def display_current_situation_visual(doc, metrics):
|
120 |
+
"""
|
121 |
+
Muestra visualizaciones detalladas del análisis.
|
122 |
+
"""
|
123 |
+
try:
|
124 |
+
st.markdown("### 📊 Visualizaciones Detalladas")
|
125 |
+
|
126 |
+
# 1. Visualización de vocabulario
|
127 |
+
with st.expander("Análisis de Vocabulario", expanded=True):
|
128 |
+
vocab_graph = create_vocabulary_network(doc)
|
129 |
+
if vocab_graph:
|
130 |
+
st.pyplot(vocab_graph)
|
131 |
+
plt.close(vocab_graph)
|
132 |
+
|
133 |
+
# 2. Visualización de estructura
|
134 |
+
with st.expander("Análisis de Estructura", expanded=True):
|
135 |
+
syntax_graph = create_syntax_complexity_graph(doc)
|
136 |
+
if syntax_graph:
|
137 |
+
st.pyplot(syntax_graph)
|
138 |
+
plt.close(syntax_graph)
|
139 |
+
|
140 |
+
# 3. Visualización de cohesión
|
141 |
+
with st.expander("Análisis de Cohesión", expanded=True):
|
142 |
+
cohesion_graph = create_cohesion_heatmap(doc)
|
143 |
+
if cohesion_graph:
|
144 |
+
st.pyplot(cohesion_graph)
|
145 |
+
plt.close(cohesion_graph)
|
146 |
+
|
147 |
+
except Exception as e:
|
148 |
+
logger.error(f"Error en visualización: {str(e)}")
|
149 |
+
st.error("Error al generar las visualizaciones")
|
150 |
+
|
151 |
+
|
152 |
+
####################################
|
153 |
+
def display_recommendations(metrics, t):
|
154 |
+
"""
|
155 |
+
Muestra recomendaciones basadas en las métricas del texto.
|
156 |
+
"""
|
157 |
+
# 1. Resumen Visual con Explicación
|
158 |
+
st.markdown("### 📊 Resumen de tu Análisis")
|
159 |
+
|
160 |
+
# Explicación del sistema de medición
|
161 |
+
st.markdown("""
|
162 |
+
**¿Cómo interpretar los resultados?**
|
163 |
+
|
164 |
+
Cada métrica se mide en una escala de 0.0 a 1.0, donde:
|
165 |
+
- 0.0 - 0.4: Necesita atención prioritaria
|
166 |
+
- 0.4 - 0.6: En desarrollo
|
167 |
+
- 0.6 - 0.8: Buen nivel
|
168 |
+
- 0.8 - 1.0: Nivel avanzado
|
169 |
+
""")
|
170 |
+
|
171 |
+
# Métricas con explicaciones detalladas
|
172 |
+
col1, col2, col3, col4 = st.columns(4)
|
173 |
+
|
174 |
+
with col1:
|
175 |
+
st.metric(
|
176 |
+
"Vocabulario",
|
177 |
+
f"{metrics['vocabulary']['normalized_score']:.2f}",
|
178 |
+
help="Mide la variedad y riqueza de tu vocabulario. Un valor alto indica un uso diverso de palabras sin repeticiones excesivas."
|
179 |
+
)
|
180 |
+
with st.expander("ℹ️ Detalles"):
|
181 |
+
st.write("""
|
182 |
+
**Vocabulario**
|
183 |
+
- Evalúa la diversidad léxica
|
184 |
+
- Considera palabras únicas vs. totales
|
185 |
+
- Detecta repeticiones innecesarias
|
186 |
+
- Valor óptimo: > 0.7
|
187 |
+
""")
|
188 |
+
|
189 |
+
with col2:
|
190 |
+
st.metric(
|
191 |
+
"Estructura",
|
192 |
+
f"{metrics['structure']['normalized_score']:.2f}",
|
193 |
+
help="Evalúa la complejidad y variedad de las estructuras sintácticas en tus oraciones."
|
194 |
+
)
|
195 |
+
with st.expander("ℹ️ Detalles"):
|
196 |
+
st.write("""
|
197 |
+
**Estructura**
|
198 |
+
- Analiza la complejidad sintáctica
|
199 |
+
- Mide variación en construcciones
|
200 |
+
- Evalúa longitud de oraciones
|
201 |
+
- Valor óptimo: > 0.6
|
202 |
+
""")
|
203 |
+
|
204 |
+
with col3:
|
205 |
+
st.metric(
|
206 |
+
"Cohesión",
|
207 |
+
f"{metrics['cohesion']['normalized_score']:.2f}",
|
208 |
+
help="Indica qué tan bien conectadas están tus ideas y párrafos entre sí."
|
209 |
+
)
|
210 |
+
with st.expander("ℹ️ Detalles"):
|
211 |
+
st.write("""
|
212 |
+
**Cohesión**
|
213 |
+
- Mide conexiones entre ideas
|
214 |
+
- Evalúa uso de conectores
|
215 |
+
- Analiza progresión temática
|
216 |
+
- Valor óptimo: > 0.65
|
217 |
+
""")
|
218 |
+
|
219 |
+
with col4:
|
220 |
+
st.metric(
|
221 |
+
"Claridad",
|
222 |
+
f"{metrics['clarity']['normalized_score']:.2f}",
|
223 |
+
help="Evalúa la facilidad de comprensión general de tu texto."
|
224 |
+
)
|
225 |
+
with st.expander("ℹ️ Detalles"):
|
226 |
+
st.write("""
|
227 |
+
**Claridad**
|
228 |
+
- Evalúa comprensibilidad
|
229 |
+
- Considera estructura lógica
|
230 |
+
- Mide precisión expresiva
|
231 |
+
- Valor óptimo: > 0.7
|
232 |
+
""")
|
233 |
+
|
234 |
+
st.markdown("---")
|
235 |
+
|
236 |
+
# 2. Recomendaciones basadas en puntuaciones
|
237 |
+
st.markdown("### 💡 Recomendaciones Personalizadas")
|
238 |
+
|
239 |
+
# Recomendaciones morfosintácticas
|
240 |
+
if metrics['structure']['normalized_score'] < 0.6:
|
241 |
+
st.warning("""
|
242 |
+
#### 📝 Análisis Morfosintáctico Recomendado
|
243 |
+
|
244 |
+
**Tu nivel actual sugiere que sería beneficioso:**
|
245 |
+
1. Realizar el análisis morfosintáctico de 3 párrafos diferentes
|
246 |
+
2. Practicar la combinación de oraciones simples en compuestas
|
247 |
+
3. Identificar y clasificar tipos de oraciones en textos académicos
|
248 |
+
4. Ejercitar la variación sintáctica
|
249 |
+
|
250 |
+
*Hacer clic en "Comenzar ejercicios" para acceder al módulo morfosintáctico*
|
251 |
+
""")
|
252 |
+
|
253 |
+
# Recomendaciones semánticas
|
254 |
+
if metrics['vocabulary']['normalized_score'] < 0.7:
|
255 |
+
st.warning("""
|
256 |
+
#### 📚 Análisis Semántico Recomendado
|
257 |
+
|
258 |
+
**Para mejorar tu vocabulario y expresión:**
|
259 |
+
A. Realiza el análisis semántico de un texto académico
|
260 |
+
B. Identifica y agrupa campos semánticos relacionados
|
261 |
+
C. Practica la sustitución léxica en tus párrafos
|
262 |
+
D. Construye redes de conceptos sobre tu tema
|
263 |
+
E. Analiza las relaciones entre ideas principales
|
264 |
+
|
265 |
+
*Hacer clic en "Comenzar ejercicios" para acceder al módulo semántico*
|
266 |
+
""")
|
267 |
+
|
268 |
+
# Recomendaciones de cohesión
|
269 |
+
if metrics['cohesion']['normalized_score'] < 0.65:
|
270 |
+
st.warning("""
|
271 |
+
#### 🔄 Análisis del Discurso Recomendado
|
272 |
+
|
273 |
+
**Para mejorar la conexión entre ideas:**
|
274 |
+
1. Realizar el análisis del discurso de un texto modelo
|
275 |
+
2. Practicar el uso de diferentes conectores textuales
|
276 |
+
3. Identificar cadenas de referencia en textos académicos
|
277 |
+
4. Ejercitar la progresión temática en tus escritos
|
278 |
+
|
279 |
+
*Hacer clic en "Comenzar ejercicios" para acceder al módulo de análisis del discurso*
|
280 |
+
""")
|
281 |
+
|
282 |
+
# Botón de acción
|
283 |
+
st.markdown("---")
|
284 |
+
col1, col2, col3 = st.columns([1,2,1])
|
285 |
+
with col2:
|
286 |
+
st.button(
|
287 |
+
"🎯 Comenzar ejercicios recomendados",
|
288 |
+
type="primary",
|
289 |
+
use_container_width=True,
|
290 |
+
key="start_exercises"
|
291 |
+
)
|
modules/studentact/current_situation_interface-v3.py
CHANGED
@@ -1,190 +1,190 @@
|
|
1 |
-
# modules/studentact/current_situation_interface.py
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import logging
|
5 |
-
from ..utils.widget_utils import generate_unique_key
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import numpy as np
|
8 |
-
from ..database.current_situation_mongo_db import store_current_situation_result
|
9 |
-
|
10 |
-
from .current_situation_analysis import (
|
11 |
-
analyze_text_dimensions,
|
12 |
-
analyze_clarity,
|
13 |
-
analyze_reference_clarity,
|
14 |
-
analyze_vocabulary_diversity,
|
15 |
-
analyze_cohesion,
|
16 |
-
analyze_structure,
|
17 |
-
get_dependency_depths,
|
18 |
-
normalize_score,
|
19 |
-
generate_sentence_graphs,
|
20 |
-
generate_word_connections,
|
21 |
-
generate_connection_paths,
|
22 |
-
create_vocabulary_network,
|
23 |
-
create_syntax_complexity_graph,
|
24 |
-
create_cohesion_heatmap,
|
25 |
-
)
|
26 |
-
|
27 |
-
# Configuración del estilo de matplotlib para el gráfico de radar
|
28 |
-
plt.rcParams['font.family'] = 'sans-serif'
|
29 |
-
plt.rcParams['axes.grid'] = True
|
30 |
-
plt.rcParams['axes.spines.top'] = False
|
31 |
-
plt.rcParams['axes.spines.right'] = False
|
32 |
-
|
33 |
-
logger = logging.getLogger(__name__)
|
34 |
-
####################################
|
35 |
-
|
36 |
-
def display_current_situation_interface(lang_code, nlp_models, t):
|
37 |
-
"""
|
38 |
-
Interfaz simplificada con gráfico de radar para visualizar métricas.
|
39 |
-
"""
|
40 |
-
try:
|
41 |
-
# Inicializar estados si no existen
|
42 |
-
if 'text_input' not in st.session_state:
|
43 |
-
st.session_state.text_input = ""
|
44 |
-
if 'show_results' not in st.session_state:
|
45 |
-
st.session_state.show_results = False
|
46 |
-
if 'current_doc' not in st.session_state:
|
47 |
-
st.session_state.current_doc = None
|
48 |
-
if 'current_metrics' not in st.session_state:
|
49 |
-
st.session_state.current_metrics = None
|
50 |
-
|
51 |
-
st.markdown("## Análisis Inicial de Escritura")
|
52 |
-
|
53 |
-
# Container principal con dos columnas
|
54 |
-
with st.container():
|
55 |
-
input_col, results_col = st.columns([1,2])
|
56 |
-
|
57 |
-
with input_col:
|
58 |
-
#st.markdown("### Ingresa tu texto")
|
59 |
-
|
60 |
-
# Función para manejar cambios en el texto
|
61 |
-
def on_text_change():
|
62 |
-
st.session_state.text_input = st.session_state.text_area
|
63 |
-
st.session_state.show_results = False
|
64 |
-
|
65 |
-
# Text area con manejo de estado
|
66 |
-
text_input = st.text_area(
|
67 |
-
t.get('input_prompt', "Escribe o pega tu texto aquí:"),
|
68 |
-
height=400,
|
69 |
-
key="text_area",
|
70 |
-
value=st.session_state.text_input,
|
71 |
-
on_change=on_text_change,
|
72 |
-
help="Este texto será analizado para darte recomendaciones personalizadas"
|
73 |
-
)
|
74 |
-
|
75 |
-
if st.button(
|
76 |
-
t.get('analyze_button', "Analizar mi escritura"),
|
77 |
-
type="primary",
|
78 |
-
disabled=not text_input.strip(),
|
79 |
-
use_container_width=True,
|
80 |
-
):
|
81 |
-
try:
|
82 |
-
with st.spinner(t.get('processing', "Analizando...")):
|
83 |
-
doc = nlp_models[lang_code](text_input)
|
84 |
-
metrics = analyze_text_dimensions(doc)
|
85 |
-
|
86 |
-
# Guardar en MongoDB
|
87 |
-
storage_success = store_current_situation_result(
|
88 |
-
username=st.session_state.username,
|
89 |
-
text=text_input,
|
90 |
-
metrics=metrics,
|
91 |
-
feedback=None
|
92 |
-
)
|
93 |
-
|
94 |
-
if not storage_success:
|
95 |
-
logger.warning("No se pudo guardar el análisis en la base de datos")
|
96 |
-
|
97 |
-
st.session_state.current_doc = doc
|
98 |
-
st.session_state.current_metrics = metrics
|
99 |
-
st.session_state.show_results = True
|
100 |
-
st.session_state.text_input = text_input
|
101 |
-
|
102 |
-
except Exception as e:
|
103 |
-
logger.error(f"Error en análisis: {str(e)}")
|
104 |
-
st.error(t.get('analysis_error', "Error al analizar el texto"))
|
105 |
-
|
106 |
-
# Mostrar resultados en la columna derecha
|
107 |
-
with results_col:
|
108 |
-
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
109 |
-
display_radar_chart(st.session_state.current_metrics)
|
110 |
-
|
111 |
-
except Exception as e:
|
112 |
-
logger.error(f"Error en interfaz: {str(e)}")
|
113 |
-
st.error("Ocurrió un error. Por favor, intente de nuevo.")
|
114 |
-
|
115 |
-
def display_radar_chart(metrics):
|
116 |
-
"""
|
117 |
-
Muestra un gráfico de radar con las métricas del usuario y el patrón ideal.
|
118 |
-
"""
|
119 |
-
try:
|
120 |
-
# Container con proporción reducida
|
121 |
-
with st.container():
|
122 |
-
# Métricas en la parte superior
|
123 |
-
col1, col2, col3, col4 = st.columns(4)
|
124 |
-
with col1:
|
125 |
-
st.metric("Vocabulario", f"{metrics['vocabulary']['normalized_score']:.2f}", "1.00")
|
126 |
-
with col2:
|
127 |
-
st.metric("Estructura", f"{metrics['structure']['normalized_score']:.2f}", "1.00")
|
128 |
-
with col3:
|
129 |
-
st.metric("Cohesión", f"{metrics['cohesion']['normalized_score']:.2f}", "1.00")
|
130 |
-
with col4:
|
131 |
-
st.metric("Claridad", f"{metrics['clarity']['normalized_score']:.2f}", "1.00")
|
132 |
-
|
133 |
-
# Contenedor para el gráfico con ancho controlado
|
134 |
-
_, graph_col, _ = st.columns([1,2,1])
|
135 |
-
|
136 |
-
with graph_col:
|
137 |
-
# Preparar datos
|
138 |
-
categories = ['Vocabulario', 'Estructura', 'Cohesión', 'Claridad']
|
139 |
-
values_user = [
|
140 |
-
metrics['vocabulary']['normalized_score'],
|
141 |
-
metrics['structure']['normalized_score'],
|
142 |
-
metrics['cohesion']['normalized_score'],
|
143 |
-
metrics['clarity']['normalized_score']
|
144 |
-
]
|
145 |
-
values_pattern = [1.0, 1.0, 1.0, 1.0] # Patrón ideal
|
146 |
-
|
147 |
-
# Crear figura más compacta
|
148 |
-
fig = plt.figure(figsize=(6, 6))
|
149 |
-
ax = fig.add_subplot(111, projection='polar')
|
150 |
-
|
151 |
-
# Número de variables
|
152 |
-
num_vars = len(categories)
|
153 |
-
|
154 |
-
# Calcular ángulos
|
155 |
-
angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)]
|
156 |
-
angles += angles[:1]
|
157 |
-
|
158 |
-
# Extender valores para cerrar polígonos
|
159 |
-
values_user += values_user[:1]
|
160 |
-
values_pattern += values_pattern[:1]
|
161 |
-
|
162 |
-
# Configurar ejes y etiquetas
|
163 |
-
ax.set_xticks(angles[:-1])
|
164 |
-
ax.set_xticklabels(categories, fontsize=8)
|
165 |
-
|
166 |
-
# Círculos concéntricos y etiquetas
|
167 |
-
circle_ticks = np.arange(0, 1.1, 0.2) # Reducido a 5 niveles
|
168 |
-
ax.set_yticks(circle_ticks)
|
169 |
-
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
|
170 |
-
ax.set_ylim(0, 1)
|
171 |
-
|
172 |
-
# Dibujar patrón ideal
|
173 |
-
ax.plot(angles, values_pattern, 'g--', linewidth=1, label='Patrón', alpha=0.5)
|
174 |
-
ax.fill(angles, values_pattern, 'g', alpha=0.1)
|
175 |
-
|
176 |
-
# Dibujar valores del usuario
|
177 |
-
ax.plot(angles, values_user, 'b-', linewidth=2, label='Tu escritura')
|
178 |
-
ax.fill(angles, values_user, 'b', alpha=0.2)
|
179 |
-
|
180 |
-
# Leyenda
|
181 |
-
ax.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1), fontsize=8)
|
182 |
-
|
183 |
-
# Ajustes finales
|
184 |
-
plt.tight_layout()
|
185 |
-
st.pyplot(fig)
|
186 |
-
plt.close()
|
187 |
-
|
188 |
-
except Exception as e:
|
189 |
-
logger.error(f"Error generando gráfico de radar: {str(e)}")
|
190 |
st.error("Error al generar la visualización")
|
|
|
1 |
+
# modules/studentact/current_situation_interface.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import logging
|
5 |
+
from ..utils.widget_utils import generate_unique_key
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
from ..database.current_situation_mongo_db import store_current_situation_result
|
9 |
+
|
10 |
+
from .current_situation_analysis import (
|
11 |
+
analyze_text_dimensions,
|
12 |
+
analyze_clarity,
|
13 |
+
analyze_reference_clarity,
|
14 |
+
analyze_vocabulary_diversity,
|
15 |
+
analyze_cohesion,
|
16 |
+
analyze_structure,
|
17 |
+
get_dependency_depths,
|
18 |
+
normalize_score,
|
19 |
+
generate_sentence_graphs,
|
20 |
+
generate_word_connections,
|
21 |
+
generate_connection_paths,
|
22 |
+
create_vocabulary_network,
|
23 |
+
create_syntax_complexity_graph,
|
24 |
+
create_cohesion_heatmap,
|
25 |
+
)
|
26 |
+
|
27 |
+
# Configuración del estilo de matplotlib para el gráfico de radar
|
28 |
+
plt.rcParams['font.family'] = 'sans-serif'
|
29 |
+
plt.rcParams['axes.grid'] = True
|
30 |
+
plt.rcParams['axes.spines.top'] = False
|
31 |
+
plt.rcParams['axes.spines.right'] = False
|
32 |
+
|
33 |
+
logger = logging.getLogger(__name__)
|
34 |
+
####################################
|
35 |
+
|
36 |
+
def display_current_situation_interface(lang_code, nlp_models, t):
|
37 |
+
"""
|
38 |
+
Interfaz simplificada con gráfico de radar para visualizar métricas.
|
39 |
+
"""
|
40 |
+
try:
|
41 |
+
# Inicializar estados si no existen
|
42 |
+
if 'text_input' not in st.session_state:
|
43 |
+
st.session_state.text_input = ""
|
44 |
+
if 'show_results' not in st.session_state:
|
45 |
+
st.session_state.show_results = False
|
46 |
+
if 'current_doc' not in st.session_state:
|
47 |
+
st.session_state.current_doc = None
|
48 |
+
if 'current_metrics' not in st.session_state:
|
49 |
+
st.session_state.current_metrics = None
|
50 |
+
|
51 |
+
st.markdown("## Análisis Inicial de Escritura")
|
52 |
+
|
53 |
+
# Container principal con dos columnas
|
54 |
+
with st.container():
|
55 |
+
input_col, results_col = st.columns([1,2])
|
56 |
+
|
57 |
+
with input_col:
|
58 |
+
#st.markdown("### Ingresa tu texto")
|
59 |
+
|
60 |
+
# Función para manejar cambios en el texto
|
61 |
+
def on_text_change():
|
62 |
+
st.session_state.text_input = st.session_state.text_area
|
63 |
+
st.session_state.show_results = False
|
64 |
+
|
65 |
+
# Text area con manejo de estado
|
66 |
+
text_input = st.text_area(
|
67 |
+
t.get('input_prompt', "Escribe o pega tu texto aquí:"),
|
68 |
+
height=400,
|
69 |
+
key="text_area",
|
70 |
+
value=st.session_state.text_input,
|
71 |
+
on_change=on_text_change,
|
72 |
+
help="Este texto será analizado para darte recomendaciones personalizadas"
|
73 |
+
)
|
74 |
+
|
75 |
+
if st.button(
|
76 |
+
t.get('analyze_button', "Analizar mi escritura"),
|
77 |
+
type="primary",
|
78 |
+
disabled=not text_input.strip(),
|
79 |
+
use_container_width=True,
|
80 |
+
):
|
81 |
+
try:
|
82 |
+
with st.spinner(t.get('processing', "Analizando...")):
|
83 |
+
doc = nlp_models[lang_code](text_input)
|
84 |
+
metrics = analyze_text_dimensions(doc)
|
85 |
+
|
86 |
+
# Guardar en MongoDB
|
87 |
+
storage_success = store_current_situation_result(
|
88 |
+
username=st.session_state.username,
|
89 |
+
text=text_input,
|
90 |
+
metrics=metrics,
|
91 |
+
feedback=None
|
92 |
+
)
|
93 |
+
|
94 |
+
if not storage_success:
|
95 |
+
logger.warning("No se pudo guardar el análisis en la base de datos")
|
96 |
+
|
97 |
+
st.session_state.current_doc = doc
|
98 |
+
st.session_state.current_metrics = metrics
|
99 |
+
st.session_state.show_results = True
|
100 |
+
st.session_state.text_input = text_input
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
logger.error(f"Error en análisis: {str(e)}")
|
104 |
+
st.error(t.get('analysis_error', "Error al analizar el texto"))
|
105 |
+
|
106 |
+
# Mostrar resultados en la columna derecha
|
107 |
+
with results_col:
|
108 |
+
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
109 |
+
display_radar_chart(st.session_state.current_metrics)
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
logger.error(f"Error en interfaz: {str(e)}")
|
113 |
+
st.error("Ocurrió un error. Por favor, intente de nuevo.")
|
114 |
+
|
115 |
+
def display_radar_chart(metrics):
|
116 |
+
"""
|
117 |
+
Muestra un gráfico de radar con las métricas del usuario y el patrón ideal.
|
118 |
+
"""
|
119 |
+
try:
|
120 |
+
# Container con proporción reducida
|
121 |
+
with st.container():
|
122 |
+
# Métricas en la parte superior
|
123 |
+
col1, col2, col3, col4 = st.columns(4)
|
124 |
+
with col1:
|
125 |
+
st.metric("Vocabulario", f"{metrics['vocabulary']['normalized_score']:.2f}", "1.00")
|
126 |
+
with col2:
|
127 |
+
st.metric("Estructura", f"{metrics['structure']['normalized_score']:.2f}", "1.00")
|
128 |
+
with col3:
|
129 |
+
st.metric("Cohesión", f"{metrics['cohesion']['normalized_score']:.2f}", "1.00")
|
130 |
+
with col4:
|
131 |
+
st.metric("Claridad", f"{metrics['clarity']['normalized_score']:.2f}", "1.00")
|
132 |
+
|
133 |
+
# Contenedor para el gráfico con ancho controlado
|
134 |
+
_, graph_col, _ = st.columns([1,2,1])
|
135 |
+
|
136 |
+
with graph_col:
|
137 |
+
# Preparar datos
|
138 |
+
categories = ['Vocabulario', 'Estructura', 'Cohesión', 'Claridad']
|
139 |
+
values_user = [
|
140 |
+
metrics['vocabulary']['normalized_score'],
|
141 |
+
metrics['structure']['normalized_score'],
|
142 |
+
metrics['cohesion']['normalized_score'],
|
143 |
+
metrics['clarity']['normalized_score']
|
144 |
+
]
|
145 |
+
values_pattern = [1.0, 1.0, 1.0, 1.0] # Patrón ideal
|
146 |
+
|
147 |
+
# Crear figura más compacta
|
148 |
+
fig = plt.figure(figsize=(6, 6))
|
149 |
+
ax = fig.add_subplot(111, projection='polar')
|
150 |
+
|
151 |
+
# Número de variables
|
152 |
+
num_vars = len(categories)
|
153 |
+
|
154 |
+
# Calcular ángulos
|
155 |
+
angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)]
|
156 |
+
angles += angles[:1]
|
157 |
+
|
158 |
+
# Extender valores para cerrar polígonos
|
159 |
+
values_user += values_user[:1]
|
160 |
+
values_pattern += values_pattern[:1]
|
161 |
+
|
162 |
+
# Configurar ejes y etiquetas
|
163 |
+
ax.set_xticks(angles[:-1])
|
164 |
+
ax.set_xticklabels(categories, fontsize=8)
|
165 |
+
|
166 |
+
# Círculos concéntricos y etiquetas
|
167 |
+
circle_ticks = np.arange(0, 1.1, 0.2) # Reducido a 5 niveles
|
168 |
+
ax.set_yticks(circle_ticks)
|
169 |
+
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
|
170 |
+
ax.set_ylim(0, 1)
|
171 |
+
|
172 |
+
# Dibujar patrón ideal
|
173 |
+
ax.plot(angles, values_pattern, 'g--', linewidth=1, label='Patrón', alpha=0.5)
|
174 |
+
ax.fill(angles, values_pattern, 'g', alpha=0.1)
|
175 |
+
|
176 |
+
# Dibujar valores del usuario
|
177 |
+
ax.plot(angles, values_user, 'b-', linewidth=2, label='Tu escritura')
|
178 |
+
ax.fill(angles, values_user, 'b', alpha=0.2)
|
179 |
+
|
180 |
+
# Leyenda
|
181 |
+
ax.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1), fontsize=8)
|
182 |
+
|
183 |
+
# Ajustes finales
|
184 |
+
plt.tight_layout()
|
185 |
+
st.pyplot(fig)
|
186 |
+
plt.close()
|
187 |
+
|
188 |
+
except Exception as e:
|
189 |
+
logger.error(f"Error generando gráfico de radar: {str(e)}")
|
190 |
st.error("Error al generar la visualización")
|
modules/studentact/current_situation_interface.py
CHANGED
@@ -1,397 +1,321 @@
|
|
1 |
-
# modules/studentact/current_situation_interface.py
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import logging
|
5 |
-
from ..utils.widget_utils import generate_unique_key
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import numpy as np
|
8 |
-
from ..database.current_situation_mongo_db import store_current_situation_result
|
9 |
-
|
10 |
-
# Importaciones locales
|
11 |
-
from translations import get_translations
|
12 |
-
|
13 |
-
# Importamos la función de recomendaciones personalizadas si existe
|
14 |
-
try:
|
15 |
-
from .claude_recommendations import display_personalized_recommendations
|
16 |
-
except ImportError:
|
17 |
-
# Si no existe el módulo, definimos una función placeholder
|
18 |
-
def display_personalized_recommendations(text, metrics, text_type, lang_code, t):
|
19 |
-
st.warning("Módulo de recomendaciones personalizadas no disponible. Por favor, contacte al administrador.")
