Update modules/text_analysis/morpho_analysis.py
Browse files
modules/text_analysis/morpho_analysis.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import spacy
|
|
|
2 |
from spacy import displacy
|
|
|
3 |
from streamlit.components.v1 import html
|
4 |
import base64
|
5 |
|
@@ -88,74 +90,111 @@ POS_TRANSLATIONS = {
|
|
88 |
}
|
89 |
}
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
for
|
94 |
-
|
95 |
-
# Calculamos el ancho del SVG basado en la longitud de la oración
|
96 |
-
svg_width = max(600, len(words) * 120)
|
97 |
-
# Altura fija para cada oración
|
98 |
-
svg_height = 350 # Controla la altura del SVG
|
99 |
-
|
100 |
-
# Renderizamos el diagrama de dependencias
|
101 |
-
html = displacy.render(sent, style="dep", options={
|
102 |
-
"add_lemma":False, # Introduced in version 2.2.4, this argument prints the lemma’s in a separate row below the token texts.
|
103 |
-
"arrow_spacing": 12, #This argument is used for adjusting the spacing between arrows in px to avoid overlaps.
|
104 |
-
"arrow_width": 2, #This argument is used for adjusting the width of arrow head in px.
|
105 |
-
"arrow_stroke": 2, #This argument is used for adjusting the width of arrow path in px.
|
106 |
-
"collapse_punct": True, #It attaches punctuation to the tokens.
|
107 |
-
"collapse_phrases": False, # This argument merges the noun phrases into one token.
|
108 |
-
"compact":False, # If you will take this argument as true, you will get the “Compact mode” with square arrows that takes up less space.
|
109 |
-
"color": "#ffffff",
|
110 |
-
"bg": "#0d6efd",
|
111 |
-
"compact": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_).
|
112 |
-
"distance": 100, # Aumentamos la distancia entre palabras
|
113 |
-
"fine_grained": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_).
|
114 |
-
"offset_x": 55, # This argument is used for spacing on left side of the SVG in px.
|
115 |
-
"word_spacing": 25, #This argument is used for adjusting the vertical spacing between words and arcs in px.
|
116 |
-
})
|
117 |
-
|
118 |
-
# Ajustamos el tamaño del SVG y el viewBox
|
119 |
-
html = re.sub(r'width="(\d+)"', f'width="{svg_width}"', html)
|
120 |
-
html = re.sub(r'height="(\d+)"', f'height="{svg_height}"', html)
|
121 |
-
html = re.sub(r'<svg', f'<svg viewBox="0 0 {svg_width} {svg_height}"', html)
|
122 |
-
|
123 |
-
#html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
|
124 |
-
#html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html)
|
125 |
-
|
126 |
-
# Movemos todo el contenido hacia abajo
|
127 |
-
#html = html.replace('<g', f'<g transform="translate(50, {svg_height - 200})"')
|
128 |
-
|
129 |
-
# Movemos todo el contenido hacia arriba para eliminar el espacio vacío en la parte superior
|
130 |
-
html = re.sub(r'<g transform="translate\((\d+),(\d+)\)"',
|
131 |
-
lambda m: f'<g transform="translate({m.group(1)},10)"', html)
|
132 |
-
|
133 |
-
|
134 |
-
# Ajustamos la posición de las etiquetas de las palabras
|
135 |
-
html = html.replace('dy="1em"', 'dy="-1em"')
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
html = html.replace('.displacy-tag {', '.displacy-tag { font-size: 14px;')
|
142 |
-
|
143 |
-
# Rotamos las etiquetas de las palabras para mejorar la legibilidad
|
144 |
-
#html = html.replace('class="displacy-label"', 'class="displacy-label" transform="rotate(30)"')
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
arc_diagrams.append(html)
|
147 |
return arc_diagrams
|
148 |
-
##################################################################################################################################
|
149 |
-
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
def perform_advanced_morphosyntactic_analysis(text, nlp):
|
|
|
|
|
|
|
152 |
doc = nlp(text)
|
153 |
return {
|
154 |
'pos_analysis': get_detailed_pos_analysis(doc),
|
155 |
'morphological_analysis': get_morphological_analysis(doc),
|
156 |
'sentence_structure': get_sentence_structure_analysis(doc),
|
157 |
-
'
|
158 |
-
'repeated_words': get_repeated_words_colors(doc)
|
159 |
}
|
160 |
-
|
161 |
-
|
|
|
|
1 |
import spacy
|
2 |
+
from collections import Counter
|
3 |
from spacy import displacy
|
4 |
+
import re
|
5 |
from streamlit.components.v1 import html
|
6 |
import base64
|
7 |
|
|
|
90 |
}
|
91 |
}
|
92 |
|
93 |
+
#############################################################################################
|
94 |
+
def get_repeated_words_colors(doc):
|
95 |
+
word_counts = Counter(token.text.lower() for token in doc if token.pos_ != 'PUNCT')
|
96 |
+
repeated_words = {word: count for word, count in word_counts.items() if count > 1}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
word_colors = {}
|
99 |
+
for token in doc:
|
100 |
+
if token.text.lower() in repeated_words:
|
101 |
+
word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF')
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
return word_colors
|
104 |
+
|
105 |
+
######################################################################################################
|
106 |
+
def highlight_repeated_words(doc, word_colors):
|
107 |
+
highlighted_text = []
|
108 |
+
for token in doc:
|
109 |
+
if token.text.lower() in word_colors:
|
110 |
+
color = word_colors[token.text.lower()]
|
111 |
+
highlighted_text.append(f'<span style="background-color: {color};">{token.text}</span>')
|
112 |
+
else:
|
113 |
+
highlighted_text.append(token.text)
|
114 |
+
return ' '.join(highlighted_text)
|
115 |
+
|
116 |
+
#################################################################################################
|
117 |
+
def generate_arc_diagram(doc, lang_code):
|
118 |
+
sentences = list(doc.sents)
|
119 |
+
arc_diagrams = []
|
120 |
+
for sent in sentences:
|
121 |
+
html = displacy.render(sent, style="dep", options={"distance": 100})
|
122 |
+
html = html.replace('height="375"', 'height="200"')
|
123 |
+
html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
|
124 |
+
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html)
|
125 |
arc_diagrams.append(html)
|
126 |
return arc_diagrams
|
|
|
|
|
127 |
|
128 |
+
#################################################################################################
|
129 |
+
def get_detailed_pos_analysis(doc):
|
130 |
+
"""
|
131 |
+
Realiza un análisis detallado de las categorías gramaticales (POS) en el texto.
