Update modules/database/semantic_mongo_db.py
Browse files- modules/database/semantic_mongo_db.py +159 -159
modules/database/semantic_mongo_db.py
CHANGED
@@ -1,160 +1,160 @@
|
|
1 |
-
#/modules/database/semantic_mongo_db.py
|
2 |
-
|
3 |
-
# Importaciones estándar
|
4 |
-
import io
|
5 |
-
import base64
|
6 |
-
from datetime import datetime, timezone
|
7 |
-
import logging
|
8 |
-
|
9 |
-
# Importaciones de terceros
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
-
|
12 |
-
# Importaciones locales
|
13 |
-
from .mongo_db import (
|
14 |
-
get_collection,
|
15 |
-
insert_document,
|
16 |
-
find_documents,
|
17 |
-
update_document,
|
18 |
-
delete_document
|
19 |
-
)
|
20 |
-
|
21 |
-
# Configuración del logger
|
22 |
-
logger = logging.getLogger(__name__) # Cambiado de name a __name__
|
23 |
-
COLLECTION_NAME = 'student_semantic_analysis'
|
24 |
-
|
25 |
-
def store_student_semantic_result(username, text, analysis_result):
|
26 |
-
"""
|
27 |
-
Guarda el resultado del análisis semántico en MongoDB.
|
28 |
-
"""
|
29 |
-
try:
|
30 |
-
# El gráfico ya viene en bytes, solo necesitamos codificarlo a base64
|
31 |
-
concept_graph_data = None
|
32 |
-
if 'concept_graph' in analysis_result and analysis_result['concept_graph'] is not None:
|
33 |
-
try:
|
34 |
-
# Ya está en bytes, solo codificar a base64
|
35 |
-
concept_graph_data = base64.b64encode(analysis_result['concept_graph']).decode('utf-8')
|
36 |
-
except Exception as e:
|
37 |
-
logger.error(f"Error al codificar gráfico conceptual: {str(e)}")
|
38 |
-
|
39 |
-
# Crear documento para MongoDB
|
40 |
-
analysis_document = {
|
41 |
-
'username': username,
|
42 |
-
'timestamp': datetime.now(timezone.utc).isoformat(),
|
43 |
-
'text': text,
|
44 |
-
'analysis_type': 'semantic',
|
45 |
-
'key_concepts': analysis_result.get('key_concepts', []),
|
46 |
-
'concept_graph': concept_graph_data
|
47 |
-
}
|
48 |
-
|
49 |
-
# Insertar en MongoDB
|
50 |
-
result = insert_document(COLLECTION_NAME, analysis_document)
|
51 |
-
if result:
|
52 |
-
logger.info(f"Análisis semántico guardado con ID: {result} para el usuario: {username}")
|
53 |
-
return True
|
54 |
-
|
55 |
-
logger.error("No se pudo insertar el documento en MongoDB")
|
56 |
-
return False
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
logger.error(f"Error al guardar el análisis semántico: {str(e)}")
|
60 |
-
return False
|
61 |
-
|
62 |
-
####################################################################################
|
63 |
-
def get_student_semantic_analysis(username, limit=10):
|
64 |
-
"""
|
65 |
-
Recupera los análisis semánticos de un estudiante.
|
66 |
-
"""
|
67 |
-
try:
|
68 |
-
# Obtener la colección
|
69 |
-
collection = get_collection(COLLECTION_NAME)
|
70 |
-
if collection is None: # Cambiado de if not collection a if collection is None
|
71 |
-
logger.error("No se pudo obtener la colección semantic")
|
72 |
-
return []
|
73 |
-
|
74 |
-
# Consulta
|
75 |
-
query = {
|
76 |
-
"username": username,
|
77 |
-
"analysis_type": "semantic"
|
78 |
-
}
|
79 |
-
|
80 |
-
# Campos a recuperar
|
81 |
-
projection = {
|
82 |
-
"timestamp": 1,
|
83 |
-
"concept_graph": 1,
|
84 |
-
"_id": 1
|
85 |
-
}
|
86 |
-
|
87 |
-
# Ejecutar consulta
|
88 |
-
try:
|
89 |
-
cursor = collection.find(query, projection).sort("timestamp", -1)
|
90 |
-
if limit:
|
91 |
-
cursor = cursor.limit(limit)
|
92 |
-
|
93 |
-
# Convertir cursor a lista
|
94 |
-
results = list(cursor)
|
95 |
-
logger.info(f"Recuperados {len(results)} análisis semánticos para {username}")
|
96 |
-
return results
|
97 |
-
|
98 |
-
except Exception as db_error:
|
99 |
-
logger.error(f"Error en la consulta a MongoDB: {str(db_error)}")
|
100 |
-
return []
|
101 |
-
|
102 |
-
except Exception as e:
|
103 |
-
logger.error(f"Error recuperando análisis semántico: {str(e)}")
|
104 |
-
return []
|
105 |
-
####################################################################################################
|
106 |
-
|
107 |
-
|
108 |
-
def update_student_semantic_analysis(analysis_id, update_data):
|
109 |
-
"""
|
110 |
-
Actualiza un análisis semántico existente.
