Merge branch #AIdeaText/v3' into 'AIdeaText/v4'
Browse files- modules/database/discourse_mongo_db.py +10 -10
- modules/database/sql_db.py +2 -0
- modules/discourse/discourse_interface.py +133 -24
- modules/discourse/discourse_live_interface.py +151 -0
- modules/semantic/semantic_interface.py +115 -42
- modules/semantic/semantic_live_interface.py +128 -55
- modules/text_analysis/semantic_analysis.py +123 -39
- modules/ui/ui.py +91 -15
modules/database/discourse_mongo_db.py
CHANGED
@@ -1,7 +1,12 @@
|
|
1 |
# modules/database/discourse_mongo_db.py
|
2 |
-
|
3 |
import io
|
4 |
import base64
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
from .mongo_db import (
|
7 |
get_collection,
|
@@ -11,14 +16,11 @@ from .mongo_db import (
|
|
11 |
delete_document
|
12 |
)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
import logging
|
17 |
-
|
18 |
logger = logging.getLogger(__name__)
|
19 |
-
|
20 |
COLLECTION_NAME = 'student_discourse_analysis'
|
21 |
|
|
|
22 |
def store_student_discourse_result(username, text1, text2, analysis_result):
|
23 |
"""
|
24 |
Guarda el resultado del análisis de discurso comparativo en MongoDB.
|
@@ -120,10 +122,6 @@ def get_student_discourse_analysis(username, limit=10):
|
|
120 |
logger.error(f"Error recuperando análisis del discurso: {str(e)}")
|
121 |
return []
|
122 |
#####################################################################################
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
|
128 |
def get_student_discourse_data(username):
|
129 |
"""
|
@@ -149,6 +147,7 @@ def get_student_discourse_data(username):
|
|
149 |
logger.error(f"Error al obtener datos del discurso: {str(e)}")
|
150 |
return {'entries': []}
|
151 |
|
|
|
152 |
def update_student_discourse_analysis(analysis_id, update_data):
|
153 |
"""
|
154 |
Actualiza un análisis del discurso existente.
|
@@ -161,6 +160,7 @@ def update_student_discourse_analysis(analysis_id, update_data):
|
|
161 |
logger.error(f"Error al actualizar análisis del discurso: {str(e)}")
|
162 |
return False
|
163 |
|
|
|
164 |
def delete_student_discourse_analysis(analysis_id):
|
165 |
"""
|
166 |
Elimina un análisis del discurso.
|
|
|
1 |
# modules/database/discourse_mongo_db.py
|
2 |
+
# Importaciones estándar
|
3 |
import io
|
4 |
import base64
|
5 |
+
from datetime import datetime, timezone
|
6 |
+
import logging
|
7 |
+
|
8 |
+
# Importaciones de terceros
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
|
11 |
from .mongo_db import (
|
12 |
get_collection,
|
|
|
16 |
delete_document
|
17 |
)
|
18 |
|
19 |
+
# Configuración del logger
|
|
|
|
|
|
|
20 |
logger = logging.getLogger(__name__)
|
|
|
21 |
COLLECTION_NAME = 'student_discourse_analysis'
|
22 |
|
23 |
+
########################################################################
|
24 |
def store_student_discourse_result(username, text1, text2, analysis_result):
|
25 |
"""
|
26 |
Guarda el resultado del análisis de discurso comparativo en MongoDB.
|
|
|
122 |
logger.error(f"Error recuperando análisis del discurso: {str(e)}")
|
123 |
return []
|
124 |
#####################################################################################
|
|
|
|
|
|
|
|
|
125 |
|
126 |
def get_student_discourse_data(username):
|
127 |
"""
|
|
|
147 |
logger.error(f"Error al obtener datos del discurso: {str(e)}")
|
148 |
return {'entries': []}
|
149 |
|
150 |
+
###########################################################################
|
151 |
def update_student_discourse_analysis(analysis_id, update_data):
|
152 |
"""
|
153 |
Actualiza un análisis del discurso existente.
|
|
|
160 |
logger.error(f"Error al actualizar análisis del discurso: {str(e)}")
|
161 |
return False
|
162 |
|
163 |
+
###########################################################################
|
164 |
def delete_student_discourse_analysis(analysis_id):
|
165 |
"""
|
166 |
Elimina un análisis del discurso.