|
20 |
-
|
21 |
-
from .current_situation_analysis import (
|
22 |
-
analyze_text_dimensions,
|
23 |
-
analyze_clarity,
|
24 |
-
analyze_vocabulary_diversity,
|
25 |
-
analyze_cohesion,
|
26 |
-
analyze_structure,
|
27 |
-
get_dependency_depths,
|
28 |
-
normalize_score,
|
29 |
-
generate_sentence_graphs,
|
30 |
-
generate_word_connections,
|
31 |
-
generate_connection_paths,
|
32 |
-
create_vocabulary_network,
|
33 |
-
create_syntax_complexity_graph,
|
34 |
-
create_cohesion_heatmap
|
35 |
-
)
|
36 |
-
|
37 |
-
# Configuración del estilo de matplotlib para el gráfico de radar
|
38 |
-
plt.rcParams['font.family'] = 'sans-serif'
|
39 |
-
plt.rcParams['axes.grid'] = True
|
40 |
-
plt.rcParams['axes.spines.top'] = False
|
41 |
-
plt.rcParams['axes.spines.right'] = False
|
42 |
-
|
43 |
-
logger = logging.getLogger(__name__)
|
44 |
-
|
45 |
-
####################################
|
46 |
-
|
47 |
-
TEXT_TYPES = {
|
48 |
-
'academic_article': {
|
49 |
-
'name': 'Artículo Académico',
|
50 |
-
'thresholds': {
|
51 |
-
'vocabulary': {'min': 0.70, 'target': 0.85},
|
52 |
-
'structure': {'min': 0.75, 'target': 0.90},
|
53 |
-
'cohesion': {'min': 0.65, 'target': 0.80},
|
54 |
-
'clarity': {'min': 0.70, 'target': 0.85}
|
55 |
-
}
|
56 |
-
},
|
57 |
-
'student_essay': {
|
58 |
-
'name': 'Trabajo Universitario',
|
59 |
-
'thresholds': {
|
60 |
-
'vocabulary': {'min': 0.60, 'target': 0.75},
|
61 |
-
'structure': {'min': 0.65, 'target': 0.80},
|
62 |
-
'cohesion': {'min': 0.55, 'target': 0.70},
|
63 |
-
'clarity': {'min': 0.60, 'target': 0.75}
|
64 |
-
}
|
65 |
-
},
|
66 |
-
'general_communication': {
|
67 |
-
'name': 'Comunicación General',
|
68 |
-
'thresholds': {
|
69 |
-
'vocabulary': {'min': 0.50, 'target': 0.65},
|
70 |
-
'structure': {'min': 0.55, 'target': 0.70},
|
71 |
-
'cohesion': {'min': 0.45, 'target': 0.60},
|
72 |
-
'clarity': {'min': 0.50, 'target': 0.65}
|
73 |
-
}
|
74 |
-
}
|
75 |
-
}
|
76 |
-
####################################
|
77 |
-
|
78 |
-
def display_current_situation_interface(lang_code, nlp_models, t):
|
79 |
-
"""
|
80 |
-
Interfaz simplificada con gráfico de radar para visualizar métricas.
|
81 |
-
"""
|
82 |
-
# Inicializar estados si no existen
|
83 |
-
if 'text_input' not in st.session_state:
|
84 |
-
st.session_state.text_input = ""
|
85 |
-
if 'text_area' not in st.session_state: # Añadir inicialización de text_area
|
86 |
-
st.session_state.text_area = ""
|
87 |
-
if 'show_results' not in st.session_state:
|
88 |
-
st.session_state.show_results = False
|
89 |
-
if 'current_doc' not in st.session_state:
|
90 |
-
st.session_state.current_doc = None
|
91 |
-
if 'current_metrics' not in st.session_state:
|
92 |
-
st.session_state.current_metrics = None
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
st.session_state.
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
)
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
'
|
206 |
-
'
|
207 |
-
'
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
'
|
213 |
-
'
|
214 |
-
'
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
ax.
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
#
|
287 |
-
ax.
|
288 |
-
ax.
|
289 |
-
|
290 |
-
|
291 |
-
ax.
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
# Iconos para cada categoría
|
324 |
-
icons = {
|
325 |
-
'vocabulary': '📚',
|
326 |
-
'structure': '🏗️',
|
327 |
-
'cohesion': '🔄',
|
328 |
-
'clarity': '💡',
|
329 |
-
'priority': '⭐'
|
330 |
-
}
|
331 |
-
|
332 |
-
# Obtener traducciones para cada dimensión
|
333 |
-
dimension_names = {
|
334 |
-
'vocabulary': t.get('SITUATION_ANALYSIS', {}).get('vocabulary', "Vocabulario"),
|
335 |
-
'structure': t.get('SITUATION_ANALYSIS', {}).get('structure', "Estructura"),
|
336 |
-
'cohesion': t.get('SITUATION_ANALYSIS', {}).get('cohesion', "Cohesión"),
|
337 |
-
'clarity': t.get('SITUATION_ANALYSIS', {}).get('clarity', "Claridad"),
|
338 |
-
'priority': t.get('SITUATION_ANALYSIS', {}).get('priority', "Prioridad")
|
339 |
-
}
|
340 |
-
|
341 |
-
# Título de la sección prioritaria
|
342 |
-
priority_focus = t.get('SITUATION_ANALYSIS', {}).get('priority_focus', 'Área prioritaria para mejorar')
|
343 |
-
st.markdown(f"### {icons['priority']} {priority_focus}")
|
344 |
-
|
345 |
-
# Determinar área prioritaria (la que tiene menor puntuación)
|
346 |
-
priority_area = recommendations.get('priority', 'vocabulary')
|
347 |
-
priority_title = dimension_names.get(priority_area, "Área prioritaria")
|
348 |
-
|
349 |
-
# Determinar el contenido para mostrar
|
350 |
-
if isinstance(recommendations[priority_area], dict) and 'title' in recommendations[priority_area]:
|
351 |
-
priority_title = recommendations[priority_area]['title']
|
352 |
-
priority_content = recommendations[priority_area]['content']
|
353 |
-
else:
|
354 |
-
priority_content = recommendations[priority_area]
|
355 |
-
|
356 |
-
# Mostrar la recomendación prioritaria con un estilo destacado
|
357 |
-
with st.container():
|
358 |
-
st.markdown(
|
359 |
-
f"""
|
360 |
-
<div style="border:2px solid {colors['priority']}; border-radius:5px; padding:15px; margin-bottom:20px;">
|
361 |
-
<h4 style="color:{colors['priority']};">{priority_title}</h4>
|
362 |
-
<p>{priority_content}</p>
|
363 |
-
</div>
|
364 |
-
""",
|
365 |
-
unsafe_allow_html=True
|
366 |
-
)
|
367 |
-
|
368 |
-
# Crear dos columnas para las tarjetas de recomendaciones restantes
|
369 |
-
col1, col2 = st.columns(2)
|
370 |
-
|
371 |
-
# Distribuir las recomendaciones en las columnas
|
372 |
-
categories = ['vocabulary', 'structure', 'cohesion', 'clarity']
|
373 |
-
for i, category in enumerate(categories):
|
374 |
-
# Saltar si esta categoría ya es la prioritaria
|
375 |
-
if category == priority_area:
|
376 |
-
continue
|
377 |
-
|
378 |
-
# Determinar título y contenido
|
379 |
-
if isinstance(recommendations[category], dict) and 'title' in recommendations[category]:
|
380 |
-
category_title = recommendations[category]['title']
|
381 |
-
category_content = recommendations[category]['content']
|
382 |
-
else:
|
383 |
-
category_title = dimension_names.get(category, category)
|
384 |
-
category_content = recommendations[category]
|
385 |
-
|
386 |
-
# Alternar entre columnas
|
387 |
-
with col1 if i % 2 == 0 else col2:
|
388 |
-
# Crear tarjeta para cada recomendación
|
389 |
-
st.markdown(
|
390 |
-
f"""
|
391 |
-
<div style="border:1px solid {colors[category]}; border-radius:5px; padding:10px; margin-bottom:15px;">
|
392 |
-
<h4 style="color:{colors[category]};">{icons[category]} {category_title}</h4>
|
393 |
-
<p>{category_content}</p>
|
394 |
-
</div>
|
395 |
-
""",
|
396 |
-
unsafe_allow_html=True
|
397 |
-
)
|
|
|
1 |
+
# modules/studentact/current_situation_interface.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import logging
|
5 |
+
from ..utils.widget_utils import generate_unique_key
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
from ..database.current_situation_mongo_db import store_current_situation_result
|
9 |
+
|
10 |
+
# Importaciones locales
|
11 |
+
from translations import get_translations
|
12 |
+
|
13 |
+
# Importamos la función de recomendaciones personalizadas si existe
|
14 |
+
try:
|
15 |
+
from .claude_recommendations import display_personalized_recommendations
|
16 |
+
except ImportError:
|
17 |
+
# Si no existe el módulo, definimos una función placeholder
|
18 |
+
def display_personalized_recommendations(text, metrics, text_type, lang_code, t):
|
19 |
+
st.warning("Módulo de recomendaciones personalizadas no disponible. Por favor, contacte al administrador.")
|
20 |
+
|
21 |
+
from .current_situation_analysis import (
|
22 |
+
analyze_text_dimensions,
|
23 |
+
analyze_clarity,
|
24 |
+
analyze_vocabulary_diversity,
|
25 |
+
analyze_cohesion,
|
26 |
+
analyze_structure,
|
27 |
+
get_dependency_depths,
|
28 |
+
normalize_score,
|
29 |
+
generate_sentence_graphs,
|
30 |
+
generate_word_connections,
|
31 |
+
generate_connection_paths,
|
32 |
+
create_vocabulary_network,
|
33 |
+
create_syntax_complexity_graph,
|
34 |
+
create_cohesion_heatmap
|
35 |
+
)
|
36 |
+
|
37 |
+
# Configuración del estilo de matplotlib para el gráfico de radar
|
38 |
+
plt.rcParams['font.family'] = 'sans-serif'
|
39 |
+
plt.rcParams['axes.grid'] = True
|
40 |
+
plt.rcParams['axes.spines.top'] = False
|
41 |
+
plt.rcParams['axes.spines.right'] = False
|
42 |
+
|
43 |
+
logger = logging.getLogger(__name__)
|
44 |
+
|
45 |
+
####################################
|
46 |
+
# Definición global de los tipos de texto y sus umbrales
|
47 |
+
TEXT_TYPES = {
|
48 |
+
'academic_article': {
|
49 |
+
'name': 'Artículo Académico',
|
50 |
+
'thresholds': {
|
51 |
+
'vocabulary': {'min': 0.70, 'target': 0.85},
|
52 |
+
'structure': {'min': 0.75, 'target': 0.90},
|
53 |
+
'cohesion': {'min': 0.65, 'target': 0.80},
|
54 |
+
'clarity': {'min': 0.70, 'target': 0.85}
|
55 |
+
}
|
56 |
+
},
|
57 |
+
'student_essay': {
|
58 |
+
'name': 'Trabajo Universitario',
|
59 |
+
'thresholds': {
|
60 |
+
'vocabulary': {'min': 0.60, 'target': 0.75},
|
61 |
+
'structure': {'min': 0.65, 'target': 0.80},
|
62 |
+
'cohesion': {'min': 0.55, 'target': 0.70},
|
63 |
+
'clarity': {'min': 0.60, 'target': 0.75}
|
64 |
+
}
|
65 |
+
},
|
66 |
+
'general_communication': {
|
67 |
+
'name': 'Comunicación General',
|
68 |
+
'thresholds': {
|
69 |
+
'vocabulary': {'min': 0.50, 'target': 0.65},
|
70 |
+
'structure': {'min': 0.55, 'target': 0.70},
|
71 |
+
'cohesion': {'min': 0.45, 'target': 0.60},
|
72 |
+
'clarity': {'min': 0.50, 'target': 0.65}
|
73 |
+
}
|
74 |
+
}
|
75 |
+
}
|
76 |
+
####################################
|
77 |
+
|
78 |
+
def display_current_situation_interface(lang_code, nlp_models, t):
|
79 |
+
"""
|
80 |
+
Interfaz simplificada con gráfico de radar para visualizar métricas.
|
81 |
+
"""
|
82 |
+
# Inicializar estados si no existen
|
83 |
+
if 'text_input' not in st.session_state:
|
84 |
+
st.session_state.text_input = ""
|
85 |
+
if 'text_area' not in st.session_state: # Añadir inicialización de text_area
|
86 |
+
st.session_state.text_area = ""
|
87 |
+
if 'show_results' not in st.session_state:
|
88 |
+
st.session_state.show_results = False
|
89 |
+
if 'current_doc' not in st.session_state:
|
90 |
+
st.session_state.current_doc = None
|
91 |
+
if 'current_metrics' not in st.session_state:
|
92 |
+
st.session_state.current_metrics = None
|
93 |
+
if 'current_recommendations' not in st.session_state:
|
94 |
+
st.session_state.current_recommendations = None
|
95 |
+
|
96 |
+
try:
|
97 |
+
# Container principal con dos columnas
|
98 |
+
with st.container():
|
99 |
+
input_col, results_col = st.columns([1,2])
|
100 |
+
|
101 |
+
with input_col:
|
102 |
+
# Text area con manejo de estado
|
103 |
+
text_input = st.text_area(
|
104 |
+
t.get('input_prompt', "Escribe o pega tu texto aquí:"),
|
105 |
+
height=400,
|
106 |
+
key="text_area",
|
107 |
+
value=st.session_state.text_input,
|
108 |
+
help="Este texto será analizado para darte recomendaciones personalizadas"
|
109 |
+
)
|
110 |
+
|
111 |
+
# Función para manejar cambios de texto
|
112 |
+
if text_input != st.session_state.text_input:
|
113 |
+
st.session_state.text_input = text_input
|
114 |
+
st.session_state.show_results = False
|
115 |
+
|
116 |
+
if st.button(
|
117 |
+
t.get('analyze_button', "Analizar mi escritura"),
|
118 |
+
type="primary",
|
119 |
+
disabled=not text_input.strip(),
|
120 |
+
use_container_width=True,
|
121 |
+
):
|
122 |
+
try:
|
123 |
+
with st.spinner(t.get('processing', "Analizando...")):
|
124 |
+
doc = nlp_models[lang_code](text_input)
|
125 |
+
metrics = analyze_text_dimensions(doc)
|
126 |
+
|
127 |
+
storage_success = store_current_situation_result(
|
128 |
+
username=st.session_state.username,
|
129 |
+
text=text_input,
|
130 |
+
metrics=metrics,
|
131 |
+
feedback=None
|
132 |
+
)
|
133 |
+
|
134 |
+
if not storage_success:
|
135 |
+
logger.warning("No se pudo guardar el análisis en la base de datos")
|
136 |
+
|
137 |
+
st.session_state.current_doc = doc
|
138 |
+
st.session_state.current_metrics = metrics
|
139 |
+
st.session_state.show_results = True
|
140 |
+
|
141 |
+
except Exception as e:
|
142 |
+
logger.error(f"Error en análisis: {str(e)}")
|
143 |
+
st.error(t.get('analysis_error', "Error al analizar el texto"))
|
144 |
+
|
145 |
+
# Mostrar resultados en la columna derecha
|
146 |
+
with results_col:
|
147 |
+
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
148 |
+
# Primero los radio buttons para tipo de texto
|
149 |
+
st.markdown("### Tipo de texto")
|
150 |
+
text_type = st.radio(
|
151 |
+
label="Tipo de texto",
|
152 |
+
options=list(TEXT_TYPES.keys()),
|
153 |
+
format_func=lambda x: TEXT_TYPES[x]['name'],
|
154 |
+
horizontal=True,
|
155 |
+
key="text_type_radio",
|
156 |
+
label_visibility="collapsed",
|
157 |
+
help="Selecciona el tipo de texto para ajustar los criterios de evaluación"
|
158 |
+
)
|
159 |
+
|
160 |
+
st.session_state.current_text_type = text_type
|
161 |
+
|
162 |
+
# Crear subtabs
|
163 |
+
subtab1, subtab2 = st.tabs(["Diagnóstico", "Recomendaciones"])
|
164 |
+
|
165 |
+
# Mostrar resultados en el primer subtab
|
166 |
+
with subtab1:
|
167 |
+
display_diagnosis(
|
168 |
+
metrics=st.session_state.current_metrics,
|
169 |
+
text_type=text_type
|
170 |
+
)
|
171 |
+
|
172 |
+
# Mostrar recomendaciones en el segundo subtab
|
173 |
+
with subtab2:
|
174 |
+
# Llamar directamente a la función de recomendaciones personalizadas
|
175 |
+
display_personalized_recommendations(
|
176 |
+
text=text_input,
|
177 |
+
metrics=st.session_state.current_metrics,
|
178 |
+
text_type=text_type,
|
179 |
+
lang_code=lang_code,
|
180 |
+
t=t
|
181 |
+
)
|
182 |
+
|
183 |
+
except Exception as e:
|
184 |
+
logger.error(f"Error en interfaz principal: {str(e)}")
|
185 |
+
st.error("Ocurrió un error al cargar la interfaz")
|
186 |
+
|
187 |
+
def display_diagnosis(metrics, text_type=None):
|
188 |
+
"""
|
189 |
+
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
190 |
+
"""
|
191 |
+
try:
|
192 |
+
# Usar valor por defecto si no se especifica tipo
|
193 |
+
text_type = text_type or 'student_essay'
|
194 |
+
|
195 |
+
# Obtener umbrales según el tipo de texto
|
196 |
+
thresholds = TEXT_TYPES[text_type]['thresholds']
|
197 |
+
|
198 |
+
# Crear dos columnas para las métricas y el gráfico
|
199 |
+
metrics_col, graph_col = st.columns([1, 1.5])
|
200 |
+
|
201 |
+
# Columna de métricas
|
202 |
+
with metrics_col:
|
203 |
+
metrics_config = [
|
204 |
+
{
|
205 |
+
'label': "Vocabulario",
|
206 |
+
'key': 'vocabulary',
|
207 |
+
'value': metrics['vocabulary']['normalized_score'],
|
208 |
+
'help': "Riqueza y variedad del vocabulario",
|
209 |
+
'thresholds': thresholds['vocabulary']
|
210 |
+
},
|
211 |
+
{
|
212 |
+
'label': "Estructura",
|
213 |
+
'key': 'structure',
|
214 |
+
'value': metrics['structure']['normalized_score'],
|
215 |
+
'help': "Organización y complejidad de oraciones",
|
216 |
+
'thresholds': thresholds['structure']
|
217 |
+
},
|
218 |
+
{
|
219 |
+
'label': "Cohesión",
|
220 |
+
'key': 'cohesion',
|
221 |
+
'value': metrics['cohesion']['normalized_score'],
|
222 |
+
'help': "Conexión y fluidez entre ideas",
|
223 |
+
'thresholds': thresholds['cohesion']
|
224 |
+
},
|
225 |
+
{
|
226 |
+
'label': "Claridad",
|
227 |
+
'key': 'clarity',
|
228 |
+
'value': metrics['clarity']['normalized_score'],
|
229 |
+
'help': "Facilidad de comprensión del texto",
|
230 |
+
'thresholds': thresholds['clarity']
|
231 |
+
}
|
232 |
+
]
|
233 |
+
|
234 |
+
# Mostrar métricas
|
235 |
+
for metric in metrics_config:
|
236 |
+
value = metric['value']
|
237 |
+
if value < metric['thresholds']['min']:
|
238 |
+
status = "⚠️ Por mejorar"
|
239 |
+
color = "inverse"
|
240 |
+
elif value < metric['thresholds']['target']:
|
241 |
+
status = "📈 Aceptable"
|
242 |
+
color = "off"
|
243 |
+
else:
|
244 |
+
status = "✅ Óptimo"
|
245 |
+
color = "normal"
|
246 |
+
|
247 |
+
st.metric(
|
248 |
+
metric['label'],
|
249 |
+
f"{value:.2f}",
|
250 |
+
f"{status} (Meta: {metric['thresholds']['target']:.2f})",
|
251 |
+
delta_color=color,
|
252 |
+
help=metric['help']
|
253 |
+
)
|
254 |
+
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True)
|
255 |
+
|
256 |
+
# Gráfico radar en la columna derecha
|
257 |
+
with graph_col:
|
258 |
+
display_radar_chart(metrics_config, thresholds)
|
259 |
+
|
260 |
+
except Exception as e:
|
261 |
+
logger.error(f"Error mostrando resultados: {str(e)}")
|
262 |
+
st.error("Error al mostrar los resultados")
|
263 |
+
|
264 |
+
def display_radar_chart(metrics_config, thresholds):
|
265 |
+
"""
|
266 |
+
Muestra el gráfico radar con los resultados.
|
267 |
+
"""
|
268 |
+
try:
|
269 |
+
# Preparar datos para el gráfico
|
270 |
+
categories = [m['label'] for m in metrics_config]
|
271 |
+
values_user = [m['value'] for m in metrics_config]
|
272 |
+
min_values = [m['thresholds']['min'] for m in metrics_config]
|
273 |
+
target_values = [m['thresholds']['target'] for m in metrics_config]
|
274 |
+
|
275 |
+
# Crear y configurar gráfico
|
276 |
+
fig = plt.figure(figsize=(8, 8))
|
277 |
+
ax = fig.add_subplot(111, projection='polar')
|
278 |
+
|
279 |
+
# Configurar radar
|
280 |
+
angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))]
|
281 |
+
angles += angles[:1]
|
282 |
+
values_user += values_user[:1]
|
283 |
+
min_values += min_values[:1]
|
284 |
+
target_values += target_values[:1]
|
285 |
+
|
286 |
+
# Configurar ejes
|
287 |
+
ax.set_xticks(angles[:-1])
|
288 |
+
ax.set_xticklabels(categories, fontsize=10)
|
289 |
+
circle_ticks = np.arange(0, 1.1, 0.2)
|
290 |
+
ax.set_yticks(circle_ticks)
|
291 |
+
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
|
292 |
+
ax.set_ylim(0, 1)
|
293 |
+
|
294 |
+
# Dibujar áreas de umbrales
|
295 |
+
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label='Mínimo', alpha=0.5)
|
296 |
+
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label='Meta', alpha=0.5)
|
297 |
+
ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1)
|
298 |
+
ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1)
|
299 |
+
|
300 |
+
# Dibujar valores del usuario
|
301 |
+
ax.plot(angles, values_user, '#3498db', linewidth=2, label='Tu escritura')
|
302 |
+
ax.fill(angles, values_user, '#3498db', alpha=0.2)
|
303 |
+
|
304 |
+
# Ajustar leyenda
|
305 |
+
ax.legend(
|
306 |
+
loc='upper right',
|
307 |
+
bbox_to_anchor=(1.3, 1.1),
|
308 |
+
fontsize=10,
|
309 |
+
frameon=True,
|
310 |
+
facecolor='white',
|
311 |
+
edgecolor='none',
|
312 |
+
shadow=True
|
313 |
+
)
|
314 |
+
|
315 |
+
plt.tight_layout()
|
316 |
+
st.pyplot(fig)
|
317 |
+
plt.close()
|
318 |
+
|
319 |
+
except Exception as e:
|
320 |
+
logger.error(f"Error mostrando gráfico radar: {str(e)}")
|
321 |
+
st.error("Error al mostrar el gráfico")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/studentact/student_activities.py
CHANGED
@@ -1,111 +1,111 @@
|
|
1 |
-
#modules/studentact/student_activities.py
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import pandas as pd
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import seaborn as sns
|
7 |
-
import base64
|
8 |
-
from io import BytesIO
|
9 |
-
from reportlab.pdfgen import canvas
|
10 |
-
from reportlab.lib.pagesizes import letter
|
11 |
-
from docx import Document
|
12 |
-
from odf.opendocument import OpenDocumentText
|
13 |
-
from odf.text import P
|
14 |
-
from datetime import datetime, timedelta
|
15 |
-
import pytz
|
16 |
-
import logging
|
17 |
-
|
18 |
-
# Configuración de logging
|
19 |
-
logging.basicConfig(level=logging.DEBUG)
|
20 |
-
logger = logging.getLogger(__name__)
|
21 |
-
|
22 |
-
# Importaciones locales
|
23 |
-
try:
|
24 |
-
from ..database.morphosintax_mongo_db import get_student_morphosyntax_data
|
25 |
-
from ..database.semantic_mongo_db import get_student_semantic_data
|
26 |
-
from ..database.discourse_mongo_db import get_student_discourse_data
|
27 |
-
|
28 |
-
from ..database.chat_mongo_db import get_chat_history
|
29 |
-
|
30 |
-
logger.info("Importaciones locales exitosas")
|
31 |
-
except ImportError as e:
|
32 |
-
logger.error(f"Error en las importaciones locales: {e}")
|
33 |
-
|
34 |
-
def display_student_progress(username, lang_code, t):
|
35 |
-
logger.debug(f"Iniciando display_student_progress para {username}")
|
36 |
-
|
37 |
-
st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
|
38 |
-
|
39 |
-
# Obtener los datos del estudiante
|
40 |
-
student_data = get_student_morphosyntax_data(username)
|
41 |
-
|
42 |
-
if not student_data or len(student_data.get('entries', [])) == 0:
|
43 |
-
logger.warning(f"No se encontraron datos para el estudiante {username}")
|
44 |
-
st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
|
45 |
-
st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
|
46 |
-
return
|
47 |
-
|
48 |
-
logger.debug(f"Datos del estudiante obtenidos: {len(student_data['entries'])} entradas")
|
49 |
-
|
50 |
-
# Resumen de actividades
|
51 |
-
with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True):
|
52 |
-
total_entries = len(student_data['entries'])
|
53 |
-
st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
|
54 |
-
|
55 |
-
# Gráfico de tipos de análisis
|
56 |
-
try:
|
57 |
-
analysis_types = [entry.get('analysis_type', 'unknown') for entry in student_data['entries']]
|
58 |
-
analysis_counts = pd.Series(analysis_types).value_counts()
|
59 |
-
fig, ax = plt.subplots()
|
60 |
-
sns.barplot(x=analysis_counts.index, y=analysis_counts.values, ax=ax)
|
61 |
-
ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
|
62 |
-
ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
|
63 |
-
ax.set_ylabel(t.get("count", "Cantidad"))
|
64 |
-
st.pyplot(fig)
|
65 |
-
except Exception as e:
|
66 |
-
logger.error(f"Error al crear el gráfico: {e}")
|
67 |
-
st.error("No se pudo crear el gráfico de tipos de análisis.")