|
132 |
+
"""
|
133 |
+
pos_counts = Counter(token.pos_ for token in doc)
|
134 |
+
total_tokens = len(doc)
|
135 |
+
pos_analysis = []
|
136 |
+
for pos, count in pos_counts.items():
|
137 |
+
percentage = (count / total_tokens) * 100
|
138 |
+
pos_analysis.append({
|
139 |
+
'pos': pos,
|
140 |
+
'count': count,
|
141 |
+
'percentage': round(percentage, 2),
|
142 |
+
'examples': [token.text for token in doc if token.pos_ == pos][:5] # Primeros 5 ejemplos
|
143 |
+
})
|
144 |
+
return sorted(pos_analysis, key=lambda x: x['count'], reverse=True)
|
145 |
+
|
146 |
+
#################################################################################################
|
147 |
+
def get_morphological_analysis(doc):
|
148 |
+
"""
|
149 |
+
Realiza un análisis morfológico detallado de las palabras en el texto.
|
150 |
+
"""
|
151 |
+
morphology_analysis = []
|
152 |
+
for token in doc:
|
153 |
+
if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']: # Enfocarse en categorías principales
|
154 |
+
morphology_analysis.append({
|
155 |
+
'text': token.text,
|
156 |
+
'lemma': token.lemma_,
|
157 |
+
'pos': token.pos_,
|
158 |
+
'tag': token.tag_,
|
159 |
+
'dep': token.dep_,
|
160 |
+
'shape': token.shape_,
|
161 |
+
'is_alpha': token.is_alpha,
|
162 |
+
'is_stop': token.is_stop,
|
163 |
+
'morph': str(token.morph)
|
164 |
+
})
|
165 |
+
return morphology_analysis
|
166 |
+
|
167 |
+
#################################################################################################
|
168 |
+
def get_sentence_structure_analysis(doc):
|
169 |
+
"""
|
170 |
+
Analiza la estructura de las oraciones en el texto.
|
171 |
+
"""
|
172 |
+
sentence_analysis = []
|
173 |
+
for sent in doc.sents:
|
174 |
+
sentence_analysis.append({
|
175 |
+
'text': sent.text,
|
176 |
+
'root': sent.root.text,
|
177 |
+
'root_pos': sent.root.pos_,
|
178 |
+
'num_tokens': len(sent),
|
179 |
+
'num_words': len([token for token in sent if token.is_alpha]),
|
180 |
+
'subjects': [token.text for token in sent if "subj" in token.dep_],
|
181 |
+
'objects': [token.text for token in sent if "obj" in token.dep_],
|
182 |
+
'verbs': [token.text for token in sent if token.pos_ == "VERB"]
|
183 |
+
})
|
184 |
+
return sentence_analysis
|
185 |
+
|
186 |
+
#################################################################################################
|
187 |
def perform_advanced_morphosyntactic_analysis(text, nlp):
|
188 |
+
"""
|
189 |
+
Realiza un análisis morfosintáctico avanzado del texto.
|
190 |
+
"""
|
191 |
doc = nlp(text)
|
192 |
return {
|
193 |
'pos_analysis': get_detailed_pos_analysis(doc),
|
194 |
'morphological_analysis': get_morphological_analysis(doc),
|
195 |
'sentence_structure': get_sentence_structure_analysis(doc),
|
196 |
+
'arc_diagram': generate_arc_diagram(doc, nlp.lang)
|
|
|
197 |
}
|
198 |
+
|
199 |
+
# Al final del archivo morph_analysis.py
|
200 |
+
__all__ = ['get_repeated_words_colors', 'highlight_repeated_words', 'generate_arc_diagram', 'perform_advanced_morphosyntactic_analysis', 'POS_COLORS', 'POS_TRANSLATIONS']
|