|
modules/database/sql_db.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
from .database_init import get_sql_containers
|
2 |
from datetime import datetime, timezone
|
3 |
import logging
|
|
|
1 |
+
#modules/database/sql_db.py
|
2 |
+
|
3 |
from .database_init import get_sql_containers
|
4 |
from datetime import datetime, timezone
|
5 |
import logging
|
modules/discourse/discourse_interface.py
CHANGED
@@ -125,6 +125,10 @@ def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
|
125 |
logger.error(f"Error general en interfaz del discurso: {str(e)}")
|
126 |
st.error(discourse_t.get('general_error', 'Se produjo un error. Por favor, intente de nuevo.'))
|
127 |
|
|
|
|
|
|
|
|
|
128 |
def display_discourse_results(result, lang_code, discourse_t):
|
129 |
"""
|
130 |
Muestra los resultados del análisis del discurso
|
@@ -133,39 +137,144 @@ def display_discourse_results(result, lang_code, discourse_t):
|
|
133 |
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles'))
|
134 |
return
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
col1, col2 = st.columns(2)
|
137 |
|
138 |
# Documento 1
|
139 |
with col1:
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
else:
|
152 |
-
st.warning(discourse_t.get('
|
|
|
|
|
153 |
|
154 |
# Documento 2
|
155 |
with col2:
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
else:
|
168 |
-
st.warning(discourse_t.get('
|
|
|
|
|
169 |
|
170 |
# Nota informativa sobre la comparación
|
171 |
st.info(discourse_t.get('comparison_note',
|
|
|
125 |
logger.error(f"Error general en interfaz del discurso: {str(e)}")
|
126 |
st.error(discourse_t.get('general_error', 'Se produjo un error. Por favor, intente de nuevo.'))
|
127 |
|
128 |
+
|
129 |
+
|
130 |
+
#####################################################################################################################
|
131 |
+
|
132 |
def display_discourse_results(result, lang_code, discourse_t):
|
133 |
"""
|
134 |
Muestra los resultados del análisis del discurso
|
|
|
137 |
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles'))
|
138 |
return
|
139 |
|
140 |
+
# Estilo CSS
|
141 |
+
st.markdown("""
|
142 |
+
<style>
|
143 |
+
.concepts-container {
|
144 |
+
display: flex;
|
145 |
+
flex-wrap: nowrap;
|
146 |
+
gap: 8px;
|
147 |
+
padding: 12px;
|
148 |
+
background-color: #f8f9fa;
|
149 |
+
border-radius: 8px;
|
150 |
+
overflow-x: auto;
|
151 |
+
margin-bottom: 15px;
|
152 |
+
white-space: nowrap;
|
153 |
+
}
|
154 |
+
.concept-item {
|
155 |
+
background-color: white;
|
156 |
+
border-radius: 4px;
|
157 |
+
padding: 6px 10px;
|
158 |
+
display: inline-flex;
|
159 |
+
align-items: center;
|
160 |
+
gap: 4px;
|
161 |
+
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
162 |
+
flex-shrink: 0;
|
163 |
+
}
|
164 |
+
.concept-name {
|
165 |
+
font-weight: 500;
|
166 |
+
color: #1f2937;
|
167 |
+
font-size: 0.85em;
|
168 |
+
}
|
169 |
+
.concept-freq {
|
170 |
+
color: #6b7280;
|
171 |
+
font-size: 0.75em;
|
172 |
+
}
|
173 |
+
.graph-container {
|
174 |
+
background-color: white;
|
175 |
+
padding: 15px;
|
176 |
+
border-radius: 8px;
|
177 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
178 |
+
margin-top: 10px;
|
179 |
+
}
|
180 |
+
</style>
|
181 |
+
""", unsafe_allow_html=True)
|
182 |
+
|
183 |
col1, col2 = st.columns(2)
|
184 |
|
185 |
# Documento 1
|
186 |
with col1:
|
187 |
+
st.subheader(discourse_t.get('doc1_title', 'Documento 1'))
|
188 |
+
st.markdown(discourse_t.get('key_concepts', 'Conceptos Clave'))
|
189 |
+
if 'key_concepts1' in result:
|
190 |
+
concepts_html = f"""
|
191 |
+
<div class="concepts-container">
|
192 |
+
{''.join([
|
193 |
+
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
194 |
+
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
195 |
+
for concept, freq in result['key_concepts1']
|
196 |
+
])}
|
197 |
+
</div>
|
198 |
+
"""
|
199 |
+
st.markdown(concepts_html, unsafe_allow_html=True)
|
200 |
+
|
201 |
+
if 'graph1' in result:
|
202 |
+
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
203 |
+
st.pyplot(result['graph1'])
|
204 |
+
|
205 |
+
# Botones y controles
|