|
68 |
-
|
69 |
-
# Función para generar el contenido del archivo de actividades de las últimas 48 horas
|
70 |
-
def generate_activity_content_48h():
|
71 |
-
content = f"Actividades de {username} en las últimas 48 horas\n\n"
|
72 |
-
|
73 |
-
two_days_ago = datetime.now(pytz.utc) - timedelta(days=2)
|
74 |
-
|
75 |
-
try:
|
76 |
-
morphosyntax_analyses = get_student_morphosyntax_data(username)
|
77 |
-
recent_morphosyntax = [a for a in morphosyntax_analyses if datetime.fromisoformat(a['timestamp']) > two_days_ago]
|
78 |
-
|
79 |
-
content += f"Análisis morfosintácticos: {len(recent_morphosyntax)}\n"
|
80 |
-
for analysis in recent_morphosyntax:
|
81 |
-
content += f"- Análisis del {analysis['timestamp']}: {analysis['text'][:50]}...\n"
|
82 |
-
|
83 |
-
chat_history = get_chat_history(username, None)
|
84 |
-
recent_chats = [c for c in chat_history if datetime.fromisoformat(c['timestamp']) > two_days_ago]
|
85 |
-
|
86 |
-
content += f"\nConversaciones de chat: {len(recent_chats)}\n"
|
87 |
-
for chat in recent_chats:
|
88 |
-
content += f"- Chat del {chat['timestamp']}: {len(chat['messages'])} mensajes\n"
|
89 |
-
except Exception as e:
|
90 |
-
logger.error(f"Error al generar el contenido de actividades: {e}")
|
91 |
-
content += "Error al recuperar los datos de actividades.\n"
|
92 |
-
|
93 |
-
return content
|
94 |
-
|
95 |
-
# Botones para descargar el histórico de actividades de las últimas 48 horas
|
96 |
-
st.subheader(t.get("download_history_48h", "Descargar Histórico de Actividades (Últimas 48 horas)"))
|
97 |
-
if st.button("Generar reporte de 48 horas"):
|
98 |
-
try:
|
99 |
-
report_content = generate_activity_content_48h()
|
100 |
-
st.text_area("Reporte de 48 horas", report_content, height=300)
|
101 |
-
st.download_button(
|
102 |
-
label="Descargar TXT (48h)",
|
103 |
-
data=report_content,
|
104 |
-
file_name="actividades_48h.txt",
|
105 |
-
mime="text/plain"
|
106 |
-
)
|
107 |
-
except Exception as e:
|
108 |
-
logger.error(f"Error al generar el reporte: {e}")
|
109 |
-
st.error("No se pudo generar el reporte. Por favor, verifica los logs para más detalles.")
|
110 |
-
|
111 |
logger.debug("Finalizando display_student_progress")
|
|
|
1 |
+
#modules/studentact/student_activities.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
import base64
|
8 |
+
from io import BytesIO
|
9 |
+
from reportlab.pdfgen import canvas
|
10 |
+
from reportlab.lib.pagesizes import letter
|
11 |
+
from docx import Document
|
12 |
+
from odf.opendocument import OpenDocumentText
|
13 |
+
from odf.text import P
|
14 |
+
from datetime import datetime, timedelta
|
15 |
+
import pytz
|
16 |
+
import logging
|
17 |
+
|
18 |
+
# Configuración de logging
|
19 |
+
logging.basicConfig(level=logging.DEBUG)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
# Importaciones locales
|
23 |
+
try:
|
24 |
+
from ..database.morphosintax_mongo_db import get_student_morphosyntax_data
|
25 |
+
from ..database.semantic_mongo_db import get_student_semantic_data
|
26 |
+
from ..database.discourse_mongo_db import get_student_discourse_data
|
27 |
+
|
28 |
+
from ..database.chat_mongo_db import get_chat_history
|
29 |
+
|
30 |
+
logger.info("Importaciones locales exitosas")
|
31 |
+
except ImportError as e:
|
32 |
+
logger.error(f"Error en las importaciones locales: {e}")
|
33 |
+
|
34 |
+
def display_student_progress(username, lang_code, t):
|
35 |
+
logger.debug(f"Iniciando display_student_progress para {username}")
|
36 |
+
|
37 |
+
st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
|
38 |
+
|
39 |
+
# Obtener los datos del estudiante
|
40 |
+
student_data = get_student_morphosyntax_data(username)
|
41 |
+
|
42 |
+
if not student_data or len(student_data.get('entries', [])) == 0:
|
43 |
+
logger.warning(f"No se encontraron datos para el estudiante {username}")
|
44 |
+
st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
|
45 |
+
st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
|
46 |
+
return
|
47 |
+
|
48 |
+
logger.debug(f"Datos del estudiante obtenidos: {len(student_data['entries'])} entradas")
|
49 |
+
|
50 |
+
# Resumen de actividades
|
51 |
+
with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True):
|
52 |
+
total_entries = len(student_data['entries'])
|
53 |
+
st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
|
54 |
+
|
55 |
+
# Gráfico de tipos de análisis
|
56 |
+
try:
|
57 |
+
analysis_types = [entry.get('analysis_type', 'unknown') for entry in student_data['entries']]
|
58 |
+
analysis_counts = pd.Series(analysis_types).value_counts()
|
59 |
+
fig, ax = plt.subplots()
|
60 |
+
sns.barplot(x=analysis_counts.index, y=analysis_counts.values, ax=ax)
|
61 |
+
ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
|
62 |
+
ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
|
63 |
+
ax.set_ylabel(t.get("count", "Cantidad"))
|
64 |
+
st.pyplot(fig)
|
65 |
+
except Exception as e:
|
66 |
+
logger.error(f"Error al crear el gráfico: {e}")
|
67 |
+
st.error("No se pudo crear el gráfico de tipos de análisis.")
|
68 |
+
|
69 |
+
# Función para generar el contenido del archivo de actividades de las últimas 48 horas
|
70 |
+
def generate_activity_content_48h():
|
71 |
+
content = f"Actividades de {username} en las últimas 48 horas\n\n"
|
72 |
+
|
73 |
+
two_days_ago = datetime.now(pytz.utc) - timedelta(days=2)
|
74 |
+
|
75 |
+
try:
|
76 |
+
morphosyntax_analyses = get_student_morphosyntax_data(username)
|
77 |
+
recent_morphosyntax = [a for a in morphosyntax_analyses if datetime.fromisoformat(a['timestamp']) > two_days_ago]
|
78 |
+
|
79 |
+
content += f"Análisis morfosintácticos: {len(recent_morphosyntax)}\n"
|
80 |
+
for analysis in recent_morphosyntax:
|
81 |
+
content += f"- Análisis del {analysis['timestamp']}: {analysis['text'][:50]}...\n"
|
82 |
+
|
83 |
+
chat_history = get_chat_history(username, None)
|
84 |
+
recent_chats = [c for c in chat_history if datetime.fromisoformat(c['timestamp']) > two_days_ago]
|
85 |
+
|
86 |
+
content += f"\nConversaciones de chat: {len(recent_chats)}\n"
|
87 |
+
for chat in recent_chats:
|
88 |
+
content += f"- Chat del {chat['timestamp']}: {len(chat['messages'])} mensajes\n"
|
89 |
+
except Exception as e:
|
90 |
+
logger.error(f"Error al generar el contenido de actividades: {e}")
|
91 |
+
content += "Error al recuperar los datos de actividades.\n"
|
92 |
+
|
93 |
+
return content
|
94 |
+
|
95 |
+
# Botones para descargar el histórico de actividades de las últimas 48 horas
|
96 |
+
st.subheader(t.get("download_history_48h", "Descargar Histórico de Actividades (Últimas 48 horas)"))
|
97 |
+
if st.button("Generar reporte de 48 horas"):
|
98 |
+
try:
|
99 |
+
report_content = generate_activity_content_48h()
|
100 |
+
st.text_area("Reporte de 48 horas", report_content, height=300)
|
101 |
+
st.download_button(
|
102 |
+
label="Descargar TXT (48h)",
|
103 |
+
data=report_content,
|
104 |
+
file_name="actividades_48h.txt",
|
105 |
+
mime="text/plain"
|
106 |
+
)
|
107 |
+
except Exception as e:
|
108 |
+
logger.error(f"Error al generar el reporte: {e}")
|
109 |
+
st.error("No se pudo generar el reporte. Por favor, verifica los logs para más detalles.")
|
110 |
+
|
111 |
logger.debug("Finalizando display_student_progress")
|
modules/studentact/student_activities_v2-complet.py
CHANGED
@@ -1,794 +1,794 @@
|
|
1 |
-
##############
|
2 |
-
###modules/studentact/student_activities_v2.py
|
3 |
-
|
4 |
-
import streamlit as st
|
5 |
-
import re
|
6 |
-
import io
|
7 |
-
from io import BytesIO
|
8 |
-
import pandas as pd
|
9 |
-
import numpy as np
|
10 |
-
import time
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
-
from datetime import datetime
|
13 |
-
from spacy import displacy
|
14 |
-
import random
|
15 |
-
import base64
|
16 |
-
import seaborn as sns
|
17 |
-
import logging
|
18 |
-
|
19 |
-
# Importaciones de la base de datos
|
20 |
-
from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis
|
21 |
-
from ..database.semantic_mongo_db import get_student_semantic_analysis
|
22 |
-
from ..database.discourse_mongo_db import get_student_discourse_analysis
|
23 |
-
from ..database.chat_mongo_db import get_chat_history
|
24 |
-
|
25 |
-
logger = logging.getLogger(__name__)
|
26 |
-
|
27 |
-
###################################################################################
|
28 |
-
|
29 |
-
def display_student_activities(username: str, lang_code: str, t: dict):
|
30 |
-
"""
|
31 |
-
Muestra todas las actividades del estudiante
|
32 |
-
Args:
|
33 |
-
username: Nombre del estudiante
|
34 |
-
lang_code: Código del idioma
|
35 |
-
t: Diccionario de traducciones
|
36 |
-
"""
|
37 |
-
try:
|
38 |
-
st.header(t.get('activities_title', 'Mis Actividades'))
|
39 |
-
|
40 |
-
# Tabs para diferentes tipos de análisis
|
41 |
-
tabs = st.tabs([
|
42 |
-
t.get('morpho_activities', 'Análisis Morfosintáctico'),
|
43 |
-
t.get('semantic_activities', 'Análisis Semántico'),
|
44 |
-
t.get('discourse_activities', 'Análisis del Discurso'),
|
45 |
-
t.get('chat_activities', 'Conversaciones con el Asistente')
|
46 |
-
])
|
47 |
-
|
48 |
-
# Tab de Análisis Morfosintáctico
|
49 |
-
with tabs[0]:
|
50 |
-
display_morphosyntax_activities(username, t)
|
51 |
-
|
52 |
-
# Tab de Análisis Semántico
|
53 |
-
with tabs[1]:
|
54 |
-
display_semantic_activities(username, t)
|
55 |
-
|
56 |
-
# Tab de Análisis del Discurso
|
57 |
-
with tabs[2]:
|
58 |
-
display_discourse_activities(username, t)
|
59 |
-
|
60 |
-
# Tab de Conversaciones del Chat
|
61 |
-
with tabs[3]:
|
62 |
-
display_chat_activities(username, t)
|
63 |
-
|
64 |
-
except Exception as e:
|
65 |
-
logger.error(f"Error mostrando actividades: {str(e)}")
|
66 |
-
st.error(t.get('error_loading_activities', 'Error al cargar las actividades'))
|
67 |
-
|
68 |
-
|
69 |
-
###############################################################################################
|
70 |
-
def display_morphosyntax_activities(username: str, t: dict):
|
71 |
-
"""Muestra actividades de análisis morfosintáctico"""
|
72 |
-
try:
|
73 |
-
analyses = get_student_morphosyntax_analysis(username)
|
74 |
-
if not analyses:
|
75 |
-
st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados'))
|
76 |
-
return
|
77 |
-
|
78 |
-
for analysis in analyses:
|
79 |
-
with st.expander(
|
80 |
-
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
81 |
-
expanded=False
|
82 |
-
):
|
83 |
-
st.text(f"{t.get('analyzed_text', 'Texto analizado')}:")
|
84 |
-
st.write(analysis['text'])
|
85 |
-
|
86 |
-
if 'arc_diagrams' in analysis:
|
87 |
-
st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos'))
|
88 |
-
for diagram in analysis['arc_diagrams']:
|
89 |
-
st.write(diagram, unsafe_allow_html=True)
|
90 |
-
|
91 |
-
except Exception as e:
|
92 |
-
logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}")
|
93 |
-
st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico'))
|
94 |
-
|
95 |
-
|
96 |
-
###############################################################################################
|
97 |
-
def display_semantic_activities(username: str, t: dict):
|
98 |
-
"""Muestra actividades de análisis semántico"""
|
99 |
-
try:
|
100 |
-
logger.info(f"Recuperando análisis semántico para {username}")
|
101 |
-
analyses = get_student_semantic_analysis(username)
|
102 |
-
|
103 |
-
if not analyses:
|
104 |
-
logger.info("No se encontraron análisis semánticos")
|
105 |
-
st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados'))
|
106 |
-
return
|
107 |
-
|
108 |
-
logger.info(f"Procesando {len(analyses)} análisis semánticos")
|
109 |
-
for analysis in analyses:
|
110 |
-
try:
|
111 |
-
# Verificar campos mínimos necesarios
|
112 |
-
if not all(key in analysis for key in ['timestamp', 'concept_graph']):
|
113 |
-
logger.warning(f"Análisis incompleto: {analysis.keys()}")
|
114 |
-
continue
|
115 |
-
|
116 |
-
# Formatear fecha
|
117 |
-
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
118 |
-
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
119 |
-
|
120 |
-
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
|
121 |
-
if analysis['concept_graph']:
|
122 |
-
logger.debug("Decodificando gráfico de conceptos")
|
123 |
-
try:
|
124 |
-
image_bytes = base64.b64decode(analysis['concept_graph'])
|
125 |
-
st.image(image_bytes, use_column_width=True)
|
126 |
-
logger.debug("Gráfico mostrado exitosamente")
|
127 |
-
except Exception as img_error:
|
128 |
-
logger.error(f"Error decodificando imagen: {str(img_error)}")
|
129 |
-
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
|
130 |
-
else:
|
131 |
-
st.info(t.get('no_graph', 'No hay visualización disponible'))
|
132 |
-
|
133 |
-
except Exception as e:
|
134 |
-
logger.error(f"Error procesando análisis individual: {str(e)}")
|
135 |
-
continue
|
136 |
-
|
137 |
-
except Exception as e:
|
138 |
-
logger.error(f"Error mostrando análisis semántico: {str(e)}")
|
139 |
-
st.error(t.get('error_semantic', 'Error al mostrar análisis semántico'))
|
140 |
-
|
141 |
-
|
142 |
-
###################################################################################################
|
143 |
-
def display_discourse_activities(username: str, t: dict):
|
144 |
-
"""Muestra actividades de análisis del discurso"""
|
145 |
-
try:
|
146 |
-
logger.info(f"Recuperando análisis del discurso para {username}")
|
147 |
-
analyses = get_student_discourse_analysis(username)
|
148 |
-
|
149 |
-
if not analyses:
|
150 |
-
logger.info("No se encontraron análisis del discurso")
|
151 |
-
st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados'))
|
152 |
-
return
|
153 |
-
|
154 |
-
logger.info(f"Procesando {len(analyses)} análisis del discurso")
|
155 |
-
for analysis in analyses:
|
156 |
-
try:
|
157 |
-
# Verificar campos mínimos necesarios
|
158 |
-
if not all(key in analysis for key in ['timestamp', 'combined_graph']):
|
159 |
-
logger.warning(f"Análisis incompleto: {analysis.keys()}")
|
160 |
-
continue
|
161 |
-
|
162 |
-
# Formatear fecha
|
163 |
-
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
164 |
-
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
165 |
-
|
166 |
-
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
|
167 |
-
if analysis['combined_graph']:
|
168 |
-
logger.debug("Decodificando gráfico combinado")
|
169 |
-
try:
|
170 |
-
image_bytes = base64.b64decode(analysis['combined_graph'])
|
171 |
-
st.image(image_bytes, use_column_width=True)
|
172 |
-
logger.debug("Gráfico mostrado exitosamente")
|
173 |
-
except Exception as img_error:
|
174 |
-
logger.error(f"Error decodificando imagen: {str(img_error)}")
|
175 |
-
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
|
176 |
-
else:
|
177 |
-
st.info(t.get('no_visualization', 'No hay visualización comparativa disponible'))
|
178 |
-
|
179 |
-
except Exception as e:
|
180 |
-
logger.error(f"Error procesando análisis individual: {str(e)}")
|
181 |
-
continue
|
182 |
-
|
183 |
-
except Exception as e:
|
184 |
-
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
185 |
-
st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso'))
|
186 |
-
|
187 |
-
#################################################################################
|
188 |
-
def display_discourse_comparison(analysis: dict, t: dict):
|
189 |
-
"""Muestra la comparación de análisis del discurso"""
|
190 |
-
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
191 |
-
|
192 |
-
col1, col2 = st.columns(2)
|
193 |
-
with col1:
|
194 |
-
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
195 |
-
df1 = pd.DataFrame(analysis['key_concepts1'])
|
196 |
-
st.dataframe(df1)
|
197 |
-
|
198 |
-
with col2:
|
199 |
-
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
200 |
-
df2 = pd.DataFrame(analysis['key_concepts2'])
|
201 |
-
st.dataframe(df2)
|
202 |
-
|
203 |
-
#################################################################################
|
204 |
-
def display_chat_activities(username: str, t: dict):
|
205 |
-
"""
|
206 |
-
Muestra historial de conversaciones del chat
|
207 |
-
"""
|
208 |
-
try:
|
209 |
-
# Obtener historial del chat
|
210 |
-
chat_history = get_chat_history(
|
211 |
-
username=username,
|
212 |
-
analysis_type='sidebar',
|
213 |
-
limit=50
|
214 |
-
)
|
215 |
-
|
216 |
-
if not chat_history:
|
217 |
-
st.info(t.get('no_chat_history', 'No hay conversaciones registradas'))
|
218 |
-
return
|
219 |
-
|
220 |
-
for chat in reversed(chat_history): # Mostrar las más recientes primero
|
221 |
-
try:
|
222 |
-
# Convertir timestamp a datetime para formato
|
223 |
-
timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00'))
|
224 |
-
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
225 |
-
|
226 |
-
with st.expander(
|
227 |
-
f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}",
|
228 |
-
expanded=False
|
229 |
-
):
|
230 |
-
if 'messages' in chat and chat['messages']:
|
231 |
-
# Mostrar cada mensaje en la conversación
|
232 |
-
for message in chat['messages']:
|
233 |
-
role = message.get('role', 'unknown')
|
234 |
-
content = message.get('content', '')
|
235 |
-
|
236 |
-
# Usar el componente de chat de Streamlit
|
237 |
-
with st.chat_message(role):
|
238 |
-
st.markdown(content)
|
239 |
-
|
240 |
-
# Agregar separador entre mensajes
|
241 |
-
st.divider()
|
242 |
-
else:
|
243 |
-
st.warning(t.get('invalid_chat_format', 'Formato de chat no válido'))
|
244 |
-
|
245 |
-
except Exception as e:
|
246 |
-
logger.error(f"Error mostrando conversación: {str(e)}")
|
247 |
-
continue
|
248 |
-
|
249 |
-
except Exception as e:
|
250 |
-
logger.error(f"Error mostrando historial del chat: {str(e)}")
|
251 |
-
st.error(t.get('error_chat', 'Error al mostrar historial del chat'))
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
'''
|
262 |
-
##########versión 25-9-2024---02:30 ################ OK (username)####################
|
263 |
-
|
264 |
-
def display_student_progress(username, lang_code, t, student_data):
|
265 |
-
st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
|
266 |
-
|
267 |
-
if not student_data or len(student_data.get('entries', [])) == 0:
|
268 |
-
st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
|
269 |
-
st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
|
270 |
-
return
|
271 |
-
|
272 |
-
with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True):
|
273 |
-
total_entries = len(student_data['entries'])
|
274 |
-
st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
|
275 |
-
|
276 |
-
# Gráfico de tipos de análisis
|
277 |
-
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
|
278 |
-
analysis_counts = pd.Series(analysis_types).value_counts()
|
279 |
-
fig, ax = plt.subplots()
|
280 |
-
analysis_counts.plot(kind='bar', ax=ax)
|
281 |
-
ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
|
282 |
-
ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
|
283 |
-
ax.set_ylabel(t.get("count", "Cantidad"))
|
284 |
-
st.pyplot(fig)
|
285 |
-
|
286 |
-
# Mostrar los últimos análisis morfosintácticos
|
287 |
-
with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")):
|
288 |
-
morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
|
289 |
-
for entry in morphosyntax_entries[:5]: # Mostrar los últimos 5
|
290 |
-
st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
|
291 |
-
if 'arc_diagrams' in entry and entry['arc_diagrams']:
|
292 |
-
st.components.v1.html(entry['arc_diagrams'][0], height=300, scrolling=True)
|
293 |
-
|
294 |
-
# Añadir secciones similares para análisis semánticos y discursivos si es necesario
|
295 |
-
|
296 |
-
# Mostrar el historial de chat
|
297 |
-
with st.expander(t.get("chat_history", "Historial de Chat")):
|
298 |
-
if 'chat_history' in student_data:
|
299 |
-
for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
|
300 |
-
st.subheader(f"{t.get('chat_from', 'Chat del')} {chat['timestamp']}")
|
301 |
-
for message in chat['messages']:
|
302 |
-
st.write(f"{message['role'].capitalize()}: {message['content']}")
|
303 |
-
st.write("---")
|
304 |
-
else:
|
305 |
-
st.write(t.get("no_chat_history", "No hay historial de chat disponible."))
|
306 |
-
|
307 |
-
|
308 |
-
##########versión 24-9-2024---17:30 ################ OK FROM--V2 de def get_student_data(username)####################
|
309 |
-
|
310 |
-
def display_student_progress(username, lang_code, t, student_data):
|
311 |
-
if not student_data or len(student_data['entries']) == 0:
|
312 |
-
st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
|
313 |
-
st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
|
314 |
-
return
|
315 |
-
|
316 |
-
st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
|
317 |
-
|
318 |
-
with st.expander(t.get("activities_summary", "Resumen de Actividades y Progreso"), expanded=True):
|
319 |
-
total_entries = len(student_data['entries'])
|
320 |
-
st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
|
321 |
-
|
322 |
-
# Gráfico de tipos de análisis
|
323 |
-
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
|
324 |
-
analysis_counts = pd.Series(analysis_types).value_counts()
|
325 |
-
|
326 |
-
fig, ax = plt.subplots(figsize=(8, 4))
|
327 |
-
analysis_counts.plot(kind='bar', ax=ax)
|
328 |
-
ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
|
329 |
-
ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
|
330 |
-
ax.set_ylabel(t.get("count", "Cantidad"))
|
331 |
-
st.pyplot(fig)
|
332 |
-
|
333 |
-
# Histórico de Análisis Morfosintácticos
|
334 |
-
with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")):
|
335 |
-
morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
|
336 |
-
if not morphosyntax_entries:
|
337 |
-
st.warning("No se encontraron análisis morfosintácticos.")
|
338 |
-
for entry in morphosyntax_entries:
|
339 |
-
st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
|
340 |
-
if 'arc_diagrams' in entry and entry['arc_diagrams']:
|
341 |
-
try:
|
342 |
-
st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
|
343 |
-
except Exception as e:
|
344 |
-
logger.error(f"Error al mostrar diagrama de arco: {str(e)}")
|
345 |
-
st.error("Error al mostrar el diagrama de arco.")
|
346 |
-
else:
|
347 |
-
st.write(t.get("no_arc_diagram", "No se encontró diagrama de arco para este análisis."))
|
348 |
-
|
349 |
-
# Histórico de Análisis Semánticos
|
350 |
-
with st.expander(t.get("semantic_history", "Histórico de Análisis Semánticos")):
|
351 |
-
semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
|
352 |
-
if not semantic_entries:
|
353 |
-
st.warning("No se encontraron análisis semánticos.")
|
354 |
-
for entry in semantic_entries:
|
355 |
-
st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
|
356 |
-
if 'key_concepts' in entry:
|
357 |
-
st.write(t.get("key_concepts", "Conceptos clave:"))
|
358 |
-
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']])
|
359 |
-
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
|
360 |
-
if 'graph' in entry:
|
361 |
-
try:
|
362 |
-
img_bytes = base64.b64decode(entry['graph'])
|
363 |
-
st.image(img_bytes, caption=t.get("conceptual_relations_graph", "Gráfico de relaciones conceptuales"))
|
364 |
-
except Exception as e:
|
365 |
-
logger.error(f"Error al mostrar gráfico semántico: {str(e)}")
|
366 |
-
st.error(t.get("graph_display_error", f"No se pudo mostrar el gráfico: {str(e)}"))
|
367 |
-
|
368 |
-
# Histórico de Análisis Discursivos
|
369 |
-
with st.expander(t.get("discourse_history", "Histórico de Análisis Discursivos")):
|
370 |
-
discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
|
371 |
-
for entry in discourse_entries:
|
372 |
-
st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
|
373 |
-
for i in [1, 2]:
|
374 |
-
if f'key_concepts{i}' in entry:
|
375 |
-
st.write(f"{t.get('key_concepts', 'Conceptos clave')} {t.get('document', 'documento')} {i}:")
|
376 |
-
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry[f'key_concepts{i}']])
|
377 |
-
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
|
378 |
-
try:
|
379 |
-
if 'combined_graph' in entry and entry['combined_graph']:
|
380 |
-
img_bytes = base64.b64decode(entry['combined_graph'])
|
381 |
-
st.image(img_bytes, caption=t.get("combined_graph", "Gráfico combinado"))
|
382 |
-
elif 'graph1' in entry and 'graph2' in entry:
|
383 |
-
col1, col2 = st.columns(2)
|
384 |
-
with col1:
|
385 |
-
if entry['graph1']:
|
386 |
-
img_bytes1 = base64.b64decode(entry['graph1'])
|
387 |
-
st.image(img_bytes1, caption=t.get("graph_doc1", "Gráfico documento 1"))
|
388 |
-
with col2:
|
389 |
-
if entry['graph2']:
|
390 |
-
img_bytes2 = base64.b64decode(entry['graph2'])
|
391 |
-
st.image(img_bytes2, caption=t.get("graph_doc2", "Gráfico documento 2"))
|
392 |
-
except Exception as e:
|
393 |
-
st.error(t.get("graph_display_error", f"No se pudieron mostrar los gráficos: {str(e)}"))
|
394 |
-
|
395 |
-
# Histórico de Conversaciones con el ChatBot
|
396 |
-
with st.expander(t.get("chatbot_history", "Histórico de Conversaciones con el ChatBot")):
|
397 |
-
if 'chat_history' in student_data and student_data['chat_history']:
|
398 |
-
for i, chat in enumerate(student_data['chat_history']):
|
399 |
-
st.subheader(f"{t.get('conversation', 'Conversación')} {i+1} - {chat['timestamp']}")
|
400 |
-
for message in chat['messages']:
|
401 |
-
if message['role'] == 'user':
|
402 |
-
st.write(f"{t.get('user', 'Usuario')}: {message['content']}")
|
403 |
-
else:
|
404 |
-
st.write(f"{t.get('assistant', 'Asistente')}: {message['content']}")
|
405 |
-
st.write("---")
|
406 |
-
else:
|
407 |
-
st.write(t.get("no_chat_history", "No se encontraron conversaciones con el ChatBot."))