|
111 |
-
Args:
|
112 |
-
analysis_id: ID del análisis a actualizar
|
113 |
-
update_data: Datos a actualizar
|
114 |
-
"""
|
115 |
-
query = {"_id": analysis_id}
|
116 |
-
update = {"$set": update_data}
|
117 |
-
return update_document(COLLECTION_NAME, query, update)
|
118 |
-
|
119 |
-
def delete_student_semantic_analysis(analysis_id):
|
120 |
-
"""
|
121 |
-
Elimina un análisis semántico.
|
122 |
-
Args:
|
123 |
-
analysis_id: ID del análisis a eliminar
|
124 |
-
"""
|
125 |
-
query = {"_id": analysis_id}
|
126 |
-
return delete_document(COLLECTION_NAME, query)
|
127 |
-
|
128 |
-
def get_student_semantic_data(username):
|
129 |
-
"""
|
130 |
-
Obtiene todos los análisis semánticos de un estudiante.
|
131 |
-
Args:
|
132 |
-
username: Nombre del usuario
|
133 |
-
Returns:
|
134 |
-
dict: Diccionario con todos los análisis del estudiante
|
135 |
-
"""
|
136 |
-
analyses = get_student_semantic_analysis(username, limit=None)
|
137 |
-
|
138 |
-
formatted_analyses = []
|
139 |
-
for analysis in analyses:
|
140 |
-
formatted_analysis = {
|
141 |
-
'timestamp': analysis['timestamp'],
|
142 |
-
'text': analysis['text'],
|
143 |
-
'key_concepts': analysis['key_concepts'],
|
144 |
-
'entities': analysis['entities']
|
145 |
-
# No incluimos los gráficos en el resumen general
|
146 |
-
}
|
147 |
-
formatted_analyses.append(formatted_analysis)
|
148 |
-
|
149 |
-
return {
|
150 |
-
'entries': formatted_analyses
|
151 |
-
}
|
152 |
-
|
153 |
-
# Exportar las funciones necesarias
|
154 |
-
__all__ = [
|
155 |
-
'store_student_semantic_result',
|
156 |
-
'get_student_semantic_analysis',
|
157 |
-
'update_student_semantic_analysis',
|
158 |
-
'delete_student_semantic_analysis',
|
159 |
-
'get_student_semantic_data'
|
160 |
]
|
|
|
1 |
+
#/modules/database/semantic_mongo_db.py
|
2 |
+
|
3 |
+
# Importaciones estándar
|
4 |
+
import io
|
5 |
+
import base64
|
6 |
+
from datetime import datetime, timezone
|
7 |
+
import logging
|
8 |
+
|
9 |
+
# Importaciones de terceros
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
# Importaciones locales
|
13 |
+
from .mongo_db import (
|
14 |
+
get_collection,
|
15 |
+
insert_document,
|
16 |
+
find_documents,
|
17 |
+
update_document,
|
18 |
+
delete_document
|
19 |
+
)
|
20 |
+
|
21 |
+
# Configuración del logger
|
22 |
+
logger = logging.getLogger(__name__) # Cambiado de name a __name__
|
23 |
+
COLLECTION_NAME = 'student_semantic_analysis'
|
24 |
+
|
25 |
+
def store_student_semantic_result(username, text, analysis_result):
|
26 |
+
"""
|
27 |
+
Guarda el resultado del análisis semántico en MongoDB.
|
28 |
+
"""
|
29 |
+
try:
|
30 |
+
# El gráfico ya viene en bytes, solo necesitamos codificarlo a base64
|
31 |
+
concept_graph_data = None
|
32 |
+
if 'concept_graph' in analysis_result and analysis_result['concept_graph'] is not None:
|
33 |
+
try:
|
34 |
+
# Ya está en bytes, solo codificar a base64
|
35 |
+
concept_graph_data = base64.b64encode(analysis_result['concept_graph']).decode('utf-8')
|
36 |
+
except Exception as e:
|
37 |
+
logger.error(f"Error al codificar gráfico conceptual: {str(e)}")
|
38 |
+
|
39 |
+
# Crear documento para MongoDB
|
40 |
+
analysis_document = {
|
41 |
+
'username': username,
|
42 |
+
'timestamp': datetime.now(timezone.utc).isoformat(),
|
43 |
+
'text': text,
|
44 |
+
'analysis_type': 'semantic',
|
45 |
+
'key_concepts': analysis_result.get('key_concepts', []),
|
46 |
+
'concept_graph': concept_graph_data
|
47 |
+
}
|
48 |
+
|
49 |
+
# Insertar en MongoDB
|
50 |
+
result = insert_document(COLLECTION_NAME, analysis_document)
|
51 |
+
if result:
|
52 |
+
logger.info(f"Análisis semántico guardado con ID: {result} para el usuario: {username}")
|
53 |
+
return True
|
54 |
+
|
55 |
+
logger.error("No se pudo insertar el documento en MongoDB")
|
56 |
+
return False
|
57 |
+
|
58 |
+
except Exception as e:
|
59 |
+
logger.error(f"Error al guardar el análisis semántico: {str(e)}")
|
60 |
+
return False
|
61 |
+
|
62 |
+
####################################################################################
|
63 |
+
def get_student_semantic_analysis(username, limit=10):
|
64 |
+
"""
|
65 |
+
Recupera los análisis semánticos de un estudiante.