206 |
+
button_col1, spacer_col1 = st.columns([1,4])
|
207 |
+
with button_col1:
|
208 |
+
if 'graph1_bytes' in result:
|
209 |
+
st.download_button(
|
210 |
+
label="📥 " + discourse_t.get('download_graph', "Download"),
|
211 |
+
data=result['graph1_bytes'],
|
212 |
+
file_name="discourse_graph1.png",
|
213 |
+
mime="image/png",
|
214 |
+
use_container_width=True
|
215 |
+
)
|
216 |
+
|
217 |
+
# Interpretación como texto normal sin expander
|
218 |
+
st.markdown("**📊 Interpretación del grafo:**")
|
219 |
+
st.markdown("""
|
220 |
+
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
221 |
+
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
222 |
+
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
223 |
+
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
224 |
+
""")
|
225 |
+
|
226 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
227 |
else:
|
228 |
+
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible'))
|
229 |
+
else:
|
230 |
+
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles'))
|
231 |
|
232 |
# Documento 2
|
233 |
with col2:
|
234 |
+
st.subheader(discourse_t.get('doc2_title', 'Documento 2'))
|
235 |
+
st.markdown(discourse_t.get('key_concepts', 'Conceptos Clave'))
|
236 |
+
if 'key_concepts2' in result:
|
237 |
+
concepts_html = f"""
|
238 |
+
<div class="concepts-container">
|
239 |
+
{''.join([
|
240 |
+
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
241 |
+
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
242 |
+
for concept, freq in result['key_concepts2']
|
243 |
+
])}
|
244 |
+
</div>
|
245 |
+
"""
|
246 |
+
st.markdown(concepts_html, unsafe_allow_html=True)
|
247 |
+
|
248 |
+
if 'graph2' in result:
|
249 |
+
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
250 |
+
st.pyplot(result['graph2'])
|
251 |
+
|
252 |
+
# Botones y controles
|
253 |
+
button_col2, spacer_col2 = st.columns([1,4])
|
254 |
+
with button_col2:
|
255 |
+
if 'graph2_bytes' in result:
|
256 |
+
st.download_button(
|
257 |
+
label="📥 " + discourse_t.get('download_graph', "Download"),
|
258 |
+
data=result['graph2_bytes'],
|
259 |
+
file_name="discourse_graph2.png",
|
260 |
+
mime="image/png",
|
261 |
+
use_container_width=True
|
262 |
+
)
|
263 |
+
|
264 |
+
# Interpretación como texto normal sin expander
|
265 |
+
st.markdown("**📊 Interpretación del grafo:**")
|
266 |
+
st.markdown("""
|
267 |
+
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
268 |
+
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
269 |
+
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
270 |
+
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
271 |
+
""")
|
272 |
+
|
273 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
274 |
else:
|
275 |
+
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible'))
|
276 |
+
else:
|
277 |
+
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles'))
|
278 |
|
279 |
# Nota informativa sobre la comparación
|
280 |
st.info(discourse_t.get('comparison_note',
|
modules/discourse/discourse_live_interface.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modules/discourse/discourse/discourse_live_interface.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from streamlit_float import *
|
5 |
+
from streamlit_antd_components import *
|
6 |
+
import pandas as pd
|
7 |
+
import logging
|
8 |
+
import io
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
|
11 |
+
# Configuración del logger
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
# Importaciones locales
|
15 |
+
from .discourse_process import perform_discourse_analysis
|
16 |
+
from .discourse_interface import display_discourse_results # Añadida esta importación
|
17 |
+
from ..utils.widget_utils import generate_unique_key
|
18 |
+
from ..database.discourse_mongo_db import store_student_discourse_result
|
19 |
+
from ..database.chat_mongo_db import store_chat_history, get_chat_history
|
20 |
+
|
21 |
+
|
22 |
+
#####################################################################################################
|
23 |
+
def fig_to_bytes(fig):
|
24 |
+
"""Convierte una figura de matplotlib a bytes."""