|
408 |
-
|
409 |
-
# Añadir logs para depuración
|
410 |
-
if st.checkbox(t.get("show_debug_data", "Mostrar datos de depuración")):
|
411 |
-
st.write(t.get("student_debug_data", "Datos del estudiante (para depuración):"))
|
412 |
-
st.json(student_data)
|
413 |
-
|
414 |
-
# Mostrar conteo de tipos de análisis
|
415 |
-
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
|
416 |
-
type_counts = {t: analysis_types.count(t) for t in set(analysis_types)}
|
417 |
-
st.write("Conteo de tipos de análisis:")
|
418 |
-
st.write(type_counts)
|
419 |
-
|
420 |
-
|
421 |
-
#############################--- Update 16:00 24-9 #########################################
|
422 |
-
def display_student_progress(username, lang_code, t, student_data):
|
423 |
-
try:
|
424 |
-
st.subheader(t.get('student_activities', 'Student Activitie'))
|
425 |
-
|
426 |
-
if not student_data or all(len(student_data.get(key, [])) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
|
427 |
-
st.warning(t.get('no_data_warning', 'No analysis data found for this student.'))
|
428 |
-
return
|
429 |
-
|
430 |
-
# Resumen de actividades
|
431 |
-
total_analyses = sum(len(student_data.get(key, [])) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
|
432 |
-
st.write(f"{t.get('total_analyses', 'Total analyses performed')}: {total_analyses}")
|
433 |
-
|
434 |
-
# Gráfico de tipos de análisis
|
435 |
-
analysis_counts = {
|
436 |
-
t.get('morpho_analyses', 'Morphosyntactic Analyses'): len(student_data.get('morphosyntax_analyses', [])),
|
437 |
-
t.get('semantic_analyses', 'Semantic Analyses'): len(student_data.get('semantic_analyses', [])),
|
438 |
-
t.get('discourse_analyses', 'Discourse Analyses'): len(student_data.get('discourse_analyses', []))
|
439 |
-
}
|
440 |
-
# Configurar el estilo de seaborn para un aspecto más atractivo
|
441 |
-
sns.set_style("whitegrid")
|
442 |
-
|
443 |
-
# Crear una figura más pequeña
|
444 |
-
fig, ax = plt.subplots(figsize=(6, 4))
|
445 |
-
|
446 |
-
# Usar colores más atractivos
|
447 |
-
colors = ['#ff9999', '#66b3ff', '#99ff99']
|
448 |
-
|
449 |
-
# Crear el gráfico de barras
|
450 |
-
bars = ax.bar(analysis_counts.keys(), analysis_counts.values(), color=colors)
|
451 |
-
|
452 |
-
# Añadir etiquetas de valor encima de cada barra
|
453 |
-
for bar in bars:
|
454 |
-
height = bar.get_height()
|
455 |
-
ax.text(bar.get_x() + bar.get_width()/2., height,
|
456 |
-
f'{height}',
|
457 |
-
ha='center', va='bottom')
|
458 |
-
|
459 |
-
# Configurar el título y las etiquetas
|
460 |
-
ax.set_title(t.get('analysis_types_chart', 'Types of analyses performed'), fontsize=12)
|
461 |
-
ax.set_ylabel(t.get('count', 'Count'), fontsize=10)
|
462 |
-
|
463 |
-
# Rotar las etiquetas del eje x para mejor legibilidad
|
464 |
-
plt.xticks(rotation=45, ha='right')
|
465 |
-
|
466 |
-
# Ajustar el diseño para que todo quepa
|
467 |
-
plt.tight_layout()
|
468 |
-
|
469 |
-
# Mostrar el gráfico en Streamlit
|
470 |
-
st.pyplot(fig)
|
471 |
-
|
472 |
-
# Mostrar los últimos análisis
|
473 |
-
for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
|
474 |
-
with st.expander(t.get(f'{analysis_type}_expander', f'{analysis_type.capitalize()} History')):
|
475 |
-
for analysis in student_data.get(analysis_type, [])[:5]: # Mostrar los últimos 5
|
476 |
-
st.subheader(f"{t.get('analysis_from', 'Analysis from')} {analysis.get('timestamp', 'N/A')}")
|
477 |
-
if analysis_type == 'morphosyntax_analyses':
|
478 |
-
if 'arc_diagrams' in analysis:
|
479 |
-
st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
|
480 |
-
elif analysis_type == 'semantic_analyses':
|
481 |
-
if 'key_concepts' in analysis:
|
482 |
-
st.write(t.get('key_concepts', 'Key concepts'))
|
483 |
-
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
|
484 |
-
if 'graph' in analysis:
|
485 |
-
st.image(base64.b64decode(analysis['graph']))
|
486 |
-
elif analysis_type == 'discourse_analyses':
|
487 |
-
for i in [1, 2]:
|
488 |
-
if f'key_concepts{i}' in analysis:
|
489 |
-
st.write(f"{t.get('key_concepts', 'Key concepts')} {t.get('document', 'Document')} {i}")
|
490 |
-
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
|
491 |
-
if 'combined_graph' in analysis:
|
492 |
-
st.image(base64.b64decode(analysis['combined_graph']))
|
493 |
-
|
494 |
-
# Mostrar el historial de chat
|
495 |
-
with st.expander(t.get('chat_history_expander', 'Chat History')):
|
496 |
-
for chat in student_data.get('chat_history', [])[:5]: # Mostrar las últimas 5 conversaciones
|
497 |
-
st.subheader(f"{t.get('chat_from', 'Chat from')} {chat.get('timestamp', 'N/A')}")
|
498 |
-
for message in chat.get('messages', []):
|
499 |
-
st.write(f"{message.get('role', 'Unknown').capitalize()}: {message.get('content', 'No content')}")
|
500 |
-
st.write("---")
|
501 |
-
|
502 |
-
except Exception as e:
|
503 |
-
logger.error(f"Error in display_student_progress: {str(e)}", exc_info=True)
|
504 |
-
st.error(t.get('error_loading_progress', 'Error loading student progress. Please try again later.'))
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
#####################################################################
|
533 |
-
def display_student_progress(username, lang_code, t, student_data):
|
534 |
-
st.subheader(t['student_progress'])
|
535 |
-
|
536 |
-
if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
|
537 |
-
st.warning(t['no_data_warning'])
|
538 |
-
return
|
539 |
-
|
540 |
-
# Resumen de actividades
|
541 |
-
total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
|
542 |
-
st.write(f"{t['total_analyses']}: {total_analyses}")
|
543 |
-
|
544 |
-
# Gráfico de tipos de análisis
|
545 |
-
analysis_counts = {
|
546 |
-
t['morpho_analyses']: len(student_data['morphosyntax_analyses']),
|
547 |
-
t['semantic_analyses']: len(student_data['semantic_analyses']),
|
548 |
-
t['discourse_analyses']: len(student_data['discourse_analyses'])
|
549 |
-
}
|
550 |
-
fig, ax = plt.subplots()
|
551 |
-
ax.bar(analysis_counts.keys(), analysis_counts.values())
|
552 |
-
ax.set_title(t['analysis_types_chart'])
|
553 |
-
st.pyplot(fig)
|
554 |
-
|
555 |
-
# Mostrar los últimos análisis
|
556 |
-
for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
|
557 |
-
with st.expander(t[f'{analysis_type}_expander']):
|
558 |
-
for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5
|
559 |
-
st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")
|
560 |
-
if analysis_type == 'morphosyntax_analyses':
|
561 |
-
if 'arc_diagrams' in analysis:
|
562 |
-
st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
|
563 |
-
elif analysis_type == 'semantic_analyses':
|
564 |
-
if 'key_concepts' in analysis:
|
565 |
-
st.write(t['key_concepts'])
|
566 |
-
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
|
567 |
-
if 'graph' in analysis:
|
568 |
-
st.image(base64.b64decode(analysis['graph']))
|
569 |
-
elif analysis_type == 'discourse_analyses':
|
570 |
-
for i in [1, 2]:
|
571 |
-
if f'key_concepts{i}' in analysis:
|
572 |
-
st.write(f"{t['key_concepts']} {t['document']} {i}")
|
573 |
-
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
|
574 |
-
if 'combined_graph' in analysis:
|
575 |
-
st.image(base64.b64decode(analysis['combined_graph']))
|
576 |
-
|
577 |
-
# Mostrar el historial de chat
|
578 |
-
with st.expander(t['chat_history_expander']):
|
579 |
-
for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
|
580 |
-
st.subheader(f"{t['chat_from']} {chat['timestamp']}")
|
581 |
-
for message in chat['messages']:
|
582 |
-
st.write(f"{message['role'].capitalize()}: {message['content']}")
|
583 |
-
st.write("---")
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
def display_student_progress(username, lang_code, t, student_data):
|
588 |
-
st.subheader(t['student_activities'])
|
589 |
-
|
590 |
-
if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
|
591 |
-
st.warning(t['no_data_warning'])
|
592 |
-
return
|
593 |
-
|
594 |
-
# Resumen de actividades
|
595 |
-
total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
|
596 |
-
st.write(f"{t['total_analyses']}: {total_analyses}")
|
597 |
-
|
598 |
-
# Gráfico de tipos de análisis
|
599 |
-
analysis_counts = {
|
600 |
-
t['morphological_analysis']: len(student_data['morphosyntax_analyses']),
|
601 |
-
t['semantic_analyses']: len(student_data['semantic_analyses']),
|
602 |
-
t['discourse_analyses']: len(student_data['discourse_analyses'])
|
603 |
-
}
|
604 |
-
fig, ax = plt.subplots()
|
605 |
-
ax.bar(analysis_counts.keys(), analysis_counts.values())
|
606 |
-
ax.set_title(t['analysis_types_chart'])
|
607 |
-
st.pyplot(fig)
|
608 |
-
|
609 |
-
# Mostrar los últimos análisis
|
610 |
-
for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
|
611 |
-
with st.expander(t[f'{analysis_type}_expander']):
|
612 |
-
for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5
|
613 |
-
st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")
|
614 |
-
if analysis_type == 'morphosyntax_analyses':
|
615 |
-
if 'arc_diagrams' in analysis:
|
616 |
-
st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
|
617 |
-
elif analysis_type == 'semantic_analyses':
|
618 |
-
if 'key_concepts' in analysis:
|
619 |
-
st.write(t['key_concepts'])
|
620 |
-
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
|
621 |
-
if 'graph' in analysis:
|
622 |
-
st.image(base64.b64decode(analysis['graph']))
|
623 |
-
elif analysis_type == 'discourse_analyses':
|
624 |
-
for i in [1, 2]:
|
625 |
-
if f'key_concepts{i}' in analysis:
|
626 |
-
st.write(f"{t['key_concepts']} {t['document']} {i}")
|
627 |
-
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
|
628 |
-
if 'combined_graph' in analysis:
|
629 |
-
st.image(base64.b64decode(analysis['combined_graph']))
|
630 |
-
|
631 |
-
# Mostrar el historial de chat
|
632 |
-
with st.expander(t['chat_history_expander']):
|
633 |
-
for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
|
634 |
-
st.subheader(f"{t['chat_from']} {chat['timestamp']}")
|
635 |
-
for message in chat['messages']:
|
636 |
-
st.write(f"{message['role'].capitalize()}: {message['content']}")
|
637 |
-
st.write("---")
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
def display_student_progress(username, lang_code, t, student_data):
|
643 |
-
st.subheader(t['student_activities'])
|
644 |
-
|
645 |
-
if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
|
646 |
-
st.warning(t['no_data_warning'])
|
647 |
-
return
|
648 |
-
|
649 |
-
# Resumen de actividades
|
650 |
-
total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
|
651 |
-
st.write(f"{t['total_analyses']}: {total_analyses}")
|
652 |
-
|
653 |
-
# Gráfico de tipos de análisis
|
654 |
-
analysis_counts = {
|
655 |
-
t['morphological_analysis']: len(student_data['morphosyntax_analyses']),
|
656 |
-
t['semantic_analyses']: len(student_data['semantic_analyses']),
|
657 |
-
t['discourse_analyses']: len(student_data['discourse_analyses'])
|
658 |
-
}
|
659 |
-
fig, ax = plt.subplots()
|
660 |
-
ax.bar(analysis_counts.keys(), analysis_counts.values())
|
661 |
-
ax.set_title(t['analysis_types_chart'])
|
662 |
-
st.pyplot(fig)
|
663 |
-
|
664 |
-
# Mostrar los últimos análisis
|
665 |
-
for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
|
666 |
-
with st.expander(t[f'{analysis_type}_expander']):
|
667 |
-
for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5
|
668 |
-
st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")
|
669 |
-
if analysis_type == 'morphosyntax_analyses':
|
670 |
-
if 'arc_diagrams' in analysis:
|
671 |
-
st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
|
672 |
-
elif analysis_type == 'semantic_analyses':
|
673 |
-
if 'key_concepts' in analysis:
|
674 |
-
st.write(t['key_concepts'])
|
675 |
-
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
|
676 |
-
if 'graph' in analysis:
|
677 |
-
st.image(base64.b64decode(analysis['graph']))
|
678 |
-
elif analysis_type == 'discourse_analyses':
|
679 |
-
for i in [1, 2]:
|
680 |
-
if f'key_concepts{i}' in analysis:
|
681 |
-
st.write(f"{t['key_concepts']} {t['document']} {i}")
|
682 |
-
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
|
683 |
-
if 'combined_graph' in analysis:
|
684 |
-
st.image(base64.b64decode(analysis['combined_graph']))
|
685 |
-
|
686 |
-
# Mostrar el historial de chat
|
687 |
-
with st.expander(t['chat_history_expander']):
|
688 |
-
for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
|
689 |
-
st.subheader(f"{t['chat_from']} {chat['timestamp']}")
|
690 |
-
for message in chat['messages']:
|
691 |
-
st.write(f"{message['role'].capitalize()}: {message['content']}")
|
692 |
-
st.write("---")
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
def display_student_progress(username, lang_code, t):
|
698 |
-
st.subheader(t['student_activities'])
|
699 |
-
st.write(f"{t['activities_message']} {username}")
|
700 |
-
|
701 |
-
# Aquí puedes agregar más contenido estático o placeholder
|
702 |
-
st.info(t['activities_placeholder'])
|
703 |
-
|
704 |
-
# Si necesitas mostrar algún dato, puedes usar datos de ejemplo o placeholders
|
705 |
-
col1, col2, col3 = st.columns(3)
|
706 |
-
col1.metric(t['morpho_analyses'], "5") # Ejemplo de dato
|
707 |
-
col2.metric(t['semantic_analyses'], "3") # Ejemplo de dato
|
708 |
-
col3.metric(t['discourse_analyses'], "2") # Ejemplo de dato
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
def display_student_progress(username, lang_code, t):
|
713 |
-
st.title(f"Actividades de {username}")
|
714 |
-
|
715 |
-
# Obtener todos los datos del estudiante
|
716 |
-
student_data = get_student_data(username)
|
717 |
-
|
718 |
-
if not student_data or len(student_data.get('entries', [])) == 0:
|
719 |
-
st.warning("No se encontraron datos de análisis para este estudiante.")
|
720 |
-
st.info("Intenta realizar algunos análisis de texto primero.")
|
721 |
-
return
|
722 |
-
|
723 |
-
# Resumen de actividades
|
724 |
-
with st.expander("Resumen de Actividades", expanded=True):
|
725 |
-
total_entries = len(student_data['entries'])
|
726 |
-
st.write(f"Total de análisis realizados: {total_entries}")
|
727 |
-
|
728 |
-
# Gráfico de tipos de análisis
|
729 |
-
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
|
730 |
-
analysis_counts = pd.Series(analysis_types).value_counts()
|
731 |
-
fig, ax = plt.subplots()
|
732 |
-
analysis_counts.plot(kind='bar', ax=ax)
|
733 |
-
ax.set_title("Tipos de análisis realizados")
|
734 |
-
ax.set_xlabel("Tipo de análisis")
|
735 |
-
ax.set_ylabel("Cantidad")
|
736 |
-
st.pyplot(fig)
|
737 |
-
|
738 |
-
# Histórico de Análisis Morfosintácticos
|
739 |
-
with st.expander("Histórico de Análisis Morfosintácticos"):
|
740 |
-
morpho_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
|
741 |
-
for analysis in morpho_analyses[:5]: # Mostrar los últimos 5
|
742 |
-
st.subheader(f"Análisis del {analysis['timestamp']}")
|
743 |
-
if 'arc_diagrams' in analysis:
|
744 |
-
st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
|
745 |
-
|
746 |
-
# Histórico de Análisis Semánticos
|
747 |
-
with st.expander("Histórico de Análisis Semánticos"):
|
748 |
-
semantic_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
|
749 |
-
for analysis in semantic_analyses[:5]: # Mostrar los últimos 5
|
750 |
-
st.subheader(f"Análisis del {analysis['timestamp']}")
|
751 |
-
if 'key_concepts' in analysis:
|
752 |
-
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis['key_concepts']])
|
753 |
-
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
|
754 |
-
if 'graph' in analysis:
|
755 |
-
try:
|
756 |
-
img_bytes = base64.b64decode(analysis['graph'])
|
757 |
-
st.image(img_bytes, caption="Gráfico de relaciones conceptuales")
|
758 |
-
except Exception as e:
|
759 |
-
st.error(f"No se pudo mostrar el gráfico: {str(e)}")
|
760 |
-
|
761 |
-
# Histórico de Análisis Discursivos
|
762 |
-
with st.expander("Histórico de Análisis Discursivos"):
|
763 |
-
discourse_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
|
764 |
-
for analysis in discourse_analyses[:5]: # Mostrar los últimos 5
|
765 |
-
st.subheader(f"Análisis del {analysis['timestamp']}")
|
766 |
-
for i in [1, 2]:
|
767 |
-
if f'key_concepts{i}' in analysis:
|
768 |
-
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis[f'key_concepts{i}']])
|
769 |
-
st.write(f"Conceptos clave del documento {i}:")
|
770 |
-
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
|
771 |
-
if 'combined_graph' in analysis:
|
772 |
-
try:
|
773 |
-
img_bytes = base64.b64decode(analysis['combined_graph'])
|
774 |
-
st.image(img_bytes)
|
775 |
-
except Exception as e:
|
776 |
-
st.error(f"No se pudo mostrar el gráfico combinado: {str(e)}")
|
777 |
-
|
778 |
-
# Histórico de Conversaciones con el ChatBot
|
779 |
-
with st.expander("Histórico de Conversaciones con el ChatBot"):
|
780 |
-
if 'chat_history' in student_data:
|
781 |
-
for i, chat in enumerate(student_data['chat_history'][:5]): # Mostrar las últimas 5 conversaciones
|
782 |
-
st.subheader(f"Conversación {i+1} - {chat['timestamp']}")
|
783 |
-
for message in chat['messages']:
|
784 |
-
st.write(f"{message['role'].capitalize()}: {message['content']}")
|
785 |
-
st.write("---")
|
786 |
-
else:
|
787 |
-
st.write("No se encontraron conversaciones con el ChatBot.")
|
788 |
-
|
789 |
-
# Opción para mostrar datos de depuración
|
790 |
-
if st.checkbox("Mostrar datos de depuración"):
|
791 |
-
st.write("Datos del estudiante (para depuración):")
|
792 |
-
st.json(student_data)
|
793 |
-
|
794 |
'''
|
|
|
1 |
+
##############
|
2 |
+
###modules/studentact/student_activities_v2.py
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
import re
|
6 |
+
import io
|
7 |
+
from io import BytesIO
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
import time
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from datetime import datetime
|
13 |
+
from spacy import displacy
|
14 |
+
import random
|
15 |
+
import base64
|
16 |
+
import seaborn as sns
|
17 |
+
import logging
|
18 |
+
|
19 |
+
# Importaciones de la base de datos
|
20 |
+
from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis
|
21 |
+
from ..database.semantic_mongo_db import get_student_semantic_analysis
|
22 |
+
from ..database.discourse_mongo_db import get_student_discourse_analysis
|
23 |
+
from ..database.chat_mongo_db import get_chat_history
|
24 |
+
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
###################################################################################
|
28 |
+
|
29 |
+
def display_student_activities(username: str, lang_code: str, t: dict):
|
30 |
+
"""
|
31 |
+
Muestra todas las actividades del estudiante
|
32 |
+
Args:
|
33 |
+
username: Nombre del estudiante
|
34 |
+
lang_code: Código del idioma
|
35 |
+
t: Diccionario de traducciones
|
36 |
+
"""
|
37 |
+
try:
|
38 |
+
st.header(t.get('activities_title', 'Mis Actividades'))
|
39 |
+
|
40 |
+
# Tabs para diferentes tipos de análisis
|
41 |
+
tabs = st.tabs([
|
42 |
+
t.get('morpho_activities', 'Análisis Morfosintáctico'),
|
43 |
+
t.get('semantic_activities', 'Análisis Semántico'),
|
44 |
+
t.get('discourse_activities', 'Análisis del Discurso'),
|
45 |
+
t.get('chat_activities', 'Conversaciones con el Asistente')
|
46 |
+
])
|
47 |
+
|
48 |
+
# Tab de Análisis Morfosintáctico
|
49 |
+
with tabs[0]:
|
50 |
+
display_morphosyntax_activities(username, t)
|
51 |
+
|
52 |
+
# Tab de Análisis Semántico
|
53 |
+
with tabs[1]:
|
54 |
+
display_semantic_activities(username, t)
|
55 |
+
|
56 |
+
# Tab de Análisis del Discurso
|
57 |
+
with tabs[2]:
|
58 |
+
display_discourse_activities(username, t)
|
59 |
+
|
60 |
+
# Tab de Conversaciones del Chat
|
61 |
+
with tabs[3]:
|
62 |
+
display_chat_activities(username, t)
|
63 |
+
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Error mostrando actividades: {str(e)}")
|
66 |
+
st.error(t.get('error_loading_activities', 'Error al cargar las actividades'))
|
67 |
+
|
68 |
+
|
69 |
+
###############################################################################################
|
70 |
+
def display_morphosyntax_activities(username: str, t: dict):
|
71 |
+
"""Muestra actividades de análisis morfosintáctico"""
|
72 |
+
try:
|
73 |
+
analyses = get_student_morphosyntax_analysis(username)
|
74 |
+
if not analyses:
|
75 |
+
st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados'))
|
76 |
+
return
|
77 |
+
|
78 |
+
for analysis in analyses:
|
79 |
+
with st.expander(
|
80 |
+
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
81 |
+
expanded=False
|
82 |
+
):
|
83 |
+
st.text(f"{t.get('analyzed_text', 'Texto analizado')}:")
|
84 |
+
st.write(analysis['text'])
|
85 |
+
|
86 |
+
if 'arc_diagrams' in analysis:
|
87 |
+
st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos'))
|
88 |
+
for diagram in analysis['arc_diagrams']:
|
89 |
+
st.write(diagram, unsafe_allow_html=True)
|
90 |
+
|
91 |
+
except Exception as e:
|
92 |
+
logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}")
|
93 |
+
st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico'))
|
94 |
+
|
95 |
+
|
96 |
+
###############################################################################################
|
97 |
+
def display_semantic_activities(username: str, t: dict):
|
98 |
+
"""Muestra actividades de análisis semántico"""
|
99 |
+
try:
|
100 |
+
logger.info(f"Recuperando análisis semántico para {username}")
|
101 |
+
analyses = get_student_semantic_analysis(username)
|
102 |
+
|
103 |
+
if not analyses:
|
104 |
+
logger.info("No se encontraron análisis semánticos")
|
105 |
+
st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados'))
|
106 |
+
return
|
107 |
+
|
108 |
+
logger.info(f"Procesando {len(analyses)} análisis semánticos")
|
109 |
+
for analysis in analyses:
|
110 |
+
try:
|
111 |
+
# Verificar campos mínimos necesarios
|
112 |
+
if not all(key in analysis for key in ['timestamp', 'concept_graph']):
|
113 |
+
logger.warning(f"Análisis incompleto: {analysis.keys()}")
|
114 |
+
continue
|
115 |
+
|
116 |
+
# Formatear fecha
|
117 |
+
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
118 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
119 |
+
|
120 |
+
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
|
121 |
+
if analysis['concept_graph']:
|
122 |
+
logger.debug("Decodificando gráfico de conceptos")
|
123 |
+
try:
|
124 |
+
image_bytes = base64.b64decode(analysis['concept_graph'])
|
125 |
+
st.image(image_bytes, use_column_width=True)
|
126 |
+
logger.debug("Gráfico mostrado exitosamente")
|
127 |
+
except Exception as img_error:
|
128 |
+
logger.error(f"Error decodificando imagen: {str(img_error)}")
|
129 |
+
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
|
130 |
+
else:
|
131 |
+
st.info(t.get('no_graph', 'No hay visualización disponible'))
|
132 |
+
|
133 |
+
except Exception as e:
|
134 |
+
logger.error(f"Error procesando análisis individual: {str(e)}")
|
135 |
+
continue
|
136 |
+
|
137 |
+
except Exception as e:
|
138 |
+
logger.error(f"Error mostrando análisis semántico: {str(e)}")
|
139 |
+
st.error(t.get('error_semantic', 'Error al mostrar análisis semántico'))
|
140 |
+
|
141 |
+
|
142 |
+
###################################################################################################
|
143 |
+
def display_discourse_activities(username: str, t: dict):
|
144 |
+
"""Muestra actividades de análisis del discurso"""
|
145 |
+
try:
|
146 |
+
logger.info(f"Recuperando análisis del discurso para {username}")
|
147 |
+
analyses = get_student_discourse_analysis(username)
|
148 |
+
|
149 |
+
if not analyses:
|
150 |
+
logger.info("No se encontraron análisis del discurso")
|
151 |
+
st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados'))
|
152 |
+
return
|
153 |
+
|
154 |
+
logger.info(f"Procesando {len(analyses)} análisis del discurso")
|
155 |
+
for analysis in analyses:
|
156 |
+
try:
|
157 |
+
# Verificar campos mínimos necesarios
|
158 |
+
if not all(key in analysis for key in ['timestamp', 'combined_graph']):
|
159 |
+
logger.warning(f"Análisis incompleto: {analysis.keys()}")
|
160 |
+
continue
|
161 |
+
|
162 |
+
# Formatear fecha
|
163 |
+
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
164 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
165 |
+
|
166 |
+
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
|
167 |
+
if analysis['combined_graph']:
|
168 |
+
logger.debug("Decodificando gráfico combinado")
|
169 |
+
try:
|
170 |
+
image_bytes = base64.b64decode(analysis['combined_graph'])
|
171 |
+
st.image(image_bytes, use_column_width=True)
|
172 |
+
logger.debug("Gráfico mostrado exitosamente")
|
173 |
+
except Exception as img_error:
|
174 |
+
logger.error(f"Error decodificando imagen: {str(img_error)}")
|
175 |
+
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
|
176 |
+
else:
|
177 |
+
st.info(t.get('no_visualization', 'No hay visualización comparativa disponible'))
|
178 |
+
|
179 |
+
except Exception as e:
|
180 |
+
logger.error(f"Error procesando análisis individual: {str(e)}")
|
181 |
+
continue
|
182 |
+
|
183 |
+
except Exception as e:
|
184 |
+
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
185 |
+
st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso'))
|
186 |
+
|
187 |
+
#################################################################################
|
188 |
+
def display_discourse_comparison(analysis: dict, t: dict):
|
189 |
+
"""Muestra la comparación de análisis del discurso"""
|
190 |
+
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
191 |
+
|
192 |
+
col1, col2 = st.columns(2)
|
193 |
+
with col1:
|
194 |
+
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
195 |
+
df1 = pd.DataFrame(analysis['key_concepts1'])
|
196 |
+
st.dataframe(df1)
|
197 |
+
|
198 |
+
with col2:
|
199 |
+
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
200 |
+
df2 = pd.DataFrame(analysis['key_concepts2'])
|
201 |
+
st.dataframe(df2)
|
202 |
+
|
203 |
+
#################################################################################
|
204 |
+
def display_chat_activities(username: str, t: dict):
|
205 |
+
"""
|
206 |
+
Muestra historial de conversaciones del chat
|
207 |
+
"""
|
208 |
+
try:
|
209 |
+
# Obtener historial del chat
|
210 |
+
chat_history = get_chat_history(
|
211 |
+
username=username,
|
212 |
+
analysis_type='sidebar',
|
213 |
+
limit=50
|
214 |
+
)
|
215 |
+
|
216 |
+
if not chat_history:
|
217 |
+
st.info(t.get('no_chat_history', 'No hay conversaciones registradas'))
|
218 |
+
return
|
219 |
+
|
220 |
+
for chat in reversed(chat_history): # Mostrar las más recientes primero
|
221 |
+
try:
|
222 |
+
# Convertir timestamp a datetime para formato
|
223 |
+
timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00'))
|
224 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
225 |
+
|
226 |
+
with st.expander(
|
227 |
+
f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}",
|
228 |
+
expanded=False
|
229 |
+
):
|
230 |
+
if 'messages' in chat and chat['messages']:
|
231 |
+
# Mostrar cada mensaje en la conversación
|
232 |
+
for message in chat['messages']:
|
233 |
+
role = message.get('role', 'unknown')
|
234 |
+
content = message.get('content', '')
|
235 |
+
|
236 |
+
# Usar el componente de chat de Streamlit
|
237 |
+
with st.chat_message(role):
|
238 |
+
st.markdown(content)
|
239 |
+
|
240 |
+
# Agregar separador entre mensajes
|
241 |
+
st.divider()
|
242 |
+
else:
|
243 |
+
st.warning(t.get('invalid_chat_format', 'Formato de chat no válido'))
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
logger.error(f"Error mostrando conversación: {str(e)}")
|
247 |
+
continue
|
248 |
+
|
249 |
+
except Exception as e:
|
250 |
+
logger.error(f"Error mostrando historial del chat: {str(e)}")
|
251 |
+
st.error(t.get('error_chat', 'Error al mostrar historial del chat'))
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
'''
|
262 |
+
##########versión 25-9-2024---02:30 ################ OK (username)####################
|
263 |
+
|
264 |
+
def display_student_progress(username, lang_code, t, student_data):
|
265 |
+
st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
|
266 |
+
|
267 |
+
if not student_data or len(student_data.get('entries', [])) == 0:
|
268 |
+
st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
|
269 |
+
st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
|
270 |
+
return
|
271 |
+
|
272 |
+
with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True):
|
273 |
+
total_entries = len(student_data['entries'])
|
274 |
+
st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
|
275 |
+
|
276 |
+
# Gráfico de tipos de análisis
|
277 |
+
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
|
278 |
+
analysis_counts = pd.Series(analysis_types).value_counts()
|
279 |
+
fig, ax = plt.subplots()
|
280 |
+
analysis_counts.plot(kind='bar', ax=ax)
|
281 |
+
ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
|
282 |
+
ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
|
283 |
+
ax.set_ylabel(t.get("count", "Cantidad"))
|
284 |
+
st.pyplot(fig)
|
285 |
+
|
286 |
+
# Mostrar los últimos análisis morfosintácticos
|
287 |
+
with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")):
|
288 |
+
morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
|
289 |
+
for entry in morphosyntax_entries[:5]: # Mostrar los últimos 5
|
290 |
+
st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
|
291 |
+
if 'arc_diagrams' in entry and entry['arc_diagrams']:
|
292 |
+
st.components.v1.html(entry['arc_diagrams'][0], height=300, scrolling=True)
|
293 |
+
|
294 |
+
# Añadir secciones similares para análisis semánticos y discursivos si es necesario
|
295 |
+
|
296 |
+
# Mostrar el historial de chat
|
297 |
+
with st.expander(t.get("chat_history", "Historial de Chat")):
|
298 |
+
if 'chat_history' in student_data:
|
299 |
+
for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
|
300 |
+
st.subheader(f"{t.get('chat_from', 'Chat del')} {chat['timestamp']}")
|
301 |
+
for message in chat['messages']:
|
302 |
+
st.write(f"{message['role'].capitalize()}: {message['content']}")
|
303 |
+
st.write("---")
|
304 |
+
else:
|
305 |
+
st.write(t.get("no_chat_history", "No hay historial de chat disponible."))
