AIdeaText commited on
Commit
86cc927
·
verified ·
1 Parent(s): f9997f7

Update modules/studentact/current_situation_analysis.py

Browse files
modules/studentact/current_situation_analysis.py CHANGED
@@ -70,81 +70,8 @@ def analyze_text_dimensions(doc):
70
  }
71
 
72
  ####################################################################
73
- def analyze_clarity(doc):
74
- """
75
- Analiza la claridad del texto considerando múltiples factores.
76
- """
77
- try:
78
- # 1. Análisis de oraciones
79
- sentences = list(doc.sents)
80
- if not sentences:
81
- return 0.0, {}
82
-
83
- # Longitud de oraciones
84
- sentence_lengths = [len(sent) for sent in sentences]
85
- avg_length = sum(sentence_lengths) / len(sentences)
86
- length_variation = np.std(sentence_lengths) if len(sentences) > 1 else 0
87
-
88
- # Normalizar longitud
89
- length_score = normalize_score(avg_length, optimal_length=20)
90
-
91
- # 2. Análisis de conectores
92
- connector_count = 0
93
- connector_types = {
94
- 'CCONJ': 0.8,
95
- 'SCONJ': 1.0,
96
- 'ADV': 0.6
97
- }
98
-
99
- for token in doc:
100
- if token.pos_ in connector_types and token.dep_ in ['cc', 'mark', 'advmod']:
101
- connector_count += connector_types[token.pos_]
102
-
103
- connector_score = min(1.0, connector_count / (len(sentences) * 0.8))
104
-
105
- # 3. Complejidad estructural
106
- clause_count = 0
107
- for sent in sentences:
108
- verbs = [token for token in sent if token.pos_ == 'VERB']
109
- clause_count += len(verbs)
110
-
111
- complexity_raw = clause_count / len(sentences) if len(sentences) > 0 else 0
112
- complexity_score = normalize_score(complexity_raw, optimal_value=2.0)
113
-
114
- # 4. Densidad léxica
115
- content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
116
- total_words = len([token for token in doc])
117
- density_score = normalize_score(
118
- content_words / total_words if total_words > 0 else 0,
119
- optimal_value=0.6
120
- )
121
-
122
- # Cálculo del score final
123
- clarity_score = (
124
- 0.3 * length_score +
125
- 0.3 * connector_score +
126
- 0.2 * complexity_score +
127
- 0.2 * density_score
128
- )
129
-
130
- details = {
131
- 'length_score': length_score,
132
- 'connector_score': connector_score,
133
- 'complexity_score': complexity_score,
134
- 'density_score': density_score,
135
- 'avg_sentence_length': avg_length,
136
- 'length_variation': length_variation,
137
- 'connectors_per_sentence': connector_count / len(sentences) if len(sentences) > 0 else 0
138
- }
139
-
140
- return clarity_score, details
141
-
142
- except Exception as e:
143
- logger.error(f"Error en analyze_clarity: {str(e)}")
144
- return 0.0, {}
145
 
146
- ###################################################################################3
147
- def analyze_clarity(doc):
148
  """
149
  Analiza la claridad del texto considerando múltiples factores.
150
  """
 
70
  }
71
 
72
  ####################################################################
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
+ def analyze_reference_clarity'(doc):
 
75
  """
76
  Analiza la claridad del texto considerando múltiples factores.
77
  """