|
25 |
+
try:
|
26 |
+
buf = io.BytesIO()
|
27 |
+
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight')
|
28 |
+
buf.seek(0)
|
29 |
+
return buf.getvalue()
|
30 |
+
except Exception as e:
|
31 |
+
logger.error(f"Error en fig_to_bytes: {str(e)}")
|
32 |
+
return None
|
33 |
+
|
34 |
+
#################################################################################################
|
35 |
+
def display_discourse_live_interface(lang_code, nlp_models, discourse_t):
|
36 |
+
"""
|
37 |
+
Interfaz para el análisis del discurso en vivo con layout mejorado
|
38 |
+
"""
|
39 |
+
try:
|
40 |
+
if 'discourse_live_state' not in st.session_state:
|
41 |
+
st.session_state.discourse_live_state = {
|
42 |
+
'analysis_count': 0,
|
43 |
+
'current_text1': '',
|
44 |
+
'current_text2': '',
|
45 |
+
'last_result': None,
|
46 |
+
'text_changed': False
|
47 |
+
}
|
48 |
+
|
49 |
+
# Título
|
50 |
+
st.subheader(discourse_t.get('enter_text', 'Ingrese sus textos'))
|
51 |
+
|
52 |
+
# Área de entrada de textos en dos columnas
|
53 |
+
text_col1, text_col2 = st.columns(2)
|
54 |
+
|
55 |
+
# Texto 1
|
56 |
+
with text_col1:
|
57 |
+
st.markdown("**Texto 1 (Patrón)**")
|
58 |
+
text_input1 = st.text_area(
|
59 |
+
"Texto 1",
|
60 |
+
height=200,
|
61 |
+
key="discourse_live_text1",
|
62 |
+
value=st.session_state.discourse_live_state.get('current_text1', ''),
|
63 |
+
label_visibility="collapsed"
|
64 |
+
)
|
65 |
+
st.session_state.discourse_live_state['current_text1'] = text_input1
|
66 |
+
|
67 |
+
# Texto 2
|
68 |
+
with text_col2:
|
69 |
+
st.markdown("**Texto 2 (Comparación)**")
|
70 |
+
text_input2 = st.text_area(
|
71 |
+
"Texto 2",
|
72 |
+
height=200,
|
73 |
+
key="discourse_live_text2",
|
74 |
+
value=st.session_state.discourse_live_state.get('current_text2', ''),
|
75 |
+
label_visibility="collapsed"
|
76 |
+
)
|
77 |
+
st.session_state.discourse_live_state['current_text2'] = text_input2
|
78 |
+
|
79 |
+
# Botón de análisis centrado
|
80 |
+
col1, col2, col3 = st.columns([1,2,1])
|
81 |
+
with col1:
|
82 |
+
analyze_button = st.button(
|
83 |
+
discourse_t.get('analyze_button', 'Analizar'),
|
84 |
+
key="discourse_live_analyze",
|
85 |
+
type="primary",
|
86 |
+
icon="🔍",
|
87 |
+
disabled=not (text_input1 and text_input2),
|
88 |
+
use_container_width=True
|
89 |
+
)
|
90 |
+
|
91 |
+
# Proceso y visualización de resultados
|
92 |
+
if analyze_button and text_input1 and text_input2:
|
93 |
+
try:
|
94 |
+
with st.spinner(discourse_t.get('processing', 'Procesando...')):
|
95 |
+
result = perform_discourse_analysis(
|
96 |
+
text_input1,
|
97 |
+
text_input2,
|
98 |
+
nlp_models[lang_code],
|
99 |
+
lang_code
|
100 |
+
)
|
101 |
+
|
102 |
+
if result['success']:
|
103 |
+
# Procesar ambos gráficos
|
104 |
+
for graph_key in ['graph1', 'graph2']:
|
105 |
+
if graph_key in result and result[graph_key] is not None:
|
106 |
+
bytes_key = f'{graph_key}_bytes'
|
107 |
+
graph_bytes = fig_to_bytes(result[graph_key])
|
108 |
+
if graph_bytes:
|
109 |
+
result[bytes_key] = graph_bytes
|
110 |
+
plt.close(result[graph_key])
|
111 |
+
|
112 |
+
st.session_state.discourse_live_state['last_result'] = result
|
113 |
+
st.session_state.discourse_live_state['analysis_count'] += 1
|
114 |
+
|
115 |
+
store_student_discourse_result(
|
116 |
+
st.session_state.username,
|
117 |
+
text_input1,
|
118 |
+
text_input2,
|
119 |
+
result
|
120 |
+
)
|
121 |
+
|
122 |
+
# Mostrar resultados
|
123 |
+
st.markdown("---")
|
124 |
+
st.subheader(discourse_t.get('results_title', 'Resultados del Análisis'))
|
125 |
+
display_discourse_results(result, lang_code, discourse_t)
|
126 |
+
|
127 |
+
else:
|
128 |
+