|
306 |
+
|
307 |
+
|
308 |
+
##########versión 24-9-2024---17:30 ################ OK FROM--V2 de def get_student_data(username)####################
|
309 |
+
|
310 |
+
def display_student_progress(username, lang_code, t, student_data):
|
311 |
+
if not student_data or len(student_data['entries']) == 0:
|
312 |
+
st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
|
313 |
+
st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
|
314 |
+
return
|
315 |
+
|
316 |
+
st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
|
317 |
+
|
318 |
+
with st.expander(t.get("activities_summary", "Resumen de Actividades y Progreso"), expanded=True):
|
319 |
+
total_entries = len(student_data['entries'])
|
320 |
+
st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
|
321 |
+
|
322 |
+
# Gráfico de tipos de análisis
|
323 |
+
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
|
324 |
+
analysis_counts = pd.Series(analysis_types).value_counts()
|
325 |
+
|
326 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
327 |
+
analysis_counts.plot(kind='bar', ax=ax)
|
328 |
+
ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
|
329 |
+
ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
|
330 |
+
ax.set_ylabel(t.get("count", "Cantidad"))
|
331 |
+
st.pyplot(fig)
|
332 |
+
|
333 |
+
# Histórico de Análisis Morfosintácticos
|
334 |
+
with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")):
|
335 |
+
morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
|
336 |
+
if not morphosyntax_entries:
|
337 |
+
st.warning("No se encontraron análisis morfosintácticos.")
|
338 |
+
for entry in morphosyntax_entries:
|
339 |
+
st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
|
340 |
+
if 'arc_diagrams' in entry and entry['arc_diagrams']:
|
341 |
+
try:
|
342 |
+
st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
|
343 |
+
except Exception as e:
|
344 |
+
logger.error(f"Error al mostrar diagrama de arco: {str(e)}")
|
345 |
+
st.error("Error al mostrar el diagrama de arco.")
|
346 |
+
else:
|
347 |
+
st.write(t.get("no_arc_diagram", "No se encontró diagrama de arco para este análisis."))
|
348 |
+
|
349 |
+
# Histórico de Análisis Semánticos
|
350 |
+
with st.expander(t.get("semantic_history", "Histórico de Análisis Semánticos")):
|
351 |
+
semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
|
352 |
+
if not semantic_entries:
|
353 |
+
st.warning("No se encontraron análisis semánticos.")
|
354 |
+
for entry in semantic_entries:
|
355 |
+
st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
|
356 |
+
if 'key_concepts' in entry:
|
357 |
+
st.write(t.get("key_concepts", "Conceptos clave:"))
|
358 |
+
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']])
|
359 |
+
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
|
360 |
+
if 'graph' in entry:
|
361 |
+
try:
|
362 |
+
img_bytes = base64.b64decode(entry['graph'])
|
363 |
+
st.image(img_bytes, caption=t.get("conceptual_relations_graph", "Gráfico de relaciones conceptuales"))
|
364 |
+
except Exception as e:
|
365 |
+
logger.error(f"Error al mostrar gráfico semántico: {str(e)}")
|
366 |
+
st.error(t.get("graph_display_error", f"No se pudo mostrar el gráfico: {str(e)}"))
|
367 |
+
|
368 |
+
# Histórico de Análisis Discursivos
|
369 |
+
with st.expander(t.get("discourse_history", "Histórico de Análisis Discursivos")):
|
370 |
+
discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
|
371 |
+
for entry in discourse_entries:
|
372 |
+
st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
|
373 |
+
for i in [1, 2]:
|
374 |
+
if f'key_concepts{i}' in entry:
|
375 |
+
st.write(f"{t.get('key_concepts', 'Conceptos clave')} {t.get('document', 'documento')} {i}:")
|
376 |
+
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry[f'key_concepts{i}']])
|
377 |
+
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
|
378 |
+
try:
|
379 |
+
if 'combined_graph' in entry and entry['combined_graph']:
|
380 |
+
img_bytes = base64.b64decode(entry['combined_graph'])
|
381 |
+
st.image(img_bytes, caption=t.get("combined_graph", "Gráfico combinado"))
|
382 |
+
elif 'graph1' in entry and 'graph2' in entry:
|
383 |
+
col1, col2 = st.columns(2)
|
384 |
+
with col1:
|
385 |
+
if entry['graph1']:
|
386 |
+
img_bytes1 = base64.b64decode(entry['graph1'])
|
387 |
+
st.image(img_bytes1, caption=t.get("graph_doc1", "Gráfico documento 1"))
|
388 |
+
with col2:
|
389 |
+
if entry['graph2']:
|
390 |
+
img_bytes2 = base64.b64decode(entry['graph2'])
|
391 |
+
st.image(img_bytes2, caption=t.get("graph_doc2", "Gráfico documento 2"))
|
392 |
+
except Exception as e:
|
393 |
+
st.error(t.get("graph_display_error", f"No se pudieron mostrar los gráficos: {str(e)}"))
|
394 |
+
|
395 |
+
# Histórico de Conversaciones con el ChatBot
|
396 |
+
with st.expander(t.get("chatbot_history", "Histórico de Conversaciones con el ChatBot")):
|
397 |
+
if 'chat_history' in student_data and student_data['chat_history']:
|
398 |
+
for i, chat in enumerate(student_data['chat_history']):
|
399 |
+
st.subheader(f"{t.get('conversation', 'Conversación')} {i+1} - {chat['timestamp']}")
|
400 |
+
for message in chat['messages']:
|
401 |
+
if message['role'] == 'user':
|
402 |
+
st.write(f"{t.get('user', 'Usuario')}: {message['content']}")
|
403 |
+
else:
|
404 |
+
st.write(f"{t.get('assistant', 'Asistente')}: {message['content']}")
|
405 |
+
st.write("---")
|
406 |
+
else:
|
407 |
+
st.write(t.get("no_chat_history", "No se encontraron conversaciones con el ChatBot."))
|
408 |
+
|
409 |
+
# Añadir logs para depuración
|
410 |
+
if st.checkbox(t.get("show_debug_data", "Mostrar datos de depuración")):
|
411 |
+
st.write(t.get("student_debug_data", "Datos del estudiante (para depuración):"))
|
412 |
+
st.json(student_data)
|
413 |
+
|
414 |
+
# Mostrar conteo de tipos de análisis
|
415 |
+
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
|
416 |
+
type_counts = {t: analysis_types.count(t) for t in set(analysis_types)}
|
417 |
+
st.write("Conteo de tipos de análisis:")
|
418 |
+
st.write(type_counts)
|
419 |
+
|
420 |
+
|
421 |
+
#############################--- Update 16:00 24-9 #########################################
|
422 |
+
def display_student_progress(username, lang_code, t, student_data):
|
423 |
+
try:
|
424 |
+
st.subheader(t.get('student_activities', 'Student Activitie'))
|
425 |
+
|
426 |
+
if not student_data or all(len(student_data.get(key, [])) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
|
427 |
+
st.warning(t.get('no_data_warning', 'No analysis data found for this student.'))
|
428 |
+
return
|
429 |
+
|
430 |
+
# Resumen de actividades
|
431 |
+
total_analyses = sum(len(student_data.get(key, [])) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
|
432 |
+
st.write(f"{t.get('total_analyses', 'Total analyses performed')}: {total_analyses}")
|
433 |
+
|
434 |
+
# Gráfico de tipos de análisis
|
435 |
+
analysis_counts = {
|
436 |
+
t.get('morpho_analyses', 'Morphosyntactic Analyses'): len(student_data.get('morphosyntax_analyses', [])),
|
437 |
+
t.get('semantic_analyses', 'Semantic Analyses'): len(student_data.get('semantic_analyses', [])),
|
438 |
+
t.get('discourse_analyses', 'Discourse Analyses'): len(student_data.get('discourse_analyses', []))
|
439 |
+
}
|
440 |
+
# Configurar el estilo de seaborn para un aspecto más atractivo
|
441 |
+
sns.set_style("whitegrid")
|
442 |
+
|
443 |
+
# Crear una figura más pequeña
|
444 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
445 |
+
|
446 |
+
# Usar colores más atractivos
|
447 |
+
colors = ['#ff9999', '#66b3ff', '#99ff99']
|
448 |
+
|
449 |
+
# Crear el gráfico de barras
|
450 |
+
bars = ax.bar(analysis_counts.keys(), analysis_counts.values(), color=colors)
|
451 |
+
|
452 |
+
# Añadir etiquetas de valor encima de cada barra
|
453 |
+
for bar in bars:
|
454 |
+
height = bar.get_height()
|
455 |
+
ax.text(bar.get_x() + bar.get_width()/2., height,
|
456 |
+
f'{height}',
|
457 |
+
ha='center', va='bottom')
|
458 |
+
|
459 |
+
# Configurar el título y las etiquetas
|
460 |
+
ax.set_title(t.get('analysis_types_chart', 'Types of analyses performed'), fontsize=12)
|
461 |
+
ax.set_ylabel(t.get('count', 'Count'), fontsize=10)
|
462 |
+
|
463 |
+
# Rotar las etiquetas del eje x para mejor legibilidad
|
464 |
+
plt.xticks(rotation=45, ha='right')
|
465 |
+
|
466 |
+
# Ajustar el diseño para que todo quepa
|
467 |
+
plt.tight_layout()
|
468 |
+
|
469 |
+
# Mostrar el gráfico en Streamlit
|
470 |
+
st.pyplot(fig)
|
471 |
+
|
472 |
+
# Mostrar los últimos análisis
|
473 |
+
for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
|
474 |
+
with st.expander(t.get(f'{analysis_type}_expander', f'{analysis_type.capitalize()} History')):
|
475 |
+
for analysis in student_data.get(analysis_type, [])[:5]: # Mostrar los últimos 5
|
476 |
+
st.subheader(f"{t.get('analysis_from', 'Analysis from')} {analysis.get('timestamp', 'N/A')}")
|
477 |
+
if analysis_type == 'morphosyntax_analyses':
|
478 |
+
if 'arc_diagrams' in analysis:
|
479 |
+
st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
|
480 |
+
elif analysis_type == 'semantic_analyses':
|
481 |
+
if 'key_concepts' in analysis:
|
482 |
+
st.write(t.get('key_concepts', 'Key concepts'))
|
483 |
+
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
|
484 |
+
if 'graph' in analysis:
|
485 |
+
st.image(base64.b64decode(analysis['graph']))
|
486 |
+
elif analysis_type == 'discourse_analyses':
|
487 |
+
for i in [1, 2]:
|
488 |
+
if f'key_concepts{i}' in analysis:
|
489 |
+
st.write(f"{t.get('key_concepts', 'Key concepts')} {t.get('document', 'Document')} {i}")
|
490 |
+
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
|
491 |
+
if 'combined_graph' in analysis:
|
492 |
+
st.image(base64.b64decode(analysis['combined_graph']))
|
493 |
+
|
494 |
+
# Mostrar el historial de chat
|
495 |
+
with st.expander(t.get('chat_history_expander', 'Chat History')):
|
496 |
+
for chat in student_data.get('chat_history', [])[:5]: # Mostrar las últimas 5 conversaciones
|
497 |
+
st.subheader(f"{t.get('chat_from', 'Chat from')} {chat.get('timestamp', 'N/A')}")
|
498 |
+
for message in chat.get('messages', []):
|
499 |
+
st.write(f"{message.get('role', 'Unknown').capitalize()}: {message.get('content', 'No content')}")
|
500 |
+
st.write("---")
|
501 |
+
|
502 |
+
except Exception as e:
|
503 |
+
logger.error(f"Error in display_student_progress: {str(e)}", exc_info=True)
|
504 |
+
st.error(t.get('error_loading_progress', 'Error loading student progress. Please try again later.'))
|
505 |
+
|
506 |
+
|
507 |
+
|
508 |
+
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
|
513 |
+
|
514 |
+
|
515 |
+
|
516 |
+
|
517 |
+
|
518 |
+
|
519 |
+
|
520 |
+
|
521 |
+
|
522 |
+
|
523 |
+
|
524 |
+
|
525 |
+
|
526 |
+
|
527 |
+
|
528 |
+
|
529 |
+
|
530 |
+
|
531 |
+
|
532 |
+
#####################################################################
|
533 |
+
def display_student_progress(username, lang_code, t, student_data):
|
534 |
+
st.subheader(t['student_progress'])
|
535 |
+
|
536 |
+
if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
|
537 |
+
st.warning(t['no_data_warning'])
|
538 |
+
return
|
539 |
+
|
540 |
+
# Resumen de actividades
|
541 |
+
total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
|
542 |
+
st.write(f"{t['total_analyses']}: {total_analyses}")
|
543 |
+
|
544 |
+
# Gráfico de tipos de análisis
|
545 |
+
analysis_counts = {
|
546 |
+
t['morpho_analyses']: len(student_data['morphosyntax_analyses']),
|
547 |
+
t['semantic_analyses']: len(student_data['semantic_analyses']),
|
548 |
+
t['discourse_analyses']: len(student_data['discourse_analyses'])
|
549 |
+
}
|
550 |
+
fig, ax = plt.subplots()
|
551 |
+
ax.bar(analysis_counts.keys(), analysis_counts.values())
|
552 |
+
ax.set_title(t['analysis_types_chart'])
|
553 |
+
st.pyplot(fig)
|
554 |
+
|
555 |
+
# Mostrar los últimos análisis
|
556 |
+
for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
|
557 |
+
with st.expander(t[f'{analysis_type}_expander']):
|
558 |
+
for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5
|
559 |
+
st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")
|
560 |
+
if analysis_type == 'morphosyntax_analyses':
|
561 |
+
if 'arc_diagrams' in analysis:
|
562 |
+
st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
|
563 |
+
elif analysis_type == 'semantic_analyses':
|
564 |
+
if 'key_concepts' in analysis:
|
565 |
+
st.write(t['key_concepts'])
|
566 |
+
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
|
567 |
+
if 'graph' in analysis:
|
568 |
+
st.image(base64.b64decode(analysis['graph']))
|
569 |
+
elif analysis_type == 'discourse_analyses':
|
570 |
+
for i in [1, 2]:
|
571 |
+
if f'key_concepts{i}' in analysis:
|
572 |
+
st.write(f"{t['key_concepts']} {t['document']} {i}")
|
573 |
+
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
|
574 |
+
if 'combined_graph' in analysis:
|
575 |
+
st.image(base64.b64decode(analysis['combined_graph']))
|
576 |
+
|
577 |
+
# Mostrar el historial de chat
|
578 |
+
with st.expander(t['chat_history_expander']):
|
579 |
+
for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
|
580 |
+
st.subheader(f"{t['chat_from']} {chat['timestamp']}")
|
581 |
+
for message in chat['messages']:
|
582 |
+
st.write(f"{message['role'].capitalize()}: {message['content']}")
|
583 |
+
st.write("---")
|
584 |
+
|
585 |
+
|
586 |
+
|
587 |
+
def display_student_progress(username, lang_code, t, student_data):
|
588 |
+
st.subheader(t['student_activities'])
|
589 |
+
|
590 |
+
if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
|
591 |
+
st.warning(t['no_data_warning'])
|
592 |
+
return
|
593 |
+
|
594 |
+
# Resumen de actividades
|
595 |
+
total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
|
596 |
+
st.write(f"{t['total_analyses']}: {total_analyses}")
|
597 |
+
|
598 |
+
# Gráfico de tipos de análisis
|
599 |
+
analysis_counts = {
|
600 |
+
t['morphological_analysis']: len(student_data['morphosyntax_analyses']),
|
601 |
+
t['semantic_analyses']: len(student_data['semantic_analyses']),
|
602 |
+
t['discourse_analyses']: len(student_data['discourse_analyses'])
|
603 |
+
}
|
604 |
+
fig, ax = plt.subplots()
|
605 |
+
ax.bar(analysis_counts.keys(), analysis_counts.values())
|
606 |
+
ax.set_title(t['analysis_types_chart'])
|
607 |
+
st.pyplot(fig)
|
608 |
+
|
609 |
+
# Mostrar los últimos análisis
|
610 |
+
for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
|
611 |
+
with st.expander(t[f'{analysis_type}_expander']):
|
612 |
+
for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5
|
613 |
+
st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")
|
614 |
+
if analysis_type == 'morphosyntax_analyses':
|
615 |
+
if 'arc_diagrams' in analysis:
|
616 |
+
st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
|
617 |
+
elif analysis_type == 'semantic_analyses':
|
618 |
+
if 'key_concepts' in analysis:
|
619 |
+
st.write(t['key_concepts'])
|
620 |
+
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
|
621 |
+
if 'graph' in analysis:
|
622 |
+
st.image(base64.b64decode(analysis['graph']))
|
623 |
+
elif analysis_type == 'discourse_analyses':
|
624 |
+
for i in [1, 2]:
|
625 |
+
if f'key_concepts{i}' in analysis:
|
626 |
+
st.write(f"{t['key_concepts']} {t['document']} {i}")
|
627 |
+
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
|
628 |
+
if 'combined_graph' in analysis:
|
629 |
+
st.image(base64.b64decode(analysis['combined_graph']))
|
630 |
+
|
631 |
+
# Mostrar el historial de chat
|
632 |
+
with st.expander(t['chat_history_expander']):
|
633 |
+
for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
|
634 |
+
st.subheader(f"{t['chat_from']} {chat['timestamp']}")
|
635 |
+
for message in chat['messages']:
|
636 |
+
st.write(f"{message['role'].capitalize()}: {message['content']}")
|
637 |
+
st.write("---")
|
638 |
+
|
639 |
+
|
640 |
+
|
641 |
+
|
642 |
+
def display_student_progress(username, lang_code, t, student_data):
|
643 |
+
st.subheader(t['student_activities'])
|
644 |
+
|
645 |
+
if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
|
646 |
+
st.warning(t['no_data_warning'])
|
647 |
+
return
|
648 |
+
|
649 |
+
# Resumen de actividades
|
650 |
+
total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
|
651 |
+
st.write(f"{t['total_analyses']}: {total_analyses}")
|
652 |
+
|
653 |
+
# Gráfico de tipos de análisis
|
654 |
+
analysis_counts = {
|
655 |
+
t['morphological_analysis']: len(student_data['morphosyntax_analyses']),
|
656 |
+
t['semantic_analyses']: len(student_data['semantic_analyses']),
|
657 |
+
t['discourse_analyses']: len(student_data['discourse_analyses'])
|
658 |
+
}
|
659 |
+
fig, ax = plt.subplots()
|
660 |
+
ax.bar(analysis_counts.keys(), analysis_counts.values())
|
661 |
+
ax.set_title(t['analysis_types_chart'])
|
662 |
+
st.pyplot(fig)
|
663 |
+
|
664 |
+
# Mostrar los últimos análisis
|
665 |
+
for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
|
666 |
+
with st.expander(t[f'{analysis_type}_expander']):
|
667 |
+
for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5
|
668 |
+
st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")
|
669 |
+
if analysis_type == 'morphosyntax_analyses':
|
670 |
+
if 'arc_diagrams' in analysis:
|
671 |
+
st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
|
672 |
+
elif analysis_type == 'semantic_analyses':
|
673 |
+
if 'key_concepts' in analysis:
|
674 |
+
st.write(t['key_concepts'])
|
675 |
+
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
|
676 |
+
if 'graph' in analysis:
|
677 |
+
st.image(base64.b64decode(analysis['graph']))
|
678 |
+
elif analysis_type == 'discourse_analyses':
|
679 |
+
for i in [1, 2]:
|
680 |
+
if f'key_concepts{i}' in analysis:
|
681 |
+
st.write(f"{t['key_concepts']} {t['document']} {i}")
|
682 |
+
st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
|
683 |
+
if 'combined_graph' in analysis:
|
684 |
+
st.image(base64.b64decode(analysis['combined_graph']))
|
685 |
+
|
686 |
+
# Mostrar el historial de chat
|
687 |
+
with st.expander(t['chat_history_expander']):
|
688 |
+
for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
|
689 |
+
st.subheader(f"{t['chat_from']} {chat['timestamp']}")
|
690 |
+
for message in chat['messages']:
|
691 |
+
st.write(f"{message['role'].capitalize()}: {message['content']}")
|
692 |
+
st.write("---")
|
693 |
+
|
694 |
+
|
695 |
+
|
696 |
+
|
697 |
+
def display_student_progress(username, lang_code, t):
|
698 |
+
st.subheader(t['student_activities'])
|
699 |
+
st.write(f"{t['activities_message']} {username}")
|
700 |
+
|
701 |
+
# Aquí puedes agregar más contenido estático o placeholder
|
702 |
+
st.info(t['activities_placeholder'])
|
703 |
+
|
704 |
+
# Si necesitas mostrar algún dato, puedes usar datos de ejemplo o placeholders
|
705 |
+
col1, col2, col3 = st.columns(3)
|
706 |
+
col1.metric(t['morpho_analyses'], "5") # Ejemplo de dato
|
707 |
+
col2.metric(t['semantic_analyses'], "3") # Ejemplo de dato
|
708 |
+
col3.metric(t['discourse_analyses'], "2") # Ejemplo de dato
|
709 |
+
|
710 |
+
|
711 |
+
|
712 |
+
def display_student_progress(username, lang_code, t):
|
713 |
+
st.title(f"Actividades de {username}")
|
714 |
+
|
715 |
+
# Obtener todos los datos del estudiante
|
716 |
+
student_data = get_student_data(username)
|
717 |
+
|
718 |
+
if not student_data or len(student_data.get('entries', [])) == 0:
|
719 |
+
st.warning("No se encontraron datos de análisis para este estudiante.")
|
720 |
+
st.info("Intenta realizar algunos análisis de texto primero.")