|
66 |
+
"""
|
67 |
+
try:
|
68 |
+
# Obtener la colección
|
69 |
+
collection = get_collection(COLLECTION_NAME)
|
70 |
+
if collection is None: # Cambiado de if not collection a if collection is None
|
71 |
+
logger.error("No se pudo obtener la colección semantic")
|
72 |
+
return []
|
73 |
+
|
74 |
+
# Consulta
|
75 |
+
query = {
|
76 |
+
"username": username,
|
77 |
+
"analysis_type": "semantic"
|
78 |
+
}
|
79 |
+
|
80 |
+
# Campos a recuperar
|
81 |
+
projection = {
|
82 |
+
"timestamp": 1,
|
83 |
+
"concept_graph": 1,
|
84 |
+
"_id": 1
|
85 |
+
}
|
86 |
+
|
87 |
+
# Ejecutar consulta
|
88 |
+
try:
|
89 |
+
cursor = collection.find(query, projection).sort("timestamp", -1)
|
90 |
+
if limit:
|
91 |
+
cursor = cursor.limit(limit)
|
92 |
+
|
93 |
+
# Convertir cursor a lista
|
94 |
+
results = list(cursor)
|
95 |
+
logger.info(f"Recuperados {len(results)} análisis semánticos para {username}")
|
96 |
+
return results
|
97 |
+
|
98 |
+
except Exception as db_error:
|
99 |
+
logger.error(f"Error en la consulta a MongoDB: {str(db_error)}")
|
100 |
+
return []
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
logger.error(f"Error recuperando análisis semántico: {str(e)}")
|
104 |
+
return []
|
105 |
+
####################################################################################################
|
106 |
+
|
107 |
+
|
108 |
+
def update_student_semantic_analysis(analysis_id, update_data):
|
109 |
+
"""
|
110 |
+
Actualiza un análisis semántico existente.
|
111 |
+
Args:
|
112 |
+
analysis_id: ID del análisis a actualizar
|
113 |
+
update_data: Datos a actualizar
|
114 |
+
"""
|
115 |
+
query = {"_id": analysis_id}
|
116 |
+
update = {"$set": update_data}
|
117 |
+
return update_document(COLLECTION_NAME, query, update)
|
118 |
+
|
119 |
+
def delete_student_semantic_analysis(analysis_id):
|
120 |
+
"""
|
121 |
+
Elimina un análisis semántico.
|
122 |
+
Args:
|
123 |
+
analysis_id: ID del análisis a eliminar
|
124 |
+
"""
|
125 |
+
query = {"_id": analysis_id}
|
126 |
+
return delete_document(COLLECTION_NAME, query)
|
127 |
+
|
128 |
+
def get_student_semantic_data(username):
|
129 |
+
"""
|
130 |
+
Obtiene todos los análisis semánticos de un estudiante.
|
131 |
+
Args:
|
132 |
+
username: Nombre del usuario
|
133 |
+
Returns:
|
134 |
+
dict: Diccionario con todos los análisis del estudiante
|
135 |
+
"""
|
136 |
+
analyses = get_student_semantic_analysis(username, limit=None)
|
137 |
+
|
138 |
+
formatted_analyses = []
|
139 |
+
for analysis in analyses:
|
140 |
+
formatted_analysis = {
|
141 |
+
'timestamp': analysis['timestamp'],
|
142 |
+
'text': analysis['text'],
|
143 |
+
'key_concepts': analysis['key_concepts'],
|
144 |
+
'entities': analysis['entities']
|
145 |
+
# No incluimos los gráficos en el resumen general
|
146 |
+
}
|
147 |
+
formatted_analyses.append(formatted_analysis)
|
148 |
+
|
149 |
+
return {
|
150 |
+
'entries': formatted_analyses
|
151 |
+
}
|
152 |
+
|
153 |
+
# Exportar las funciones necesarias
|
154 |
+
__all__ = [
|
155 |
+
'store_student_semantic_result',
|
156 |
+
'get_student_semantic_analysis',
|
157 |
+
'update_student_semantic_analysis',
|
158 |
+
'delete_student_semantic_analysis',
|
159 |
+
'get_student_semantic_data'
|
160 |
]
|