st.error(result.get('message', 'Error en el análisis'))
|
129 |
+
|
130 |
+
except Exception as e:
|
131 |
+
logger.error(f"Error en análisis: {str(e)}")
|
132 |
+
st.error(discourse_t.get('error_processing', f'Error al procesar el texto: {str(e)}'))
|
133 |
+
|
134 |
+
# Mostrar resultados previos si existen
|
135 |
+
elif 'last_result' in st.session_state.discourse_live_state and \
|
136 |
+
st.session_state.discourse_live_state['last_result'] is not None:
|
137 |
+
|
138 |
+
st.markdown("---")
|
139 |
+
st.subheader(discourse_t.get('previous_results', 'Resultados del Análisis Anterior'))
|
140 |
+
display_discourse_results(
|
141 |
+
st.session_state.discourse_live_state['last_result'],
|
142 |
+
lang_code,
|
143 |
+
discourse_t
|
144 |
+
)
|
145 |
+
|
146 |
+
except Exception as e:
|
147 |
+
logger.error(f"Error general en interfaz del discurso en vivo: {str(e)}")
|
148 |
+
st.error(discourse_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
149 |
+
|
150 |
+
|
151 |
+
|
modules/semantic/semantic_interface.py
CHANGED
@@ -143,62 +143,135 @@ def display_semantic_results(semantic_result, lang_code, semantic_t):
|
|
143 |
"""
|
144 |
Muestra los resultados del análisis semántico de conceptos clave.
|
145 |
"""
|
146 |
-
# Verificar resultado
|
147 |
if semantic_result is None or not semantic_result['success']:
|
148 |
st.warning(semantic_t.get('no_results', 'No results available'))
|
149 |
return
|
150 |
|
151 |
analysis = semantic_result['analysis']
|
152 |
|
153 |
-
#
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
#
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
#
|
186 |
st.markdown(
|
187 |
"""
|
188 |
<style>
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
</style>
|
195 |
-
""",
|
196 |
unsafe_allow_html=True
|
197 |
)
|
198 |
-
st.image(analysis['concept_graph'], use_column_width=True)
|
199 |
-
else:
|
200 |
-
st.info(semantic_t.get('no_graph', 'No concept graph available'))
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
'''
|
203 |
# Botón de exportación al final
|
204 |
if 'semantic_analysis_counter' in st.session_state:
|
|
|
143 |
"""
|
144 |
Muestra los resultados del análisis semántico de conceptos clave.
|
145 |
"""
|
|
|
146 |
if semantic_result is None or not semantic_result['success']:
|
147 |
st.warning(semantic_t.get('no_results', 'No results available'))
|
148 |
return
|
149 |
|
150 |
analysis = semantic_result['analysis']
|
151 |
|
152 |
+
# Mostrar conceptos clave en formato horizontal
|
153 |
+
st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
|
154 |
+
if 'key_concepts' in analysis and analysis['key_concepts']:
|
155 |
+
# Crear tabla de conceptos
|
156 |
+
df = pd.DataFrame(
|
157 |
+
analysis['key_concepts'],
|
158 |
+
columns=[
|
159 |
+
semantic_t.get('concept', 'Concept'),
|
160 |
+
semantic_t.get('frequency', 'Frequency')
|
161 |
+
]
|
162 |
+
)
|
163 |
+
|
164 |
+
# Convertir DataFrame a formato horizontal
|
165 |
+
st.write(
|
166 |
+
"""
|
167 |
+
<style>
|
168 |
+
.concept-table {
|
169 |
+
display: flex;
|
170 |
+
flex-wrap: wrap;
|
171 |
+
gap: 10px;
|
172 |
+
margin-bottom: 20px;
|
173 |
+
}
|
174 |
+
.concept-item {
|
175 |
+
background-color: #f0f2f6;
|
176 |
+
border-radius: 5px;
|
177 |
+
padding: 8px 12px;
|
178 |
+
display: flex;
|
179 |
+
align-items: center;
|
180 |
+
gap: 8px;
|
181 |
+
}
|
182 |
+
.concept-name {
|
183 |
+
font-weight: bold;
|
184 |
+
}
|
185 |
+
.concept-freq {
|
186 |
+
color: #666;
|
187 |
+
font-size: 0.9em;
|
188 |
+
}
|
189 |
+
</style>
|
190 |
+
<div class="concept-table">
|
191 |
+
""" +
|
192 |
+
''.join([
|
193 |
+
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
194 |
+