|
721 |
+
return
|
722 |
+
|
723 |
+
# Resumen de actividades
|
724 |
+
with st.expander("Resumen de Actividades", expanded=True):
|
725 |
+
total_entries = len(student_data['entries'])
|
726 |
+
st.write(f"Total de análisis realizados: {total_entries}")
|
727 |
+
|
728 |
+
# Gráfico de tipos de análisis
|
729 |
+
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
|
730 |
+
analysis_counts = pd.Series(analysis_types).value_counts()
|
731 |
+
fig, ax = plt.subplots()
|
732 |
+
analysis_counts.plot(kind='bar', ax=ax)
|
733 |
+
ax.set_title("Tipos de análisis realizados")
|
734 |
+
ax.set_xlabel("Tipo de análisis")
|
735 |
+
ax.set_ylabel("Cantidad")
|
736 |
+
st.pyplot(fig)
|
737 |
+
|
738 |
+
# Histórico de Análisis Morfosintácticos
|
739 |
+
with st.expander("Histórico de Análisis Morfosintácticos"):
|
740 |
+
morpho_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
|
741 |
+
for analysis in morpho_analyses[:5]: # Mostrar los últimos 5
|
742 |
+
st.subheader(f"Análisis del {analysis['timestamp']}")
|
743 |
+
if 'arc_diagrams' in analysis:
|
744 |
+
st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
|
745 |
+
|
746 |
+
# Histórico de Análisis Semánticos
|
747 |
+
with st.expander("Histórico de Análisis Semánticos"):
|
748 |
+
semantic_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
|
749 |
+
for analysis in semantic_analyses[:5]: # Mostrar los últimos 5
|
750 |
+
st.subheader(f"Análisis del {analysis['timestamp']}")
|
751 |
+
if 'key_concepts' in analysis:
|
752 |
+
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis['key_concepts']])
|
753 |
+
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
|
754 |
+
if 'graph' in analysis:
|
755 |
+
try:
|
756 |
+
img_bytes = base64.b64decode(analysis['graph'])
|
757 |
+
st.image(img_bytes, caption="Gráfico de relaciones conceptuales")
|
758 |
+
except Exception as e:
|
759 |
+
st.error(f"No se pudo mostrar el gráfico: {str(e)}")
|
760 |
+
|
761 |
+
# Histórico de Análisis Discursivos
|
762 |
+
with st.expander("Histórico de Análisis Discursivos"):
|
763 |
+
discourse_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
|
764 |
+
for analysis in discourse_analyses[:5]: # Mostrar los últimos 5
|
765 |
+
st.subheader(f"Análisis del {analysis['timestamp']}")
|
766 |
+
for i in [1, 2]:
|
767 |
+
if f'key_concepts{i}' in analysis:
|
768 |
+
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis[f'key_concepts{i}']])
|
769 |
+
st.write(f"Conceptos clave del documento {i}:")
|
770 |
+
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
|
771 |
+
if 'combined_graph' in analysis:
|
772 |
+
try:
|
773 |
+
img_bytes = base64.b64decode(analysis['combined_graph'])
|
774 |
+
st.image(img_bytes)
|
775 |
+
except Exception as e:
|
776 |
+
st.error(f"No se pudo mostrar el gráfico combinado: {str(e)}")
|
777 |
+
|
778 |
+
# Histórico de Conversaciones con el ChatBot
|
779 |
+
with st.expander("Histórico de Conversaciones con el ChatBot"):
|
780 |
+
if 'chat_history' in student_data:
|
781 |
+
for i, chat in enumerate(student_data['chat_history'][:5]): # Mostrar las últimas 5 conversaciones
|
782 |
+
st.subheader(f"Conversación {i+1} - {chat['timestamp']}")
|
783 |
+
for message in chat['messages']:
|
784 |
+
st.write(f"{message['role'].capitalize()}: {message['content']}")
|
785 |
+
st.write("---")
|
786 |
+
else:
|
787 |
+
st.write("No se encontraron conversaciones con el ChatBot.")
|
788 |
+
|
789 |
+
# Opción para mostrar datos de depuración
|
790 |
+
if st.checkbox("Mostrar datos de depuración"):
|
791 |
+
st.write("Datos del estudiante (para depuración):")
|
792 |
+
st.json(student_data)
|
793 |
+
|
794 |
'''
|
modules/studentact/student_activities_v2-error.py
CHANGED
@@ -1,251 +1,251 @@
|
|
1 |
-
##############
|
2 |
-
###modules/studentact/student_activities_v2.py
|
3 |
-
|
4 |
-
import streamlit as st
|
5 |
-
import re
|
6 |
-
import io
|
7 |
-
from io import BytesIO
|
8 |
-
import pandas as pd
|
9 |
-
import numpy as np
|
10 |
-
import time
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
-
from datetime import datetime
|
13 |
-
from spacy import displacy
|
14 |
-
import random
|
15 |
-
import base64
|
16 |
-
import seaborn as sns
|
17 |
-
import logging
|
18 |
-
|
19 |
-
# Importaciones de la base de datos
|
20 |
-
from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis
|
21 |
-
from ..database.semantic_mongo_db import get_student_semantic_analysis
|
22 |
-
from ..database.discourse_mongo_db import get_student_discourse_analysis
|
23 |
-
from ..database.chat_mongo_db import get_chat_history
|
24 |
-
|
25 |
-
logger = logging.getLogger(__name__)
|
26 |
-
|
27 |
-
###################################################################################
|
28 |
-
def display_student_activities(username: str, lang_code: str, t: dict):
|
29 |
-
"""
|
30 |
-
Muestra todas las actividades del estudiante
|
31 |
-
Args:
|
32 |
-
username: Nombre del estudiante
|
33 |
-
lang_code: Código del idioma
|
34 |
-
t: Diccionario de traducciones
|
35 |
-
"""
|
36 |
-
try:
|
37 |
-
st.header(t.get('activities_title', 'Mis Actividades'))
|
38 |
-
|
39 |
-
# Tabs para diferentes tipos de análisis
|
40 |
-
tabs = st.tabs([
|
41 |
-
t.get('morpho_activities', 'Análisis Morfosintáctico'),
|
42 |
-
t.get('semantic_activities', 'Análisis Semántico'),
|
43 |
-
t.get('discourse_activities', 'Análisis del Discurso'),
|
44 |
-
t.get('chat_activities', 'Conversaciones con el Asistente')
|
45 |
-
])
|
46 |
-
|
47 |
-
# Tab de Análisis Morfosintáctico
|
48 |
-
with tabs[0]:
|
49 |
-
display_morphosyntax_activities(username, t)
|
50 |
-
|
51 |
-
# Tab de Análisis Semántico
|
52 |
-
with tabs[1]:
|
53 |
-
display_semantic_activities(username, t)
|
54 |
-
|
55 |
-
# Tab de Análisis del Discurso
|
56 |
-
with tabs[2]:
|
57 |
-
display_discourse_activities(username, t)
|
58 |
-
|
59 |
-
# Tab de Conversaciones del Chat
|
60 |
-
with tabs[3]:
|
61 |
-
display_chat_activities(username, t)
|
62 |
-
|
63 |
-
except Exception as e:
|
64 |
-
logger.error(f"Error mostrando actividades: {str(e)}")
|
65 |
-
st.error(t.get('error_loading_activities', 'Error al cargar las actividades'))
|
66 |
-
|
67 |
-
###################################################################################
|
68 |
-
def display_morphosyntax_activities(username: str, t: dict):
|
69 |
-
"""Muestra actividades de análisis morfosintáctico"""
|
70 |
-
try:
|
71 |
-
analyses = get_student_morphosyntax_analysis(username)
|
72 |
-
if not analyses:
|
73 |
-
st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados'))
|
74 |
-
return
|
75 |
-
|
76 |
-
for analysis in analyses:
|
77 |
-
with st.expander(
|
78 |
-
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
79 |
-
expanded=False
|
80 |
-
):
|
81 |
-
st.text(f"{t.get('analyzed_text', 'Texto analizado')}:")
|
82 |
-
st.write(analysis['text'])
|
83 |
-
|
84 |
-
if 'arc_diagrams' in analysis:
|
85 |
-
st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos'))
|
86 |
-
for diagram in analysis['arc_diagrams']:
|
87 |
-
st.write(diagram, unsafe_allow_html=True)
|
88 |
-
|
89 |
-
except Exception as e:
|
90 |
-
logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}")
|
91 |
-
st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico'))
|
92 |
-
|
93 |
-
###################################################################################
|
94 |
-
def display_semantic_activities(username: str, t: dict):
|
95 |
-
"""Muestra actividades de análisis semántico"""
|
96 |
-
try:
|
97 |
-
analyses = get_student_semantic_analysis(username)
|
98 |
-
if not analyses:
|
99 |
-
st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados'))
|
100 |
-
return
|
101 |
-
|
102 |
-
for analysis in analyses:
|
103 |
-
with st.expander(
|
104 |
-
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
105 |
-
expanded=False
|
106 |
-
):
|
107 |
-
|
108 |
-
# Mostrar conceptos clave
|
109 |
-
if 'key_concepts' in analysis:
|
110 |
-
st.subheader(t.get('key_concepts', 'Conceptos clave'))
|
111 |
-
df = pd.DataFrame(
|
112 |
-
analysis['key_concepts'],
|
113 |
-
columns=['Concepto', 'Frecuencia']
|
114 |
-
)
|
115 |
-
st.dataframe(df)
|
116 |
-
|
117 |
-
# Mostrar gráfico de conceptos
|
118 |
-
if 'concept_graph' in analysis and analysis['concept_graph']:
|
119 |
-
st.subheader(t.get('concept_graph', 'Grafo de conceptos'))
|
120 |
-
image_bytes = base64.b64decode(analysis['concept_graph'])
|
121 |
-
st.image(image_bytes)
|
122 |
-
|
123 |
-
except Exception as e:
|
124 |
-
logger.error(f"Error mostrando análisis semántico: {str(e)}")
|
125 |
-
st.error(t.get('error_semantic', 'Error al mostrar análisis semántico'))
|
126 |
-
|
127 |
-
###################################################################################
|
128 |
-
|
129 |
-
def display_discourse_activities(username: str, t: dict):
|
130 |
-
"""Muestra actividades de análisis del discurso"""
|
131 |
-
try:
|
132 |
-
analyses = get_student_discourse_analysis(username)
|
133 |
-
if not analyses:
|
134 |
-
st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados'))
|
135 |
-
return
|
136 |
-
|
137 |
-
for analysis in analyses:
|
138 |
-
with st.expander(
|
139 |
-
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
140 |
-
expanded=False
|
141 |
-
):
|
142 |
-
|
143 |
-
# Mostrar conceptos clave
|
144 |
-
if 'key_concepts1' in analysis and 'key_concepts2' in analysis:
|
145 |
-
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
146 |
-
|
147 |
-
col1, col2 = st.columns(2)
|
148 |
-
with col1:
|
149 |
-
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
150 |
-
df1 = pd.DataFrame(
|
151 |
-
analysis['key_concepts1'],
|
152 |
-
columns=['Concepto', 'Frecuencia']
|
153 |
-
)
|
154 |
-
st.dataframe(df1)
|
155 |
-
|
156 |
-
with col2:
|
157 |
-
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
158 |
-
df2 = pd.DataFrame(
|
159 |
-
analysis['key_concepts2'],
|
160 |
-
columns=['Concepto', 'Frecuencia']
|
161 |
-
)
|
162 |
-
st.dataframe(df2)
|
163 |
-
|
164 |
-
# Mostrar gráficos
|
165 |
-
if all(key in analysis for key in ['graph1', 'graph2']):
|
166 |
-
st.subheader(t.get('visualizations', 'Visualizaciones'))
|
167 |
-
|
168 |
-
col1, col2 = st.columns(2)
|
169 |
-
with col1:
|
170 |
-
st.markdown(f"**{t.get('graph_text_1', 'Grafo Texto 1')}**")
|
171 |
-
if analysis['graph1']:
|
172 |
-
image_bytes = base64.b64decode(analysis['graph1'])
|
173 |
-
st.image(image_bytes)
|
174 |
-
|
175 |
-
with col2:
|
176 |
-
st.markdown(f"**{t.get('graph_text_2', 'Grafo Texto 2')}**")
|
177 |
-
if analysis['graph2']:
|
178 |
-
image_bytes = base64.b64decode(analysis['graph2'])
|
179 |
-
st.image(image_bytes)
|
180 |
-
|
181 |
-
except Exception as e:
|
182 |
-
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
183 |
-
st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso'))
|
184 |
-
#################################################################################
|
185 |
-
|
186 |
-
def display_discourse_comparison(analysis: dict, t: dict):
|
187 |
-
"""Muestra la comparación de análisis del discurso"""
|
188 |
-
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
189 |
-
|
190 |
-
col1, col2 = st.columns(2)
|
191 |
-
with col1:
|
192 |
-
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
193 |
-
df1 = pd.DataFrame(analysis['key_concepts1'])
|
194 |
-
st.dataframe(df1)
|
195 |
-
|
196 |
-
with col2:
|
197 |
-
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
198 |
-
df2 = pd.DataFrame(analysis['key_concepts2'])
|
199 |
-
st.dataframe(df2)
|
200 |
-
|
201 |
-
#################################################################################
|
202 |
-
|
203 |
-
|
204 |
-
def display_chat_activities(username: str, t: dict):
|
205 |
-
"""
|
206 |
-
Muestra historial de conversaciones del chat
|
207 |
-
"""
|
208 |
-
try:
|
209 |
-
# Obtener historial del chat
|
210 |
-
chat_history = get_chat_history(
|
211 |
-
username=username,
|
212 |
-
analysis_type='sidebar',
|
213 |
-
limit=50
|
214 |
-
)
|
215 |
-
|
216 |
-
if not chat_history:
|
217 |
-
st.info(t.get('no_chat_history', 'No hay conversaciones registradas'))
|
218 |
-
return
|
219 |
-
|
220 |
-
for chat in reversed(chat_history): # Mostrar las más recientes primero
|
221 |
-
try:
|
222 |
-
# Convertir timestamp a datetime para formato
|
223 |
-
timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00'))
|
224 |
-
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
225 |
-
|
226 |
-
with st.expander(
|
227 |
-
f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}",
|
228 |
-
expanded=False
|
229 |
-
):
|
230 |
-
if 'messages' in chat and chat['messages']:
|
231 |
-
# Mostrar cada mensaje en la conversación
|
232 |
-
for message in chat['messages']:
|
233 |
-
role = message.get('role', 'unknown')
|
234 |
-
content = message.get('content', '')
|
235 |
-
|
236 |
-
# Usar el componente de chat de Streamlit
|
237 |
-
with st.chat_message(role):
|
238 |
-
st.markdown(content)
|
239 |
-
|
240 |
-
# Agregar separador entre mensajes
|
241 |
-
st.divider()
|
242 |
-
else:
|
243 |
-
st.warning(t.get('invalid_chat_format', 'Formato de chat no válido'))
|
244 |
-
|
245 |
-
except Exception as e:
|
246 |
-
logger.error(f"Error mostrando conversación: {str(e)}")
|
247 |
-
continue
|
248 |
-
|
249 |
-
except Exception as e:
|
250 |
-
logger.error(f"Error mostrando historial del chat: {str(e)}")
|
251 |
st.error(t.get('error_chat', 'Error al mostrar historial del chat'))
|
|
|
1 |
+
##############
|
2 |
+
###modules/studentact/student_activities_v2.py
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
import re
|
6 |
+
import io
|
7 |
+
from io import BytesIO
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
import time
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from datetime import datetime
|
13 |
+
from spacy import displacy
|
14 |
+
import random
|
15 |
+
import base64
|
16 |
+
import seaborn as sns
|
17 |
+
import logging
|
18 |
+
|
19 |
+
# Importaciones de la base de datos
|
20 |
+
from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis
|
21 |
+
from ..database.semantic_mongo_db import get_student_semantic_analysis
|
22 |
+
from ..database.discourse_mongo_db import get_student_discourse_analysis
|
23 |
+
from ..database.chat_mongo_db import get_chat_history
|
24 |
+
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
###################################################################################
|
28 |
+
def display_student_activities(username: str, lang_code: str, t: dict):
|
29 |
+
"""
|
30 |
+
Muestra todas las actividades del estudiante
|
31 |
+
Args:
|
32 |
+
username: Nombre del estudiante
|
33 |
+
lang_code: Código del idioma
|
34 |
+
t: Diccionario de traducciones
|
35 |
+
"""
|
36 |
+
try:
|
37 |
+
st.header(t.get('activities_title', 'Mis Actividades'))
|
38 |
+
|
39 |
+
# Tabs para diferentes tipos de análisis
|
40 |
+
tabs = st.tabs([
|
41 |
+
t.get('morpho_activities', 'Análisis Morfosintáctico'),
|
42 |
+
t.get('semantic_activities', 'Análisis Semántico'),
|
43 |
+
t.get('discourse_activities', 'Análisis del Discurso'),
|
44 |
+
t.get('chat_activities', 'Conversaciones con el Asistente')
|
45 |
+
])
|
46 |
+
|
47 |
+
# Tab de Análisis Morfosintáctico
|
48 |
+
with tabs[0]:
|
49 |
+
display_morphosyntax_activities(username, t)
|
50 |
+
|
51 |
+
# Tab de Análisis Semántico
|
52 |
+
with tabs[1]:
|
53 |
+
display_semantic_activities(username, t)
|
54 |
+
|
55 |
+
# Tab de Análisis del Discurso
|
56 |
+
with tabs[2]:
|
57 |
+
display_discourse_activities(username, t)
|
58 |
+
|
59 |
+
# Tab de Conversaciones del Chat
|
60 |
+
with tabs[3]:
|
61 |
+
display_chat_activities(username, t)
|
62 |
+
|
63 |
+
except Exception as e:
|
64 |
+
logger.error(f"Error mostrando actividades: {str(e)}")
|
65 |
+
st.error(t.get('error_loading_activities', 'Error al cargar las actividades'))
|
66 |
+
|
67 |
+
###################################################################################
|
68 |
+
def display_morphosyntax_activities(username: str, t: dict):
|
69 |
+
"""Muestra actividades de análisis morfosintáctico"""
|
70 |
+
try:
|
71 |
+
analyses = get_student_morphosyntax_analysis(username)
|
72 |
+
if not analyses:
|
73 |
+
st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados'))
|
74 |
+
return
|
75 |
+
|
76 |
+
for analysis in analyses:
|
77 |
+
with st.expander(
|
78 |
+
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
79 |
+
expanded=False
|
80 |
+
):
|
81 |
+
st.text(f"{t.get('analyzed_text', 'Texto analizado')}:")
|
82 |
+
st.write(analysis['text'])
|
83 |
+
|
84 |
+
if 'arc_diagrams' in analysis:
|
85 |
+
st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos'))
|
86 |
+
for diagram in analysis['arc_diagrams']:
|
87 |
+
st.write(diagram, unsafe_allow_html=True)
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}")
|
91 |
+
st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico'))
|
92 |
+
|
93 |
+
###################################################################################
|
94 |
+
def display_semantic_activities(username: str, t: dict):
|
95 |
+
"""Muestra actividades de análisis semántico"""
|
96 |
+
try:
|
97 |
+
analyses = get_student_semantic_analysis(username)
|
98 |
+
if not analyses:
|
99 |
+
st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados'))
|
100 |
+
return
|
101 |
+
|
102 |
+
for analysis in analyses:
|
103 |
+
with st.expander(
|
104 |
+
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
105 |
+
expanded=False
|
106 |
+
):
|
107 |
+
|
108 |
+
# Mostrar conceptos clave
|
109 |
+
if 'key_concepts' in analysis:
|
110 |
+
st.subheader(t.get('key_concepts', 'Conceptos clave'))
|
111 |
+
df = pd.DataFrame(
|
112 |
+
analysis['key_concepts'],
|
113 |
+
columns=['Concepto', 'Frecuencia']
|
114 |
+
)
|
115 |
+
st.dataframe(df)
|
116 |
+
|
117 |
+
# Mostrar gráfico de conceptos
|
118 |
+
if 'concept_graph' in analysis and analysis['concept_graph']:
|
119 |
+
st.subheader(t.get('concept_graph', 'Grafo de conceptos'))
|
120 |
+
image_bytes = base64.b64decode(analysis['concept_graph'])
|
121 |
+
st.image(image_bytes)
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
logger.error(f"Error mostrando análisis semántico: {str(e)}")
|
125 |
+
st.error(t.get('error_semantic', 'Error al mostrar análisis semántico'))
|
126 |
+
|
127 |
+
###################################################################################
|
128 |
+
|
129 |
+
def display_discourse_activities(username: str, t: dict):
|
130 |
+
"""Muestra actividades de análisis del discurso"""
|
131 |
+
try:
|
132 |
+
analyses = get_student_discourse_analysis(username)
|
133 |
+
if not analyses:
|
134 |
+
st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados'))
|
135 |
+
return
|
136 |
+
|
137 |
+
for analysis in analyses:
|
138 |
+
with st.expander(
|
139 |
+
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
140 |
+
expanded=False
|
141 |
+
):
|
142 |
+
|
143 |
+
# Mostrar conceptos clave
|
144 |
+
if 'key_concepts1' in analysis and 'key_concepts2' in analysis:
|
145 |
+
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
146 |
+
|
147 |
+
col1, col2 = st.columns(2)
|
148 |
+
with col1:
|
149 |
+
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
150 |
+
df1 = pd.DataFrame(
|
151 |
+
analysis['key_concepts1'],
|
152 |
+
columns=['Concepto', 'Frecuencia']
|
153 |
+
)
|
154 |
+
st.dataframe(df1)
|
155 |
+
|
156 |
+
with col2:
|
157 |
+
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
158 |
+
df2 = pd.DataFrame(
|
159 |
+
analysis['key_concepts2'],
|
160 |
+
columns=['Concepto', 'Frecuencia']
|
161 |
+
)
|
162 |
+
st.dataframe(df2)
|
163 |
+
|
164 |
+
# Mostrar gráficos
|
165 |
+
if all(key in analysis for key in ['graph1', 'graph2']):
|
166 |
+
st.subheader(t.get('visualizations', 'Visualizaciones'))
|
167 |
+
|
168 |
+
col1, col2 = st.columns(2)
|
169 |
+
with col1:
|
170 |
+
st.markdown(f"**{t.get('graph_text_1', 'Grafo Texto 1')}**")
|
171 |
+
if analysis['graph1']:
|
172 |
+
image_bytes = base64.b64decode(analysis['graph1'])
|
173 |
+
st.image(image_bytes)
|
174 |
+
|
175 |
+
with col2:
|
176 |
+
st.markdown(f"**{t.get('graph_text_2', 'Grafo Texto 2')}**")
|
177 |
+
if analysis['graph2']:
|
178 |
+
image_bytes = base64.b64decode(analysis['graph2'])
|
179 |
+
st.image(image_bytes)
|
180 |
+
|
181 |
+
except Exception as e:
|
182 |
+
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
183 |
+
st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso'))
|
184 |
+
#################################################################################
|
185 |
+
|
186 |
+
def display_discourse_comparison(analysis: dict, t: dict):
|
187 |
+
"""Muestra la comparación de análisis del discurso"""
|
188 |
+
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
189 |
+
|
190 |
+
col1, col2 = st.columns(2)
|
191 |
+
with col1:
|
192 |
+
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
193 |
+
df1 = pd.DataFrame(analysis['key_concepts1'])
|
194 |
+
st.dataframe(df1)
|
195 |
+
|
196 |
+
with col2:
|
197 |
+
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
198 |
+
df2 = pd.DataFrame(analysis['key_concepts2'])
|
199 |
+
st.dataframe(df2)
|
200 |
+
|
201 |
+
#################################################################################
|
202 |
+
|
203 |
+
|
204 |
+
def display_chat_activities(username: str, t: dict):
|
205 |
+
"""
|
206 |
+
Muestra historial de conversaciones del chat
|
207 |
+
"""
|
208 |
+
try:
|
209 |
+
# Obtener historial del chat
|
210 |
+
chat_history = get_chat_history(
|
211 |
+
username=username,
|
212 |
+
analysis_type='sidebar',
|
213 |
+
limit=50
|
214 |
+
)
|
215 |
+
|
216 |
+
if not chat_history:
|
217 |
+
st.info(t.get('no_chat_history', 'No hay conversaciones registradas'))
|
218 |
+
return
|
219 |
+
|
220 |
+
for chat in reversed(chat_history): # Mostrar las más recientes primero
|
221 |
+
try:
|
222 |
+
# Convertir timestamp a datetime para formato
|
223 |
+
timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00'))
|
224 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
225 |
+
|
226 |
+
with st.expander(
|
227 |
+
f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}",
|
228 |
+
expanded=False
|
229 |
+
):
|
230 |
+
if 'messages' in chat and chat['messages']:
|
231 |
+
# Mostrar cada mensaje en la conversación
|
232 |
+
for message in chat['messages']:
|
233 |
+
role = message.get('role', 'unknown')
|
234 |
+
content = message.get('content', '')
|
235 |
+
|
236 |
+
# Usar el componente de chat de Streamlit
|
237 |
+
with st.chat_message(role):
|
238 |
+
st.markdown(content)
|
239 |
+
|
240 |
+
# Agregar separador entre mensajes
|
241 |
+
st.divider()
|
242 |
+
else:
|
243 |
+
st.warning(t.get('invalid_chat_format', 'Formato de chat no válido'))
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
logger.error(f"Error mostrando conversación: {str(e)}")
|
247 |
+
continue
|
248 |
+
|
249 |
+
except Exception as e:
|
250 |
+
logger.error(f"Error mostrando historial del chat: {str(e)}")
|
251 |
st.error(t.get('error_chat', 'Error al mostrar historial del chat'))
|
modules/studentact/student_activities_v2.py
CHANGED
@@ -1,282 +1,571 @@
|
|
1 |
-
##############
|
2 |
-
###modules/studentact/student_activities_v2.py
|
3 |
-
|
4 |
-
import streamlit as st
|
5 |
-
import re
|
6 |
-
import io
|
7 |
-
from io import BytesIO
|
8 |
-
import pandas as pd
|
9 |
-
import numpy as np
|
10 |
-
import time
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
-
from datetime import datetime
|
13 |
-
from spacy import displacy
|
14 |
-
import random
|
15 |
-
import base64
|
16 |
-
import seaborn as sns
|
17 |
-
import logging
|
18 |
-
|
19 |
-
# Importaciones de la base de datos
|
20 |
-
from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis
|
21 |
-
from ..database.semantic_mongo_db import get_student_semantic_analysis
|
22 |
-
from ..database.discourse_mongo_db import get_student_discourse_analysis
|
23 |
-
from ..database.chat_mongo_db import get_chat_history
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##############
|
2 |
+
###modules/studentact/student_activities_v2.py
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
import re
|
6 |
+
import io
|
7 |
+
from io import BytesIO
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
import time
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from datetime import datetime, timedelta
|
13 |
+
from spacy import displacy
|
14 |
+
import random
|
15 |
+
import base64
|
16 |
+
import seaborn as sns
|
17 |
+
import logging
|
18 |
+
|
19 |
+
# Importaciones de la base de datos
|
20 |
+
from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis
|
21 |
+
from ..database.semantic_mongo_db import get_student_semantic_analysis
|
22 |
+
from ..database.discourse_mongo_db import get_student_discourse_analysis
|
23 |
+
from ..database.chat_mongo_db import get_chat_history
|
24 |
+
from ..database.current_situation_mongo_db import get_current_situation_analysis
|
25 |
+
from ..database.claude_recommendations_mongo_db import get_claude_recommendations
|
26 |
+
|
27 |
+
# Importar la función generate_unique_key
|
28 |
+
from ..utils.widget_utils import generate_unique_key
|
29 |
+
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
###################################################################################
|
33 |
+
|
34 |
+
def display_student_activities(username: str, lang_code: str, t: dict):
|
35 |
+
"""
|
36 |
+
Muestra todas las actividades del estudiante
|
37 |
+
Args:
|
38 |
+
username: Nombre del estudiante
|
39 |
+
lang_code: Código del idioma
|
40 |
+
t: Diccionario de traducciones
|
41 |
+
"""
|
42 |
+
try:
|
43 |
+
st.header(t.get('activities_title', 'Mis Actividades'))
|
44 |
+
|
45 |
+
# Tabs para diferentes tipos de análisis
|
46 |
+
tabs = st.tabs([
|
47 |
+
t.get('current_situation_activities', 'Mi Situación Actual'),
|
48 |
+
t.get('morpho_activities', 'Análisis Morfosintáctico'),
|
49 |
+
t.get('semantic_activities', 'Análisis Semántico'),
|
50 |
+
t.get('discourse_activities', 'Análisis del Discurso'),
|
51 |
+
t.get('chat_activities', 'Conversaciones con el Asistente')
|
52 |
+
])
|
53 |
+
|
54 |
+
# Tab de Situación Actual
|
55 |
+
with tabs[0]:
|
56 |
+
display_current_situation_activities(username, t)
|
57 |
+
|
58 |
+
# Tab de Análisis Morfosintáctico
|
59 |
+
with tabs[1]:
|
60 |
+
display_morphosyntax_activities(username, t)
|
61 |
+
|
62 |
+
# Tab de Análisis Semántico
|
63 |
+
with tabs[2]:
|
64 |
+
display_semantic_activities(username, t)
|
65 |
+
|
66 |
+
# Tab de Análisis del Discurso
|
67 |
+
with tabs[3]:
|
68 |
+
display_discourse_activities(username, t)
|
69 |
+
|
70 |
+
# Tab de Conversaciones del Chat
|
71 |
+
with tabs[4]:
|
72 |
+
display_chat_activities(username, t)
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
logger.error(f"Error mostrando actividades: {str(e)}")
|
76 |
+
st.error(t.get('error_loading_activities', 'Error al cargar las actividades'))
|
77 |
+
|
78 |
+
|
79 |
+
###############################################################################################
|
80 |
+
|
81 |
+
def display_current_situation_activities(username: str, t: dict):
|
82 |
+
"""
|
83 |
+
Muestra análisis de situación actual junto con las recomendaciones de Claude
|
84 |
+
unificando la información de ambas colecciones y emparejándolas por cercanía temporal.
