Spaces:
Sleeping
Sleeping
Update modules/text_analysis/semantic_analysis.py
Browse files
modules/text_analysis/semantic_analysis.py
CHANGED
|
@@ -183,25 +183,48 @@ def perform_semantic_analysis(text, nlp, lang_code):
|
|
| 183 |
|
| 184 |
def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
|
| 185 |
"""
|
| 186 |
-
Identifica conceptos clave en el texto.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
"""
|
| 188 |
try:
|
| 189 |
word_freq = Counter()
|
| 190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
for token in doc:
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
token.
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
|
|
|
| 198 |
word_freq[token.lemma_.lower()] += 1
|
| 199 |
|
|
|
|
| 200 |
concepts = [(word, freq) for word, freq in word_freq.items()
|
| 201 |
if freq >= min_freq]
|
| 202 |
concepts.sort(key=lambda x: x[1], reverse=True)
|
| 203 |
|
| 204 |
-
logger.info(f"Identified {len(concepts)} key concepts")
|
| 205 |
return concepts[:10]
|
| 206 |
|
| 207 |
except Exception as e:
|
|
@@ -209,9 +232,10 @@ def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
|
|
| 209 |
return []
|
| 210 |
|
| 211 |
########################################################################
|
|
|
|
| 212 |
def create_concept_graph(doc, key_concepts):
|
| 213 |
"""
|
| 214 |
-
Crea un grafo de relaciones entre conceptos.
|
| 215 |
Args:
|
| 216 |
doc: Documento procesado por spaCy
|
| 217 |
key_concepts: Lista de tuplas (concepto, frecuencia)
|
|
@@ -224,26 +248,30 @@ def create_concept_graph(doc, key_concepts):
|
|
| 224 |
# Crear un conjunto de conceptos clave para búsqueda rápida
|
| 225 |
concept_words = {concept[0].lower() for concept in key_concepts}
|
| 226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
# Añadir nodos al grafo
|
| 228 |
for concept, freq in key_concepts:
|
| 229 |
G.add_node(concept.lower(), weight=freq)
|
| 230 |
|
| 231 |
# Analizar cada oración
|
| 232 |
for sent in doc.sents:
|
| 233 |
-
# Obtener conceptos en la oración actual
|
| 234 |
current_concepts = []
|
| 235 |
for token in sent:
|
| 236 |
-
if token.
|
|
|
|
| 237 |
current_concepts.append(token.lemma_.lower())
|
| 238 |
|
| 239 |
# Crear conexiones entre conceptos en la misma oración
|
| 240 |
for i, concept1 in enumerate(current_concepts):
|
| 241 |
for concept2 in current_concepts[i+1:]:
|
| 242 |
if concept1 != concept2:
|
| 243 |
-
# Si ya existe la arista, incrementar el peso
|
| 244 |
if G.has_edge(concept1, concept2):
|
| 245 |
G[concept1][concept2]['weight'] += 1
|
| 246 |
-
# Si no existe, crear nueva arista con peso 1
|
| 247 |
else:
|
| 248 |
G.add_edge(concept1, concept2, weight=1)
|
| 249 |
|
|
@@ -251,7 +279,6 @@ def create_concept_graph(doc, key_concepts):
|
|
| 251 |
|
| 252 |
except Exception as e:
|
| 253 |
logger.error(f"Error en create_concept_graph: {str(e)}")
|
| 254 |
-
# Retornar un grafo vacío en caso de error
|
| 255 |
return nx.Graph()
|
| 256 |
|
| 257 |
###############################################################################
|
|
|
|
| 183 |
|
| 184 |
def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
|
| 185 |
"""
|
| 186 |
+
Identifica conceptos clave en el texto, excluyendo entidades nombradas.