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
195 |
+
for concept, freq in df.values
|
196 |
+
]) +
|
197 |
+
"</div>",
|
198 |
+
unsafe_allow_html=True
|
199 |
+
)
|
200 |
+
else:
|
201 |
+
st.info(semantic_t.get('no_concepts', 'No key concepts found'))
|
202 |
|
203 |
+
# Gráfico de conceptos
|
204 |
+
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
|
205 |
+
if 'concept_graph' in analysis and analysis['concept_graph'] is not None:
|
206 |
+
try:
|
207 |
+
# Container para el grafo con estilos mejorados
|
208 |
st.markdown(
|
209 |
"""
|
210 |
<style>
|
211 |
+
.graph-container {
|
212 |
+
background-color: white;
|
213 |
+
border-radius: 10px;
|
214 |
+
padding: 20px;
|
215 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
216 |
+
margin: 10px 0;
|
217 |
+
}
|
218 |
+
.button-container {
|
219 |
+
display: flex;
|
220 |
+
gap: 10px;
|
221 |
+
margin: 10px 0;
|
222 |
+
}
|
223 |
</style>
|
224 |
+
""",
|
225 |
unsafe_allow_html=True
|
226 |
)
|
|
|
|
|
|
|
227 |
|
228 |
+
with st.container():
|
229 |
+
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
230 |
+
|
231 |
+
# Mostrar grafo
|
232 |
+
graph_bytes = analysis['concept_graph']
|
233 |
+
graph_base64 = base64.b64encode(graph_bytes).decode()
|
234 |
+
st.markdown(
|
235 |
+
f'<img src="data:image/png;base64,{graph_base64}" alt="Concept Graph" style="width:100%;"/>',
|
236 |
+
unsafe_allow_html=True
|
237 |
+
)
|
238 |
+
|
239 |
+
# Leyenda del grafo
|
240 |
+
st.caption(semantic_t.get(
|
241 |
+
'graph_description',
|
242 |
+
'Visualización de relaciones entre conceptos clave identificados en el texto.'
|
243 |
+
))
|
244 |
+
|
245 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
246 |
+
|
247 |
+
# Contenedor para botones
|
248 |
+
col1, col2 = st.columns([1,4])
|
249 |
+
with col1:
|
250 |
+
st.download_button(
|
251 |
+
label="📥 " + semantic_t.get('download_graph', "Download"),
|
252 |
+
data=graph_bytes,
|
253 |
+
file_name="semantic_graph.png",
|
254 |
+
mime="image/png",
|
255 |
+
use_container_width=True
|
256 |
+
)
|
257 |
+
|
258 |
+
# Expandible con la interpretación
|
259 |
+
with st.expander("📊 " + semantic_t.get('graph_help', "Graph Interpretation")):
|
260 |
+
st.markdown("""
|
261 |
+
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
262 |
+
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
263 |
+
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
264 |
+
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
265 |
+
""")
|
266 |
+
|
267 |
+
except Exception as e:
|
268 |
+
logger.error(f"Error displaying graph: {str(e)}")
|
269 |
+
st.error(semantic_t.get('graph_error', 'Error displaying the graph'))
|
270 |
+
else:
|
271 |
+
st.info(semantic_t.get('no_graph', 'No concept graph available'))
|
272 |
+
|
273 |
+
|
274 |
+
########################################################################################
|
275 |
'''
|
276 |
# Botón de exportación al final
|
277 |
if 'semantic_analysis_counter' in st.session_state:
|
modules/semantic/semantic_live_interface.py
CHANGED
@@ -20,54 +20,54 @@ from ..database.chat_mongo_db import store_chat_history, get_chat_history
|
|
20 |
|
21 |
def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
22 |
"""
|
23 |
-
Interfaz para el análisis semántico en vivo
|
24 |
-
Args:
|
25 |
-
lang_code: Código del idioma actual
|
26 |
-
nlp_models: Modelos de spaCy cargados
|
27 |
-
semantic_t: Diccionario de traducciones semánticas
|
28 |
"""
|
29 |
try:
|
30 |
-
# 1. Inicializar el estado de la sesión
|
31 |
if 'semantic_live_state' not in st.session_state:
|
32 |
st.session_state.semantic_live_state = {
|
33 |
'analysis_count': 0,
|
34 |
-
'
|
35 |
-
'