|
85 |
+
"""
|
86 |
+
try:
|
87 |
+
# Recuperar datos de ambas colecciones
|
88 |
+
logger.info(f"Recuperando análisis de situación actual para {username}")
|
89 |
+
situation_analyses = get_current_situation_analysis(username, limit=10)
|
90 |
+
|
91 |
+
# Verificar si hay datos
|
92 |
+
if situation_analyses:
|
93 |
+
logger.info(f"Recuperados {len(situation_analyses)} análisis de situación")
|
94 |
+
# Depurar para ver la estructura de datos
|
95 |
+
for i, analysis in enumerate(situation_analyses):
|
96 |
+
logger.info(f"Análisis #{i+1}: Claves disponibles: {list(analysis.keys())}")
|
97 |
+
if 'metrics' in analysis:
|
98 |
+
logger.info(f"Métricas disponibles: {list(analysis['metrics'].keys())}")
|
99 |
+
else:
|
100 |
+
logger.warning("No se encontraron análisis de situación actual")
|
101 |
+
|
102 |
+
logger.info(f"Recuperando recomendaciones de Claude para {username}")
|
103 |
+
claude_recommendations = get_claude_recommendations(username)
|
104 |
+
|
105 |
+
if claude_recommendations:
|
106 |
+
logger.info(f"Recuperadas {len(claude_recommendations)} recomendaciones de Claude")
|
107 |
+
else:
|
108 |
+
logger.warning("No se encontraron recomendaciones de Claude")
|
109 |
+
|
110 |
+
# Verificar si hay algún tipo de análisis disponible
|
111 |
+
if not situation_analyses and not claude_recommendations:
|
112 |
+
logger.info("No se encontraron análisis de situación actual ni recomendaciones")
|
113 |
+
st.info(t.get('no_current_situation', 'No hay análisis de situación actual registrados'))
|
114 |
+
return
|
115 |
+
|
116 |
+
# Crear pares combinados emparejando diagnósticos y recomendaciones cercanos en tiempo
|
117 |
+
logger.info("Creando emparejamientos temporales de análisis")
|
118 |
+
|
119 |
+
# Convertir timestamps a objetos datetime para comparación
|
120 |
+
situation_times = []
|
121 |
+
for analysis in situation_analyses:
|
122 |
+
if 'timestamp' in analysis:
|
123 |
+
try:
|
124 |
+
timestamp_str = analysis['timestamp']
|
125 |
+
dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
126 |
+
situation_times.append((dt, analysis))
|
127 |
+
except Exception as e:
|
128 |
+
logger.error(f"Error parseando timestamp de situación: {str(e)}")
|
129 |
+
|
130 |
+
recommendation_times = []
|
131 |
+
for recommendation in claude_recommendations:
|
132 |
+
if 'timestamp' in recommendation:
|
133 |
+
try:
|
134 |
+
timestamp_str = recommendation['timestamp']
|
135 |
+
dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
136 |
+
recommendation_times.append((dt, recommendation))
|
137 |
+
except Exception as e:
|
138 |
+
logger.error(f"Error parseando timestamp de recomendación: {str(e)}")
|
139 |
+
|
140 |
+
# Ordenar por tiempo
|
141 |
+
situation_times.sort(key=lambda x: x[0], reverse=True)
|
142 |
+
recommendation_times.sort(key=lambda x: x[0], reverse=True)
|
143 |
+
|
144 |
+
# Crear pares combinados
|
145 |
+
combined_items = []
|
146 |
+
|
147 |
+
# Primero, procesar todas las situaciones encontrando la recomendación más cercana
|
148 |
+
for sit_time, situation in situation_times:
|
149 |
+
# Buscar la recomendación más cercana en tiempo
|
150 |
+
best_match = None
|
151 |
+
min_diff = timedelta(minutes=30) # Máxima diferencia de tiempo aceptable (30 minutos)
|
152 |
+
best_rec_time = None
|
153 |
+
|
154 |
+
for rec_time, recommendation in recommendation_times:
|
155 |
+
time_diff = abs(sit_time - rec_time)
|
156 |
+
if time_diff < min_diff:
|
157 |
+
min_diff = time_diff
|
158 |
+
best_match = recommendation
|
159 |
+
best_rec_time = rec_time
|
160 |
+
|
161 |
+
# Crear un elemento combinado
|
162 |
+
if best_match:
|
163 |
+
timestamp_key = sit_time.isoformat()
|
164 |
+
combined_items.append((timestamp_key, {
|
165 |
+
'situation': situation,
|
166 |
+
'recommendation': best_match,
|
167 |
+
'time_diff': min_diff.total_seconds()
|
168 |
+
}))
|
169 |
+
# Eliminar la recomendación usada para no reutilizarla
|
170 |
+
recommendation_times = [(t, r) for t, r in recommendation_times if t != best_rec_time]
|
171 |
+
logger.info(f"Emparejado: Diagnóstico {sit_time} con Recomendación {best_rec_time} (diferencia: {min_diff})")
|
172 |
+
else:
|
173 |
+
# Si no hay recomendación cercana, solo incluir la situación
|
174 |
+
timestamp_key = sit_time.isoformat()
|
175 |
+
combined_items.append((timestamp_key, {
|
176 |
+
'situation': situation
|
177 |
+
}))
|
178 |
+
logger.info(f"Sin emparejar: Diagnóstico {sit_time} sin recomendación cercana")
|
179 |
+
|
180 |
+
# Agregar recomendaciones restantes sin situación
|
181 |
+
for rec_time, recommendation in recommendation_times:
|
182 |
+
timestamp_key = rec_time.isoformat()
|
183 |
+
combined_items.append((timestamp_key, {
|
184 |
+
'recommendation': recommendation
|
185 |
+
}))
|
186 |
+
logger.info(f"Sin emparejar: Recomendación {rec_time} sin diagnóstico cercano")
|
187 |
+
|
188 |
+
# Ordenar por tiempo (más reciente primero)
|
189 |
+
combined_items.sort(key=lambda x: x[0], reverse=True)
|
190 |
+
|
191 |
+
logger.info(f"Procesando {len(combined_items)} elementos combinados")
|
192 |
+
|
193 |
+
# Mostrar cada par combinado
|
194 |
+
for i, (timestamp_key, analysis_pair) in enumerate(combined_items):
|
195 |
+
try:
|
196 |
+
# Obtener datos de situación y recomendación
|
197 |
+
situation_data = analysis_pair.get('situation', {})
|
198 |
+
recommendation_data = analysis_pair.get('recommendation', {})
|
199 |
+
time_diff = analysis_pair.get('time_diff')
|
200 |
+
|
201 |
+
# Si no hay ningún dato, continuar al siguiente
|
202 |
+
if not situation_data and not recommendation_data:
|
203 |
+
continue
|
204 |
+
|
205 |
+
# Determinar qué texto mostrar (priorizar el de la situación)
|
206 |
+
text_to_show = situation_data.get('text', recommendation_data.get('text', ''))
|
207 |
+
text_type = situation_data.get('text_type', recommendation_data.get('text_type', ''))
|
208 |
+
|
209 |
+
# Formatear fecha para mostrar
|
210 |
+
try:
|
211 |
+
# Usar timestamp del key que ya es un formato ISO
|
212 |
+
dt = datetime.fromisoformat(timestamp_key)
|
213 |
+
formatted_date = dt.strftime("%d/%m/%Y %H:%M:%S")
|
214 |
+
except Exception as date_error:
|
215 |
+
logger.error(f"Error formateando fecha: {str(date_error)}")
|
216 |
+
formatted_date = timestamp_key
|
217 |
+
|
218 |
+
# Determinar el título del expander
|
219 |
+
title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}"
|
220 |
+
if text_type:
|
221 |
+
text_type_display = {
|
222 |
+
'academic_article': t.get('academic_article', 'Artículo académico'),
|
223 |
+
'student_essay': t.get('student_essay', 'Trabajo universitario'),
|
224 |
+
'general_communication': t.get('general_communication', 'Comunicación general')
|
225 |
+
}.get(text_type, text_type)
|
226 |
+
title += f" - {text_type_display}"
|
227 |
+
|
228 |
+
# Añadir indicador de emparejamiento si existe
|
229 |
+
if time_diff is not None:
|
230 |
+
if time_diff < 60: # menos de un minuto
|
231 |
+
title += f" 🔄 (emparejados)"
|
232 |
+
else:
|
233 |
+
title += f" 🔄 (emparejados, diferencia: {int(time_diff//60)} min)"
|
234 |
+
|
235 |
+
# Usar un ID único para cada expander
|
236 |
+
expander_id = f"analysis_{i}_{timestamp_key.replace(':', '_')}"
|
237 |
+
|
238 |
+
# Mostrar el análisis en un expander
|
239 |
+
with st.expander(title, expanded=False):
|
240 |
+
# Mostrar texto analizado con key único
|
241 |
+
st.subheader(t.get('analyzed_text', 'Texto analizado'))
|
242 |
+
st.text_area(
|
243 |
+
"Text Content",
|
244 |
+
value=text_to_show,
|
245 |
+
height=100,
|
246 |
+
disabled=True,
|
247 |
+
label_visibility="collapsed",
|
248 |
+
key=f"text_area_{expander_id}"
|
249 |
+
)
|
250 |
+
|
251 |
+
# Crear tabs para separar diagnóstico y recomendaciones
|
252 |
+
diagnosis_tab, recommendations_tab = st.tabs([
|
253 |
+
t.get('diagnosis_tab', 'Diagnóstico'),
|
254 |
+
t.get('recommendations_tab', 'Recomendaciones')
|
255 |
+
])
|
256 |
+
|
257 |
+
# Tab de diagnóstico
|
258 |
+
with diagnosis_tab:
|
259 |
+
if situation_data and 'metrics' in situation_data:
|
260 |
+
metrics = situation_data['metrics']
|
261 |
+
|
262 |
+
# Dividir en dos columnas
|
263 |
+
col1, col2 = st.columns(2)
|
264 |
+
|
265 |
+
# Principales métricas en formato de tarjetas
|
266 |
+
with col1:
|
267 |
+
st.subheader(t.get('key_metrics', 'Métricas clave'))
|
268 |
+
|
269 |
+
# Mostrar cada métrica principal
|
270 |
+
for metric_name, metric_data in metrics.items():
|
271 |
+
try:
|
272 |
+
# Determinar la puntuación
|
273 |
+
score = None
|
274 |
+
if isinstance(metric_data, dict):
|
275 |
+
# Intentar diferentes nombres de campo
|
276 |
+
if 'normalized_score' in metric_data:
|
277 |
+
score = metric_data['normalized_score']
|
278 |
+
elif 'score' in metric_data:
|
279 |
+
score = metric_data['score']
|
280 |
+
elif 'value' in metric_data:
|
281 |
+
score = metric_data['value']
|
282 |
+
elif isinstance(metric_data, (int, float)):
|
283 |
+
score = metric_data
|
284 |
+
|
285 |
+
if score is not None:
|
286 |
+
# Asegurarse de que score es numérico
|
287 |
+
if isinstance(score, (int, float)):
|
288 |
+
# Determinar color y emoji basado en la puntuación
|
289 |
+
if score < 0.5:
|
290 |
+
emoji = "🔴"
|
291 |
+
color = "#ffcccc" # light red
|
292 |
+
elif score < 0.75:
|
293 |
+
emoji = "🟡"
|
294 |
+
color = "#ffffcc" # light yellow
|
295 |
+
else:
|
296 |
+
emoji = "🟢"
|
297 |
+
color = "#ccffcc" # light green
|
298 |
+
|
299 |
+
# Mostrar la métrica con estilo
|
300 |
+
st.markdown(f"""
|
301 |
+
<div style="background-color:{color}; padding:10px; border-radius:5px; margin-bottom:10px;">
|
302 |
+
<b>{emoji} {metric_name.capitalize()}:</b> {score:.2f}
|
303 |
+
</div>
|
304 |
+
""", unsafe_allow_html=True)
|
305 |
+
else:
|
306 |
+
# Si no es numérico, mostrar como texto
|
307 |
+
st.markdown(f"""
|
308 |
+
<div style="background-color:#f0f0f0; padding:10px; border-radius:5px; margin-bottom:10px;">
|
309 |
+
<b>ℹ️ {metric_name.capitalize()}:</b> {str(score)}
|
310 |
+
</div>
|
311 |
+
""", unsafe_allow_html=True)
|
312 |
+
except Exception as e:
|
313 |
+
logger.error(f"Error procesando métrica {metric_name}: {str(e)}")
|
314 |
+
|
315 |
+
# Mostrar detalles adicionales si están disponibles
|
316 |
+
with col2:
|
317 |
+
st.subheader(t.get('details', 'Detalles'))
|
318 |
+
|
319 |
+
# Para cada métrica, mostrar sus detalles si existen
|
320 |
+
for metric_name, metric_data in metrics.items():
|
321 |
+
try:
|
322 |
+
if isinstance(metric_data, dict):
|
323 |
+
# Mostrar detalles directamente o buscar en subcampos
|
324 |
+
details = None
|
325 |
+
if 'details' in metric_data and metric_data['details']:
|
326 |
+
details = metric_data['details']
|
327 |
+
else:
|
328 |
+
# Crear un diccionario con los detalles excluyendo 'normalized_score' y similares
|
329 |
+
details = {k: v for k, v in metric_data.items()
|
330 |
+
if k not in ['normalized_score', 'score', 'value']}
|
331 |
+
|
332 |
+
if details:
|
333 |
+
st.write(f"**{metric_name.capitalize()}**")
|
334 |
+
st.json(details, expanded=False)
|
335 |
+
except Exception as e:
|
336 |
+
logger.error(f"Error mostrando detalles de {metric_name}: {str(e)}")
|
337 |
+
else:
|
338 |
+
st.info(t.get('no_diagnosis', 'No hay datos de diagnóstico disponibles'))
|
339 |
+
|
340 |
+
# Tab de recomendaciones
|
341 |
+
with recommendations_tab:
|
342 |
+
if recommendation_data and 'recommendations' in recommendation_data:
|
343 |
+
st.markdown(f"""
|
344 |
+
<div style="padding: 20px; border-radius: 10px;
|
345 |
+
background-color: #f8f9fa; margin-bottom: 20px;">
|
346 |
+
{recommendation_data['recommendations']}
|
347 |
+
</div>
|
348 |
+
""", unsafe_allow_html=True)
|
349 |
+
elif recommendation_data and 'feedback' in recommendation_data:
|
350 |
+
st.markdown(f"""
|
351 |
+
<div style="padding: 20px; border-radius: 10px;
|
352 |
+
background-color: #f8f9fa; margin-bottom: 20px;">
|
353 |
+
{recommendation_data['feedback']}
|
354 |
+
</div>
|
355 |
+
""", unsafe_allow_html=True)
|
356 |
+
else:
|
357 |
+
st.info(t.get('no_recommendations', 'No hay recomendaciones disponibles'))
|
358 |
+
|
359 |
+
except Exception as e:
|
360 |
+
logger.error(f"Error procesando par de análisis: {str(e)}")
|
361 |
+
continue
|
362 |
+
|
363 |
+
except Exception as e:
|
364 |
+
logger.error(f"Error mostrando actividades de situación actual: {str(e)}")
|
365 |
+
st.error(t.get('error_current_situation', 'Error al mostrar análisis de situación actual'))
|
366 |
+
|
367 |
+
###############################################################################################
|
368 |
+
|
369 |
+
def display_morphosyntax_activities(username: str, t: dict):
|
370 |
+
"""Muestra actividades de análisis morfosintáctico"""
|
371 |
+
try:
|
372 |
+
analyses = get_student_morphosyntax_analysis(username)
|
373 |
+
if not analyses:
|
374 |
+
st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados'))
|
375 |
+
return
|
376 |
+
|
377 |
+
for analysis in analyses:
|
378 |
+
with st.expander(
|
379 |
+
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
|
380 |
+
expanded=False
|
381 |
+
):
|
382 |
+
st.text(f"{t.get('analyzed_text', 'Texto analizado')}:")
|
383 |
+
st.write(analysis['text'])
|
384 |
+
|
385 |
+
if 'arc_diagrams' in analysis:
|
386 |
+
st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos'))
|
387 |
+
for diagram in analysis['arc_diagrams']:
|
388 |
+
st.write(diagram, unsafe_allow_html=True)
|
389 |
+
|
390 |
+
except Exception as e:
|
391 |
+
logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}")
|
392 |
+
st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico'))
|
393 |
+
|
394 |
+
|
395 |
+
###############################################################################################
|
396 |
+
|
397 |
+
def display_semantic_activities(username: str, t: dict):
|
398 |
+
"""Muestra actividades de análisis semántico"""
|
399 |
+
try:
|
400 |
+
logger.info(f"Recuperando análisis semántico para {username}")
|
401 |
+
analyses = get_student_semantic_analysis(username)
|
402 |
+
|
403 |
+
if not analyses:
|
404 |
+
logger.info("No se encontraron análisis semánticos")
|
405 |
+
st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados'))
|
406 |
+
return
|
407 |
+
|
408 |
+
logger.info(f"Procesando {len(analyses)} análisis semánticos")
|
409 |
+
|
410 |
+
for analysis in analyses:
|
411 |
+
try:
|
412 |
+
# Verificar campos necesarios
|
413 |
+
if not all(key in analysis for key in ['timestamp', 'concept_graph']):
|
414 |
+
logger.warning(f"Análisis incompleto: {analysis.keys()}")
|
415 |
+
continue
|
416 |
+
|
417 |
+
# Formatear fecha
|
418 |
+
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
419 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
420 |
+
|
421 |
+
# Crear expander
|
422 |
+
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
|
423 |
+
# Procesar y mostrar gráfico
|
424 |
+
if analysis.get('concept_graph'):
|
425 |
+
try:
|
426 |
+
# Convertir de base64 a bytes
|
427 |
+
logger.debug("Decodificando gráfico de conceptos")
|
428 |
+
image_data = analysis['concept_graph']
|
429 |
+
|
430 |
+
# Si el gráfico ya es bytes, usarlo directamente
|
431 |
+
if isinstance(image_data, bytes):
|
432 |
+
image_bytes = image_data
|
433 |
+
else:
|
434 |
+
# Si es string base64, decodificar
|
435 |
+
image_bytes = base64.b64decode(image_data)
|
436 |
+
|
437 |
+
logger.debug(f"Longitud de bytes de imagen: {len(image_bytes)}")
|
438 |
+
|
439 |
+
# Mostrar imagen
|
440 |
+
st.image(
|
441 |
+
image_bytes,
|
442 |
+
caption=t.get('concept_network', 'Red de Conceptos'),
|
443 |
+
use_column_width=True
|
444 |
+
)
|
445 |
+
logger.debug("Gráfico mostrado exitosamente")
|
446 |
+
|
447 |
+
except Exception as img_error:
|
448 |
+
logger.error(f"Error procesando gráfico: {str(img_error)}")
|
449 |
+
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
|
450 |
+
else:
|
451 |
+
st.info(t.get('no_graph', 'No hay visualización disponible'))
|
452 |
+
|
453 |
+
except Exception as e:
|
454 |
+
logger.error(f"Error procesando análisis individual: {str(e)}")
|
455 |
+
continue
|
456 |
+
|
457 |
+
except Exception as e:
|
458 |
+
logger.error(f"Error mostrando análisis semántico: {str(e)}")
|
459 |
+
st.error(t.get('error_semantic', 'Error al mostrar análisis semántico'))
|
460 |
+
|
461 |
+
|
462 |
+
###################################################################################################
|
463 |
+
def display_discourse_activities(username: str, t: dict):
|
464 |
+
"""Muestra actividades de análisis del discurso"""
|
465 |
+
try:
|
466 |
+
logger.info(f"Recuperando análisis del discurso para {username}")
|
467 |
+
analyses = get_student_discourse_analysis(username)
|
468 |
+
|
469 |
+
if not analyses:
|
470 |
+
logger.info("No se encontraron análisis del discurso")
|
471 |
+
st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados'))
|
472 |
+
return
|
473 |
+
|
474 |
+
logger.info(f"Procesando {len(analyses)} análisis del discurso")
|
475 |
+
for analysis in analyses:
|
476 |
+
try:
|
477 |
+
# Verificar campos mínimos necesarios
|
478 |
+
if not all(key in analysis for key in ['timestamp', 'combined_graph']):
|
479 |
+
logger.warning(f"Análisis incompleto: {analysis.keys()}")
|
480 |
+
continue
|
481 |
+
|
482 |
+
# Formatear fecha
|
483 |
+
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
484 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
485 |
+
|
486 |
+
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
|
487 |
+
if analysis['combined_graph']:
|
488 |
+
logger.debug("Decodificando gráfico combinado")
|
489 |
+
try:
|
490 |
+
image_bytes = base64.b64decode(analysis['combined_graph'])
|
491 |
+
st.image(image_bytes, use_column_width=True)
|
492 |
+
logger.debug("Gráfico mostrado exitosamente")
|
493 |
+
except Exception as img_error:
|
494 |
+
logger.error(f"Error decodificando imagen: {str(img_error)}")
|
495 |
+
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
|
496 |
+
else:
|
497 |
+
st.info(t.get('no_visualization', 'No hay visualización comparativa disponible'))
|
498 |
+
|
499 |
+
except Exception as e:
|
500 |
+
logger.error(f"Error procesando análisis individual: {str(e)}")
|
501 |
+
continue
|
502 |
+
|
503 |
+
except Exception as e:
|
504 |
+
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
505 |
+
st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso'))
|
506 |
+
|
507 |
+
#################################################################################
|
508 |
+
def display_chat_activities(username: str, t: dict):
|
509 |
+
"""
|
510 |
+
Muestra historial de conversaciones del chat
|
511 |
+
"""
|
512 |
+
try:
|
513 |
+
# Obtener historial del chat
|
514 |
+
chat_history = get_chat_history(
|
515 |
+
username=username,
|
516 |
+
analysis_type='sidebar',
|
517 |
+
limit=50
|
518 |
+
)
|
519 |
+
|
520 |
+
if not chat_history:
|
521 |
+
st.info(t.get('no_chat_history', 'No hay conversaciones registradas'))
|
522 |
+
return
|
523 |
+
|
524 |
+
for chat in reversed(chat_history): # Mostrar las más recientes primero
|
525 |
+
try:
|
526 |
+
# Convertir timestamp a datetime para formato
|
527 |
+
timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00'))
|
528 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
529 |
+
|
530 |
+
with st.expander(
|
531 |
+
f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}",
|
532 |
+
expanded=False
|
533 |
+
):
|
534 |
+
if 'messages' in chat and chat['messages']:
|
535 |
+
# Mostrar cada mensaje en la conversación
|
536 |
+
for message in chat['messages']:
|
537 |
+
role = message.get('role', 'unknown')
|
538 |
+
content = message.get('content', '')
|
539 |
+
|
540 |
+
# Usar el componente de chat de Streamlit
|
541 |
+
with st.chat_message(role):
|
542 |
+
st.markdown(content)
|
543 |
+
|
544 |
+
# Agregar separador entre mensajes
|
545 |
+
st.divider()
|
546 |
+
else:
|
547 |
+
st.warning(t.get('invalid_chat_format', 'Formato de chat no válido'))
|
548 |
+
|
549 |
+
except Exception as e:
|
550 |
+
logger.error(f"Error mostrando conversación: {str(e)}")
|
551 |
+
continue
|
552 |
+
|
553 |
+
except Exception as e:
|
554 |
+
logger.error(f"Error mostrando historial del chat: {str(e)}")
|
555 |
+
st.error(t.get('error_chat', 'Error al mostrar historial del chat'))
|
556 |
+
|
557 |
+
#################################################################################
|
558 |
+
def display_discourse_comparison(analysis: dict, t: dict):
|
559 |
+
"""Muestra la comparación de análisis del discurso"""
|
560 |
+
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
561 |
+
|
562 |
+
col1, col2 = st.columns(2)
|
563 |
+
with col1:
|
564 |
+
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
565 |
+
df1 = pd.DataFrame(analysis['key_concepts1'])
|
566 |
+
st.dataframe(df1)
|
567 |
+
|
568 |
+
with col2:
|
569 |
+
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
570 |
+
df2 = pd.DataFrame(analysis['key_concepts2'])
|
571 |
+
st.dataframe(df2)
|
modules/studentact/temp_current_situation_interface.py
CHANGED
@@ -1,311 +1,311 @@
|
|
1 |
-
# modules/studentact/current_situation_interface.py
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import logging
|
5 |
-
from ..utils.widget_utils import generate_unique_key
|
6 |
-
from .current_situation_analysis import (
|
7 |
-
analyze_text_dimensions,
|
8 |
-
create_vocabulary_network,
|
9 |
-
create_syntax_complexity_graph,
|
10 |
-
create_cohesion_heatmap
|
11 |
-
)
|
12 |
-
|
13 |
-
logger = logging.getLogger(__name__)
|
14 |
-
|
15 |
-
def display_current_situation_interface(lang_code, nlp_models, t):
|
16 |
-
"""
|
17 |
-
Interfaz modular para el análisis de la situación actual del estudiante.
|
18 |
-
Esta función maneja la presentación y la interacción con el usuario.
