Update modules/studentact/current_situation_analysis.py
Browse files
modules/studentact/current_situation_analysis.py
CHANGED
@@ -70,81 +70,8 @@ def analyze_text_dimensions(doc):
|
|
70 |
}
|
71 |
|
72 |
####################################################################
|
73 |
-
def analyze_clarity(doc):
|
74 |
-
"""
|
75 |
-
Analiza la claridad del texto considerando múltiples factores.
|
76 |
-
"""
|
77 |
-
try:
|
78 |
-
# 1. Análisis de oraciones
|
79 |
-
sentences = list(doc.sents)
|
80 |
-
if not sentences:
|
81 |
-
return 0.0, {}
|
82 |
-
|
83 |
-
# Longitud de oraciones
|
84 |
-
sentence_lengths = [len(sent) for sent in sentences]
|
85 |
-
avg_length = sum(sentence_lengths) / len(sentences)
|
86 |
-
length_variation = np.std(sentence_lengths) if len(sentences) > 1 else 0
|
87 |
-
|
88 |
-
# Normalizar longitud
|
89 |
-
length_score = normalize_score(avg_length, optimal_length=20)
|
90 |
-
|
91 |
-
# 2. Análisis de conectores
|
92 |
-
connector_count = 0
|
93 |
-
connector_types = {
|
94 |
-
'CCONJ': 0.8,
|
95 |
-
'SCONJ': 1.0,
|
96 |
-
'ADV': 0.6
|
97 |
-
}
|
98 |
-
|
99 |
-
for token in doc:
|
100 |
-
if token.pos_ in connector_types and token.dep_ in ['cc', 'mark', 'advmod']:
|
101 |
-
connector_count += connector_types[token.pos_]
|
102 |
-
|
103 |
-
connector_score = min(1.0, connector_count / (len(sentences) * 0.8))
|
104 |
-
|
105 |
-
# 3. Complejidad estructural
|
106 |
-
clause_count = 0
|
107 |
-
for sent in sentences:
|
108 |
-
verbs = [token for token in sent if token.pos_ == 'VERB']
|
109 |
-
clause_count += len(verbs)
|
110 |
-
|
111 |
-
complexity_raw = clause_count / len(sentences) if len(sentences) > 0 else 0
|
112 |
-
complexity_score = normalize_score(complexity_raw, optimal_value=2.0)
|
113 |
-
|
114 |
-
# 4. Densidad léxica
|
115 |
-
content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
|
116 |
-
total_words = len([token for token in doc])
|
117 |
-
density_score = normalize_score(
|
118 |
-
content_words / total_words if total_words > 0 else 0,
|
119 |
-
optimal_value=0.6
|
120 |
-
)
|
121 |
-
|
122 |
-
# Cálculo del score final
|
123 |
-
clarity_score = (
|
124 |
-
0.3 * length_score +
|
125 |
-
0.3 * connector_score +
|
126 |
-
0.2 * complexity_score +
|
127 |
-
0.2 * density_score
|
128 |
-
)
|
129 |
-
|
130 |
-
details = {
|
131 |
-
'length_score': length_score,
|
132 |
-
'connector_score': connector_score,
|
133 |
-
'complexity_score': complexity_score,
|
134 |
-
'density_score': density_score,
|
135 |
-
'avg_sentence_length': avg_length,
|
136 |
-
'length_variation': length_variation,
|
137 |
-
'connectors_per_sentence': connector_count / len(sentences) if len(sentences) > 0 else 0
|
138 |
-
}
|
139 |
-
|
140 |
-
return clarity_score, details
|
141 |
-
|
142 |
-
except Exception as e:
|
143 |
-
logger.error(f"Error en analyze_clarity: {str(e)}")
|
144 |
-
return 0.0, {}
|
145 |
|
146 |
-
|
147 |
-
def analyze_clarity(doc):
|
148 |
"""
|
149 |
Analiza la claridad del texto considerando múltiples factores.
|
150 |
"""
|
|
|
70 |
}
|
71 |
|
72 |
####################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
def analyze_reference_clarity'(doc):
|
|
|
75 |
"""
|
76 |
Analiza la claridad del texto considerando múltiples factores.
|
77 |
"""
|