|
|
|
36 |
}
|
37 |
|
38 |
-
# 2.
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
# Columna izquierda: Entrada de texto
|
42 |
-
with
|
43 |
st.subheader(semantic_t.get('enter_text', 'Ingrese su texto'))
|
44 |
|
45 |
-
# Área de texto
|
46 |
text_input = st.text_area(
|
47 |
semantic_t.get('text_input_label', 'Escriba o pegue su texto aquí'),
|
48 |
-
height=
|
49 |
-
key=
|
|
|
|
|
|
|
50 |
)
|
51 |
|
52 |
-
# Botón de análisis
|
53 |
analyze_button = st.button(
|
54 |
semantic_t.get('analyze_button', 'Analizar'),
|
55 |
-
key=
|
56 |
type="primary",
|
57 |
icon="🔍",
|
58 |
disabled=not text_input,
|
59 |
use_container_width=True
|
60 |
)
|
61 |
|
62 |
-
# Columna derecha: Visualización de resultados
|
63 |
-
with col2:
|
64 |
-
st.subheader(semantic_t.get('live_results', 'Resultados en vivo'))
|
65 |
-
|
66 |
-
# Procesar análisis cuando se presiona el botón
|
67 |
if analyze_button and text_input:
|
68 |
try:
|
69 |
with st.spinner(semantic_t.get('processing', 'Procesando...')):
|
70 |
-
# Realizar análisis
|
71 |
analysis_result = process_semantic_input(
|
72 |
text_input,
|
73 |
lang_code,
|
@@ -76,49 +76,122 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
76 |
)
|
77 |
|
78 |
if analysis_result['success']:
|
79 |
-
|
80 |
-
st.session_state.semantic_live_result = analysis_result
|
81 |
st.session_state.semantic_live_state['analysis_count'] += 1
|
|
|
82 |
|
83 |
-
# Guardar en base de datos
|
84 |
store_student_semantic_result(
|
85 |
st.session_state.username,
|
86 |
text_input,
|
87 |
analysis_result['analysis']
|
88 |
)
|
89 |
-
|
90 |
-
# Mostrar gráfico de conceptos
|
91 |
-
if 'concept_graph' in analysis_result['analysis'] and analysis_result['analysis']['concept_graph'] is not None:
|
92 |
-
st.image(analysis_result['analysis']['concept_graph'])
|
93 |
-
else:
|
94 |
-
st.info(semantic_t.get('no_graph', 'No hay gráfico disponible'))
|
95 |
-
|
96 |
-
# Mostrar tabla de conceptos clave
|
97 |
-
if 'key_concepts' in analysis_result['analysis'] and analysis_result['analysis']['key_concepts']:
|
98 |
-
st.subheader(semantic_t.get('key_concepts', 'Conceptos Clave'))
|
99 |
-
df = pd.DataFrame(
|
100 |
-
analysis_result['analysis']['key_concepts'],
|
101 |
-
columns=[
|
102 |
-
semantic_t.get('concept', 'Concepto'),
|
103 |
-
semantic_t.get('frequency', 'Frecuencia')
|
104 |
-
]
|
105 |
-
)
|
106 |
-
st.dataframe(
|
107 |
-
df,
|
108 |
-
hide_index=True,
|
109 |
-
column_config={
|
110 |
-
semantic_t.get('frequency', 'Frecuencia'): st.column_config.NumberColumn(
|
111 |
-
format="%.2f"
|
112 |
-
)
|
113 |
-
}
|
114 |
-
)
|
115 |
else:
|
116 |
-
st.error(analysis_result
|
117 |
|
118 |
except Exception as e:
|
119 |
-
logger.error(f"Error en análisis
|
120 |
-
st.error(semantic_t.get('error_processing',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
except Exception as e:
|
123 |
logger.error(f"Error general en interfaz semántica en vivo: {str(e)}")
|
124 |
-
st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
|
|
|
20 |
|
21 |
def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
22 |
"""
|
23 |
+
Interfaz para el análisis semántico en vivo con proporciones de columna ajustadas
|
|
|
|
|
|
|
|
|
24 |
"""
|
25 |
try:
|
26 |
+
# 1. Inicializar el estado de la sesión de manera más robusta
|
27 |
if 'semantic_live_state' not in st.session_state:
|
28 |
st.session_state.semantic_live_state = {
|
29 |
'analysis_count': 0,
|
30 |
+
'current_text': '',
|
31 |
+
'last_result': None,
|
32 |
+
'text_changed': False
|
33 |
}
|
34 |
|
35 |
+
# 2. Función para manejar cambios en el texto
|
36 |
+
def on_text_change():
|
37 |
+