|
| 187 |
+
Args:
|
| 188 |
+
doc: Documento procesado por spaCy
|
| 189 |
+
stopwords: Lista de stopwords
|
| 190 |
+
min_freq: Frecuencia mínima para considerar un concepto
|
| 191 |
+
min_length: Longitud mínima del concepto
|
| 192 |
+
Returns:
|
| 193 |
+
List[Tuple[str, int]]: Lista de tuplas (concepto, frecuencia)
|
| 194 |
"""
|
| 195 |
try:
|
| 196 |
word_freq = Counter()
|
| 197 |
|
| 198 |
+
# Crear conjunto de tokens que son parte de entidades
|
| 199 |
+
entity_tokens = set()
|
| 200 |
+
for ent in doc.ents:
|
| 201 |
+
entity_tokens.update(token.i for token in ent)
|
| 202 |
+
|
| 203 |
+
# Procesar tokens
|
| 204 |
for token in doc:
|
| 205 |
+
# Verificar si el token no es parte de una entidad nombrada
|
| 206 |
+
if (token.i not in entity_tokens and # No es parte de una entidad
|
| 207 |
+
token.lemma_.lower() not in stopwords and # No es stopword
|
| 208 |
+
len(token.lemma_) >= min_length and # Longitud mínima
|
| 209 |
+
token.is_alpha and # Es alfabético
|
| 210 |
+
not token.is_punct and # No es puntuación
|
| 211 |
+
not token.like_num and # No es número
|
| 212 |
+
not token.is_space and # No es espacio
|
| 213 |
+
not token.is_stop and # No es stopword de spaCy
|
| 214 |
+
not token.pos_ == 'PROPN' and # No es nombre propio
|
| 215 |
+
not token.pos_ == 'SYM' and # No es símbolo
|
| 216 |
+
not token.pos_ == 'NUM' and # No es número
|
| 217 |
+
not token.pos_ == 'X'): # No es otro
|
| 218 |
|
| 219 |
+
# Convertir a minúsculas y añadir al contador
|
| 220 |
word_freq[token.lemma_.lower()] += 1
|
| 221 |
|
| 222 |
+
# Filtrar conceptos por frecuencia mínima y ordenar por frecuencia
|
| 223 |
concepts = [(word, freq) for word, freq in word_freq.items()
|
| 224 |
if freq >= min_freq]
|
| 225 |
concepts.sort(key=lambda x: x[1], reverse=True)
|
| 226 |
|
| 227 |
+
logger.info(f"Identified {len(concepts)} key concepts after excluding entities")
|
| 228 |
return concepts[:10]
|
| 229 |
|
| 230 |
except Exception as e:
|
|
|
|
| 232 |
return []
|
| 233 |
|
| 234 |
########################################################################
|
| 235 |
+
|
| 236 |
def create_concept_graph(doc, key_concepts):
|
| 237 |
"""
|
| 238 |
+
Crea un grafo de relaciones entre conceptos, ignorando entidades.
|
| 239 |
Args:
|
| 240 |
doc: Documento procesado por spaCy
|
| 241 |
key_concepts: Lista de tuplas (concepto, frecuencia)
|
|
|
|
| 248 |
# Crear un conjunto de conceptos clave para búsqueda rápida
|
| 249 |
concept_words = {concept[0].lower() for concept in key_concepts}
|
| 250 |
|
| 251 |
+
# Crear conjunto de tokens que son parte de entidades
|
| 252 |
+
entity_tokens = set()
|
| 253 |
+
for ent in doc.ents:
|
| 254 |
+
entity_tokens.update(token.i for token in ent)
|
| 255 |
+
|
| 256 |
# Añadir nodos al grafo
|
| 257 |
for concept, freq in key_concepts:
|
| 258 |
G.add_node(concept.lower(), weight=freq)
|
| 259 |
|
| 260 |
# Analizar cada oración
|
| 261 |
for sent in doc.sents:
|
| 262 |
+
# Obtener conceptos en la oración actual, excluyendo entidades
|
| 263 |
current_concepts = []
|
| 264 |
for token in sent:
|
| 265 |
+
if (token.i not in entity_tokens and
|
| 266 |
+
token.lemma_.lower() in concept_words):
|
| 267 |
current_concepts.append(token.lemma_.lower())
|
| 268 |
|
| 269 |
# Crear conexiones entre conceptos en la misma oración
|
| 270 |
for i, concept1 in enumerate(current_concepts):
|
| 271 |
for concept2 in current_concepts[i+1:]:
|
| 272 |
if concept1 != concept2:
|
|
|
|
| 273 |
if G.has_edge(concept1, concept2):
|
| 274 |
G[concept1][concept2]['weight'] += 1
|
|
|
|
| 275 |
else:
|
| 276 |
G.add_edge(concept1, concept2, weight=1)
|
| 277 |
|
|
|
|
| 279 |
|
| 280 |
except Exception as e:
|
| 281 |
logger.error(f"Error en create_concept_graph: {str(e)}")
|
|
|
|
| 282 |
return nx.Graph()
|
| 283 |
|
| 284 |
###############################################################################
|