|
19 |
-
|
20 |
-
Args:
|
21 |
-
lang_code: Código del idioma actual
|
22 |
-
nlp_models: Diccionario de modelos de spaCy cargados
|
23 |
-
t: Diccionario de traducciones
|
24 |
-
"""
|
25 |
-
st.markdown("## Mi Situación Actual de Escritura")
|
26 |
-
|
27 |
-
# Container principal para mejor organización visual
|
28 |
-
with st.container():
|
29 |
-
# Columnas para entrada y visualización
|
30 |
-
text_col, visual_col = st.columns([1,2])
|
31 |
-
|
32 |
-
with text_col:
|
33 |
-
# Área de entrada de texto
|
34 |
-
text_input = st.text_area(
|
35 |
-
t.get('current_situation_input', "Ingresa tu texto para analizar:"),
|
36 |
-
height=400,
|
37 |
-
key=generate_unique_key("current_situation", "input")
|
38 |
-
)
|
39 |
-
|
40 |
-
# Botón de análisis
|
41 |
-
if st.button(
|
42 |
-
t.get('analyze_button', "Explorar mi escritura"),
|
43 |
-
type="primary",
|
44 |
-
disabled=not text_input,
|
45 |
-
key=generate_unique_key("current_situation", "analyze")
|
46 |
-
):
|
47 |
-
try:
|
48 |
-
with st.spinner(t.get('processing', "Analizando texto...")):
|
49 |
-
# 1. Procesar el texto
|
50 |
-
doc = nlp_models[lang_code](text_input)
|
51 |
-
metrics = analyze_text_dimensions(doc)
|
52 |
-
|
53 |
-
# 2. Mostrar visualizaciones en la columna derecha
|
54 |
-
with visual_col:
|
55 |
-
display_current_situation_visual(doc, metrics)
|
56 |
-
|
57 |
-
# 3. Obtener retroalimentación de Claude
|
58 |
-
feedback = get_claude_feedback(metrics, text_input)
|
59 |
-
|
60 |
-
# 4. Guardar los resultados
|
61 |
-
from ..database.current_situation_mongo_db import store_current_situation_result
|
62 |
-
|
63 |
-
if st.button(t.get('analyze_button', "Explorar mi escritura")):
|
64 |
-
with st.spinner(t.get('processing', "Analizando texto...")):
|
65 |
-
# Procesar y analizar
|
66 |
-
doc = nlp_models[lang_code](text_input)
|
67 |
-
|
68 |
-
# Obtener métricas con manejo de errores
|
69 |
-
try:
|
70 |
-
metrics = analyze_text_dimensions(doc)
|
71 |
-
except Exception as e:
|
72 |
-
logger.error(f"Error en análisis: {str(e)}")
|
73 |
-
st.error("Error en el análisis de dimensiones")
|
74 |
-
return
|
75 |
-
|
76 |
-
# Obtener feedback
|
77 |
-
try:
|
78 |
-
feedback = get_claude_feedback(metrics, text_input)
|
79 |
-
except Exception as e:
|
80 |
-
logger.error(f"Error obteniendo feedback: {str(e)}")
|
81 |
-
st.error("Error obteniendo retroalimentación")
|
82 |
-
return
|
83 |
-
|
84 |
-
# Guardar resultados con verificación
|
85 |
-
if store_current_situation_result(
|
86 |
-
st.session_state.username,
|
87 |
-
text_input,
|
88 |
-
metrics,
|
89 |
-
feedback
|
90 |
-
):
|
91 |
-
st.success(t.get('save_success', "Análisis guardado"))
|
92 |
-
|
93 |
-
# Mostrar visualizaciones y recomendaciones
|
94 |
-
display_current_situation_visual(doc, metrics)
|
95 |
-
show_recommendations(feedback, t)
|
96 |
-
else:
|
97 |
-
st.error("Error al guardar el análisis")
|
98 |
-
|
99 |
-
except Exception as e:
|
100 |
-
logger.error(f"Error en interfaz: {str(e)}")
|
101 |
-
st.error("Error general en la interfaz")
|
102 |
-
|
103 |
-
################################################################
|
104 |
-
def display_current_situation_visual(doc, metrics):
|
105 |
-
"""Visualización mejorada de resultados con interpretaciones"""
|
106 |
-
try:
|
107 |
-
with st.container():
|
108 |
-
# Estilos CSS mejorados para los contenedores
|
109 |
-
st.markdown("""
|
110 |
-
<style>
|
111 |
-
.graph-container {
|
112 |
-
background-color: white;
|
113 |
-
border-radius: 10px;
|
114 |
-
padding: 20px;
|
115 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
116 |
-
margin: 15px 0;
|
117 |
-
}
|
118 |
-
.interpretation-box {
|
119 |
-
background-color: #f8f9fa;
|
120 |
-
border-left: 4px solid #0d6efd;
|
121 |
-
padding: 15px;
|
122 |
-
margin: 10px 0;
|
123 |
-
}
|
124 |
-
.metric-indicator {
|
125 |
-
font-size: 1.2em;
|
126 |
-
font-weight: 500;
|
127 |
-
color: #1f2937;
|
128 |
-
}
|
129 |
-
</style>
|
130 |
-
""", unsafe_allow_html=True)
|
131 |
-
|
132 |
-
# 1. Riqueza de Vocabulario
|
133 |
-
with st.expander("📚 Riqueza de Vocabulario", expanded=True):
|
134 |
-
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
135 |
-
vocabulary_graph = create_vocabulary_network(doc)
|
136 |
-
if vocabulary_graph:
|
137 |
-
# Mostrar gráfico
|
138 |
-
st.pyplot(vocabulary_graph)
|
139 |
-
plt.close(vocabulary_graph)
|
140 |
-
|
141 |
-
# Interpretación
|
142 |
-
st.markdown('<div class="interpretation-box">', unsafe_allow_html=True)
|
143 |
-
st.markdown("**¿Qué significa este gráfico?**")
|
144 |
-
st.markdown("""
|
145 |
-
- 🔵 Los nodos azules representan palabras clave en tu texto
|
146 |
-
- 📏 El tamaño de cada nodo indica su frecuencia de uso
|
147 |
-
- 🔗 Las líneas conectan palabras que aparecen juntas frecuentemente
|
148 |
-
- 🎨 Los colores más intensos indican palabras más centrales
|
149 |
-
""")
|
150 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
151 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
152 |
-
|
153 |
-
# 2. Estructura de Oraciones
|
154 |
-
with st.expander("🏗️ Complejidad Estructural", expanded=True):
|
155 |
-
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
156 |
-
syntax_graph = create_syntax_complexity_graph(doc)
|
157 |
-
if syntax_graph:
|
158 |
-
st.pyplot(syntax_graph)
|
159 |
-
plt.close(syntax_graph)
|
160 |
-
|
161 |
-
st.markdown('<div class="interpretation-box">', unsafe_allow_html=True)
|
162 |
-
st.markdown("**Análisis de la estructura:**")
|
163 |
-
st.markdown("""
|
164 |
-
- 📊 Las barras muestran la complejidad de cada oración
|
165 |
-
- 📈 Mayor altura indica estructuras más elaboradas
|
166 |
-
- 🎯 La línea punteada indica el nivel óptimo de complejidad
|
167 |
-
- 🔄 Variación en las alturas sugiere dinamismo en la escritura
|
168 |
-
""")
|
169 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
170 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
171 |
-
|
172 |
-
# 3. Cohesión Textual
|
173 |
-
with st.expander("🔄 Cohesión del Texto", expanded=True):
|
174 |
-
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
175 |
-
cohesion_map = create_cohesion_heatmap(doc)
|
176 |
-
if cohesion_map:
|
177 |
-
st.pyplot(cohesion_map)
|
178 |
-
plt.close(cohesion_map)
|
179 |
-
|
180 |
-
st.markdown('<div class="interpretation-box">', unsafe_allow_html=True)
|
181 |
-
st.markdown("**¿Cómo leer el mapa de calor?**")
|
182 |
-
st.markdown("""
|
183 |
-
- 🌈 Colores más intensos indican mayor conexión entre oraciones
|
184 |
-
- 📝 La diagonal muestra la coherencia interna de cada oración
|
185 |
-
- 🔗 Las zonas claras sugieren oportunidades de mejorar conexiones
|
186 |
-
- 🎯 Un buen texto muestra patrones de color consistentes
|
187 |
-
""")
|
188 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
189 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
190 |
-
|
191 |
-
# 4. Métricas Generales
|
192 |
-
with st.expander("📊 Resumen de Métricas", expanded=True):
|
193 |
-
col1, col2, col3 = st.columns(3)
|
194 |
-
|
195 |
-
with col1:
|
196 |
-
st.metric(
|
197 |
-
"Diversidad Léxica",
|
198 |
-
f"{metrics['vocabulary_richness']:.2f}/1.0",
|
199 |
-
help="Mide la variedad de palabras diferentes utilizadas"
|
200 |
-
)
|
201 |
-
|
202 |
-
with col2:
|
203 |
-
st.metric(
|
204 |
-
"Complejidad Estructural",
|
205 |
-
f"{metrics['structural_complexity']:.2f}/1.0",
|
206 |
-
help="Indica qué tan elaboradas son las estructuras de las oraciones"
|
207 |
-
)
|
208 |
-
|
209 |
-
with col3:
|
210 |
-
st.metric(
|
211 |
-
"Cohesión Textual",
|
212 |
-
f"{metrics['cohesion_score']:.2f}/1.0",
|
213 |
-
help="Evalúa qué tan bien conectadas están las ideas entre sí"
|
214 |
-
)
|
215 |
-
|
216 |
-
except Exception as e:
|
217 |
-
logger.error(f"Error en visualización: {str(e)}")
|
218 |
-
st.error("Error al generar las visualizaciones")
|
219 |
-
|
220 |
-
################################################################
|
221 |
-
def show_recommendations(feedback, t):
|
222 |
-
"""
|
223 |
-
Muestra las recomendaciones y ejercicios personalizados para el estudiante,
|
224 |
-
permitiendo el seguimiento de su progreso.
|
225 |
-
|
226 |
-
Args:
|
227 |
-
feedback: Diccionario con retroalimentación y ejercicios recomendados
|
228 |
-
t: Diccionario de traducciones
|
229 |
-
"""
|
230 |
-
st.markdown("### " + t.get('recommendations_title', "Recomendaciones para mejorar"))
|
231 |
-
|
232 |
-
for area, exercises in feedback['recommendations'].items():
|
233 |
-
with st.expander(f"💡 {area}"):
|
234 |
-
try:
|
235 |
-
# Descripción del área de mejora
|
236 |
-
st.markdown(exercises['description'])
|
237 |
-
|
238 |
-
# Obtener el historial de ejercicios del estudiante
|
239 |
-
from ..database.current_situation_mongo_db import get_student_exercises_history
|
240 |
-
exercises_history = get_student_exercises_history(st.session_state.username)
|
241 |
-
|
242 |
-
# Separar ejercicios en completados y pendientes
|
243 |
-
completed = exercises_history.get(area, [])
|
244 |
-
|
245 |
-
# Mostrar estado actual
|
246 |
-
progress_col1, progress_col2 = st.columns([3,1])
|
247 |
-
with progress_col1:
|
248 |
-
st.markdown("**Ejercicio sugerido:**")
|
249 |
-
st.markdown(exercises['activity'])
|
250 |
-
|
251 |
-
with progress_col2:
|
252 |
-
# Verificar si el ejercicio ya está completado
|
253 |
-
exercise_key = f"{area}_{exercises['activity']}"
|
254 |
-
is_completed = exercise_key in completed
|
255 |
-
|
256 |
-
if is_completed:
|
257 |
-
st.success("✅ Completado")
|
258 |
-
else:
|
259 |
-
# Botón para marcar ejercicio como completado
|
260 |
-
if st.button(
|
261 |
-
t.get('mark_complete', "Marcar como completado"),
|
262 |
-
key=generate_unique_key("exercise", area),
|
263 |
-
type="primary"
|
264 |
-
):
|
265 |
-
try:
|
266 |
-
from ..database.current_situation_mongo_db import update_exercise_status
|
267 |
-
|
268 |
-
# Actualizar estado del ejercicio
|
269 |
-
success = update_exercise_status(
|
270 |
-
username=st.session_state.username,
|
271 |
-
area=area,
|
272 |
-
exercise=exercises['activity'],
|
273 |
-
completed=True
|
274 |
-
)
|
275 |
-
|
276 |
-
if success:
|
277 |
-
st.success(t.get(
|
278 |
-
'exercise_completed',
|
279 |
-
"¡Ejercicio marcado como completado!"
|
280 |
-
))
|
281 |
-
st.rerun()
|
282 |
-
else:
|
283 |
-
st.error(t.get(
|
284 |
-
'exercise_error',
|
285 |
-
"Error al actualizar el estado del ejercicio"
|
286 |
-
))
|
287 |
-
except Exception as e:
|
288 |
-
logger.error(f"Error actualizando estado del ejercicio: {str(e)}")
|
289 |
-
st.error(t.get('update_error', "Error al actualizar el ejercicio"))
|
290 |
-
|
291 |
-
# Mostrar recursos adicionales si existen
|
292 |
-
if 'resources' in exercises:
|
293 |
-
st.markdown("**Recursos adicionales:**")
|
294 |
-
for resource in exercises['resources']:
|
295 |
-
st.markdown(f"- {resource}")
|
296 |
-
|
297 |
-
# Mostrar fecha de finalización si está completado
|
298 |
-
if is_completed:
|
299 |
-
completion_date = exercises_history[exercise_key].get('completion_date')
|
300 |
-
if completion_date:
|
301 |
-
st.caption(
|
302 |
-
t.get('completed_on', "Completado el") +
|
303 |
-
f": {completion_date.strftime('%d/%m/%Y %H:%M')}"
|
304 |
-
)
|
305 |
-
|
306 |
-
except Exception as e:
|
307 |
-
logger.error(f"Error mostrando recomendaciones para {area}: {str(e)}")
|
308 |
-
st.error(t.get(
|
309 |
-
'recommendations_error',
|
310 |
-
f"Error al mostrar las recomendaciones para {area}"
|
311 |
))
|
|
|
1 |
+
# modules/studentact/current_situation_interface.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import logging
|
5 |
+
from ..utils.widget_utils import generate_unique_key
|
6 |
+
from .current_situation_analysis import (
|
7 |
+
analyze_text_dimensions,
|
8 |
+
create_vocabulary_network,
|
9 |
+
create_syntax_complexity_graph,
|
10 |
+
create_cohesion_heatmap
|
11 |
+
)
|
12 |
+
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
def display_current_situation_interface(lang_code, nlp_models, t):
|
16 |
+
"""
|
17 |
+
Interfaz modular para el análisis de la situación actual del estudiante.
|
18 |
+
Esta función maneja la presentación y la interacción con el usuario.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
lang_code: Código del idioma actual
|
22 |
+
nlp_models: Diccionario de modelos de spaCy cargados
|
23 |
+
t: Diccionario de traducciones
|
24 |
+
"""
|
25 |
+
st.markdown("## Mi Situación Actual de Escritura")
|
26 |
+
|
27 |
+
# Container principal para mejor organización visual
|
28 |
+
with st.container():
|
29 |
+
# Columnas para entrada y visualización
|
30 |
+
text_col, visual_col = st.columns([1,2])
|
31 |
+
|
32 |
+
with text_col:
|
33 |
+
# Área de entrada de texto
|
34 |
+
text_input = st.text_area(
|
35 |
+
t.get('current_situation_input', "Ingresa tu texto para analizar:"),
|
36 |
+
height=400,
|
37 |
+
key=generate_unique_key("current_situation", "input")
|
38 |
+
)
|
39 |
+
|
40 |
+
# Botón de análisis
|
41 |
+
if st.button(
|
42 |
+
t.get('analyze_button', "Explorar mi escritura"),
|
43 |
+
type="primary",
|
44 |
+
disabled=not text_input,
|
45 |
+
key=generate_unique_key("current_situation", "analyze")
|
46 |
+
):
|
47 |
+
try:
|
48 |
+
with st.spinner(t.get('processing', "Analizando texto...")):
|
49 |
+
# 1. Procesar el texto
|
50 |
+
doc = nlp_models[lang_code](text_input)
|
51 |
+
metrics = analyze_text_dimensions(doc)
|
52 |
+
|
53 |
+
# 2. Mostrar visualizaciones en la columna derecha
|
54 |
+
with visual_col:
|
55 |
+
display_current_situation_visual(doc, metrics)
|
56 |
+
|
57 |
+
# 3. Obtener retroalimentación de Claude
|
58 |
+
feedback = get_claude_feedback(metrics, text_input)
|
59 |
+
|
60 |
+
# 4. Guardar los resultados
|
61 |
+
from ..database.current_situation_mongo_db import store_current_situation_result
|
62 |
+
|
63 |
+
if st.button(t.get('analyze_button', "Explorar mi escritura")):
|
64 |
+
with st.spinner(t.get('processing', "Analizando texto...")):
|
65 |
+
# Procesar y analizar
|
66 |
+
doc = nlp_models[lang_code](text_input)
|
67 |
+
|
68 |
+
# Obtener métricas con manejo de errores
|
69 |
+
try:
|
70 |
+
metrics = analyze_text_dimensions(doc)
|
71 |
+
except Exception as e:
|
72 |
+
logger.error(f"Error en análisis: {str(e)}")
|
73 |
+
st.error("Error en el análisis de dimensiones")
|
74 |
+
return
|
75 |
+
|
76 |
+
# Obtener feedback
|
77 |
+
try:
|
78 |
+
feedback = get_claude_feedback(metrics, text_input)
|
79 |
+
except Exception as e:
|
80 |
+
logger.error(f"Error obteniendo feedback: {str(e)}")
|
81 |
+
st.error("Error obteniendo retroalimentación")
|
82 |
+
return
|
83 |
+
|
84 |
+
# Guardar resultados con verificación
|
85 |
+
if store_current_situation_result(
|
86 |
+
st.session_state.username,
|
87 |
+
text_input,
|
88 |
+
metrics,
|
89 |
+
feedback
|
90 |
+
):
|
91 |
+
st.success(t.get('save_success', "Análisis guardado"))
|
92 |
+
|
93 |
+
# Mostrar visualizaciones y recomendaciones
|
94 |
+
display_current_situation_visual(doc, metrics)
|
95 |
+
show_recommendations(feedback, t)
|
96 |
+
else:
|
97 |
+
st.error("Error al guardar el análisis")
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
logger.error(f"Error en interfaz: {str(e)}")
|
101 |
+
st.error("Error general en la interfaz")
|
102 |
+
|
103 |
+
################################################################
|
104 |
+
def display_current_situation_visual(doc, metrics):
|
105 |
+
"""Visualización mejorada de resultados con interpretaciones"""
|
106 |
+
try:
|
107 |
+
with st.container():
|
108 |
+
# Estilos CSS mejorados para los contenedores
|
109 |
+
st.markdown("""
|
110 |
+
<style>
|
111 |
+
.graph-container {
|
112 |
+
background-color: white;
|
113 |
+
border-radius: 10px;
|
114 |
+
padding: 20px;
|
115 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
116 |
+
margin: 15px 0;
|
117 |
+
}
|
118 |
+
.interpretation-box {
|
119 |
+
background-color: #f8f9fa;
|
120 |
+
border-left: 4px solid #0d6efd;
|
121 |
+
padding: 15px;
|
122 |
+
margin: 10px 0;
|
123 |
+
}
|
124 |
+
.metric-indicator {
|
125 |
+
font-size: 1.2em;
|
126 |
+
font-weight: 500;
|
127 |
+
color: #1f2937;
|
128 |
+
}
|
129 |
+
</style>
|
130 |
+
""", unsafe_allow_html=True)
|
131 |
+
|
132 |
+
# 1. Riqueza de Vocabulario
|
133 |
+
with st.expander("📚 Riqueza de Vocabulario", expanded=True):
|
134 |
+
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
135 |
+
vocabulary_graph = create_vocabulary_network(doc)
|
136 |
+
if vocabulary_graph:
|
137 |
+
# Mostrar gráfico
|
138 |
+
st.pyplot(vocabulary_graph)
|
139 |
+
plt.close(vocabulary_graph)
|
140 |
+
|
141 |
+
# Interpretación
|
142 |
+
st.markdown('<div class="interpretation-box">', unsafe_allow_html=True)
|
143 |
+
st.markdown("**¿Qué significa este gráfico?**")
|
144 |
+
st.markdown("""
|
145 |
+
- 🔵 Los nodos azules representan palabras clave en tu texto
|
146 |
+
- 📏 El tamaño de cada nodo indica su frecuencia de uso
|
147 |
+
- 🔗 Las líneas conectan palabras que aparecen juntas frecuentemente
|
148 |
+
- 🎨 Los colores más intensos indican palabras más centrales
|
149 |
+
""")
|
150 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
151 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
152 |
+
|
153 |
+
# 2. Estructura de Oraciones
|
154 |
+
with st.expander("🏗️ Complejidad Estructural", expanded=True):
|
155 |
+
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
156 |
+
syntax_graph = create_syntax_complexity_graph(doc)
|
157 |
+
if syntax_graph:
|
158 |
+
st.pyplot(syntax_graph)
|
159 |
+
plt.close(syntax_graph)
|
160 |
+
|
161 |
+
st.markdown('<div class="interpretation-box">', unsafe_allow_html=True)
|
162 |
+
st.markdown("**Análisis de la estructura:**")
|
163 |
+
st.markdown("""
|
164 |
+
- 📊 Las barras muestran la complejidad de cada oración
|
165 |
+
- 📈 Mayor altura indica estructuras más elaboradas
|
166 |
+
- 🎯 La línea punteada indica el nivel óptimo de complejidad
|
167 |
+
- 🔄 Variación en las alturas sugiere dinamismo en la escritura
|
168 |
+
""")
|
169 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
170 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
171 |
+
|
172 |
+
# 3. Cohesión Textual
|
173 |
+
with st.expander("🔄 Cohesión del Texto", expanded=True):
|
174 |
+
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
175 |
+
cohesion_map = create_cohesion_heatmap(doc)
|
176 |
+
if cohesion_map:
|
177 |
+
st.pyplot(cohesion_map)
|
178 |
+
plt.close(cohesion_map)
|
179 |
+
|
180 |
+
st.markdown('<div class="interpretation-box">', unsafe_allow_html=True)
|
181 |
+
st.markdown("**¿Cómo leer el mapa de calor?**")
|
182 |
+
st.markdown("""
|
183 |
+
- 🌈 Colores más intensos indican mayor conexión entre oraciones
|
184 |
+
- 📝 La diagonal muestra la coherencia interna de cada oración
|
185 |
+
- 🔗 Las zonas claras sugieren oportunidades de mejorar conexiones
|
186 |
+
- 🎯 Un buen texto muestra patrones de color consistentes
|
187 |
+
""")
|
188 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
189 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
190 |
+
|
191 |
+
# 4. Métricas Generales
|
192 |
+
with st.expander("📊 Resumen de Métricas", expanded=True):
|
193 |
+
col1, col2, col3 = st.columns(3)
|
194 |
+
|
195 |
+
with col1:
|
196 |
+
st.metric(
|
197 |
+
"Diversidad Léxica",
|
198 |
+
f"{metrics['vocabulary_richness']:.2f}/1.0",
|
199 |
+
help="Mide la variedad de palabras diferentes utilizadas"
|
200 |
+
)
|
201 |
+
|
202 |
+
with col2:
|
203 |
+
st.metric(
|
204 |
+
"Complejidad Estructural",
|
205 |
+
f"{metrics['structural_complexity']:.2f}/1.0",
|
206 |
+
help="Indica qué tan elaboradas son las estructuras de las oraciones"
|
207 |
+
)
|
208 |
+
|
209 |
+
with col3:
|
210 |
+
st.metric(
|
211 |
+
"Cohesión Textual",
|
212 |
+
f"{metrics['cohesion_score']:.2f}/1.0",
|
213 |
+
help="Evalúa qué tan bien conectadas están las ideas entre sí"
|
214 |
+
)
|
215 |
+
|
216 |
+
except Exception as e:
|
217 |
+
logger.error(f"Error en visualización: {str(e)}")
|
218 |
+
st.error("Error al generar las visualizaciones")
|
219 |
+
|
220 |
+
################################################################
|
221 |
+
def show_recommendations(feedback, t):
|
222 |
+
"""
|
223 |
+
Muestra las recomendaciones y ejercicios personalizados para el estudiante,
|
224 |
+
permitiendo el seguimiento de su progreso.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
feedback: Diccionario con retroalimentación y ejercicios recomendados
|
228 |
+
t: Diccionario de traducciones
|
229 |
+
"""
|
230 |
+
st.markdown("### " + t.get('recommendations_title', "Recomendaciones para mejorar"))
|
231 |
+
|
232 |
+
for area, exercises in feedback['recommendations'].items():
|
233 |
+
with st.expander(f"💡 {area}"):
|
234 |
+
try:
|
235 |
+
# Descripción del área de mejora
|
236 |
+
st.markdown(exercises['description'])
|
237 |
+
|
238 |
+
# Obtener el historial de ejercicios del estudiante
|
239 |
+
from ..database.current_situation_mongo_db import get_student_exercises_history
|
240 |
+
exercises_history = get_student_exercises_history(st.session_state.username)
|
241 |
+
|
242 |
+
# Separar ejercicios en completados y pendientes
|
243 |
+
completed = exercises_history.get(area, [])
|
244 |
+
|
245 |
+
# Mostrar estado actual
|
246 |
+
progress_col1, progress_col2 = st.columns([3,1])
|
247 |
+
with progress_col1:
|
248 |
+
st.markdown("**Ejercicio sugerido:**")
|
249 |
+
st.markdown(exercises['activity'])
|
250 |
+
|
251 |
+
with progress_col2:
|
252 |
+
# Verificar si el ejercicio ya está completado
|
253 |
+
exercise_key = f"{area}_{exercises['activity']}"
|
254 |
+
is_completed = exercise_key in completed
|
255 |
+
|
256 |
+
if is_completed:
|
257 |
+
st.success("✅ Completado")
|
258 |
+
else:
|
259 |
+
# Botón para marcar ejercicio como completado
|
260 |
+
if st.button(
|
261 |
+
t.get('mark_complete', "Marcar como completado"),
|
262 |
+
key=generate_unique_key("exercise", area),
|
263 |
+
type="primary"
|
264 |
+
):
|
265 |
+
try:
|
266 |
+
from ..database.current_situation_mongo_db import update_exercise_status
|
267 |
+
|
268 |
+
# Actualizar estado del ejercicio
|
269 |
+
success = update_exercise_status(
|
270 |
+
username=st.session_state.username,
|
271 |
+
area=area,
|
272 |
+
exercise=exercises['activity'],
|
273 |
+
completed=True
|
274 |
+
)
|
275 |
+
|
276 |
+
if success:
|
277 |
+
st.success(t.get(
|
278 |
+
'exercise_completed',
|
279 |
+
"¡Ejercicio marcado como completado!"
|
280 |
+
))
|
281 |
+
st.rerun()
|
282 |
+
else:
|
283 |
+
st.error(t.get(
|
284 |
+
'exercise_error',
|
285 |
+
"Error al actualizar el estado del ejercicio"
|
286 |
+
))
|
287 |
+
except Exception as e:
|
288 |
+
logger.error(f"Error actualizando estado del ejercicio: {str(e)}")
|
289 |
+
st.error(t.get('update_error', "Error al actualizar el ejercicio"))
|
290 |
+
|
291 |
+
# Mostrar recursos adicionales si existen
|
292 |
+
if 'resources' in exercises:
|
293 |
+
st.markdown("**Recursos adicionales:**")
|
294 |
+
for resource in exercises['resources']:
|
295 |
+
st.markdown(f"- {resource}")
|
296 |
+
|
297 |
+
# Mostrar fecha de finalización si está completado
|
298 |
+
if is_completed:
|
299 |
+
completion_date = exercises_history[exercise_key].get('completion_date')
|
300 |
+
if completion_date:
|
301 |
+
st.caption(
|
302 |
+
t.get('completed_on', "Completado el") +
|
303 |
+
f": {completion_date.strftime('%d/%m/%Y %H:%M')}"
|
304 |
+
)
|
305 |
+
|
306 |
+
except Exception as e:
|
307 |
+
logger.error(f"Error mostrando recomendaciones para {area}: {str(e)}")
|
308 |
+
st.error(t.get(
|
309 |
+
'recommendations_error',
|
310 |
+
f"Error al mostrar las recomendaciones para {area}"
|
311 |
))
|