current_text = st.session_state.semantic_live_text
|
38 |
+
st.session_state.semantic_live_state['current_text'] = current_text
|
39 |
+
st.session_state.semantic_live_state['text_changed'] = True
|
40 |
+
|
41 |
+
# 3. Crear columnas con nueva proporción (1:3)
|
42 |
+
input_col, result_col = st.columns([1, 3])
|
43 |
|
44 |
# Columna izquierda: Entrada de texto
|
45 |
+
with input_col:
|
46 |
st.subheader(semantic_t.get('enter_text', 'Ingrese su texto'))
|
47 |
|
48 |
+
# Área de texto con manejo de eventos
|
49 |
text_input = st.text_area(
|
50 |
semantic_t.get('text_input_label', 'Escriba o pegue su texto aquí'),
|
51 |
+
height=500,
|
52 |
+
key="semantic_live_text",
|
53 |
+
value=st.session_state.semantic_live_state.get('current_text', ''),
|
54 |
+
on_change=on_text_change,
|
55 |
+
label_visibility="collapsed" # Oculta el label para mayor estabilidad
|
56 |
)
|
57 |
|
58 |
+
# Botón de análisis y procesamiento
|
59 |
analyze_button = st.button(
|
60 |
semantic_t.get('analyze_button', 'Analizar'),
|
61 |
+
key="semantic_live_analyze",
|
62 |
type="primary",
|
63 |
icon="🔍",
|
64 |
disabled=not text_input,
|
65 |
use_container_width=True
|
66 |
)
|
67 |
|
|
|
|
|
|
|
|
|
|
|
68 |
if analyze_button and text_input:
|
69 |
try:
|
70 |
with st.spinner(semantic_t.get('processing', 'Procesando...')):
|
|
|
71 |
analysis_result = process_semantic_input(
|
72 |
text_input,
|
73 |
lang_code,
|
|
|
76 |
)
|
77 |
|
78 |
if analysis_result['success']:
|
79 |
+
st.session_state.semantic_live_state['last_result'] = analysis_result
|
|
|
80 |
st.session_state.semantic_live_state['analysis_count'] += 1
|
81 |
+
st.session_state.semantic_live_state['text_changed'] = False
|
82 |
|
|
|
83 |
store_student_semantic_result(
|
84 |
st.session_state.username,
|
85 |
text_input,
|
86 |
analysis_result['analysis']
|
87 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
else:
|
89 |
+
st.error(analysis_result.get('message', 'Error en el análisis'))
|
90 |
|
91 |
except Exception as e:
|
92 |
+
logger.error(f"Error en análisis: {str(e)}")
|
93 |
+
st.error(semantic_t.get('error_processing', 'Error al procesar el texto'))
|
94 |
+
|
95 |
+
# Columna derecha: Visualización de resultados
|
96 |
+
with result_col:
|
97 |
+
st.subheader(semantic_t.get('live_results', 'Resultados en vivo'))
|
98 |
+
|
99 |
+
if 'last_result' in st.session_state.semantic_live_state and \
|
100 |
+
st.session_state.semantic_live_state['last_result'] is not None:
|
101 |
+
|
102 |
+
analysis = st.session_state.semantic_live_state['last_result']['analysis']
|
103 |
+
|
104 |
+
if 'key_concepts' in analysis and analysis['key_concepts'] and \
|
105 |
+
'concept_graph' in analysis and analysis['concept_graph'] is not None:
|
106 |
+
|
107 |
+
st.markdown("""
|
108 |
+
<style>
|
109 |
+
.unified-container {
|
110 |
+
background-color: white;
|
111 |
+
border-radius: 10px;
|
112 |
+
overflow: hidden;
|
113 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
114 |
+
width: 100%;
|
115 |
+
margin-bottom: 1rem;
|
116 |
+
}
|
117 |
+
.concept-table {
|
118 |
+
display: flex;
|
119 |
+
flex-wrap: nowrap; /* Evita el wrap */
|
120 |
+
gap: 6px; /* Reducido el gap */
|
121 |
+
padding: 10px;
|
122 |
+
background-color: #f8f9fa;
|
123 |
+
overflow-x: auto; /* Permite scroll horizontal si es necesario */
|
124 |
+
white-space: nowrap; /* Mantiene todo en una línea */
|
125 |
+
}
|
126 |
+
.concept-item {
|
127 |
+
background-color: white;
|
128 |
+
border-radius: 4px;
|
129 |
+
padding: 4px 8px; /* Padding reducido */
|
130 |
+
display: inline-flex; /* Cambiado a inline-flex */
|
131 |
+
align-items: center;
|
132 |
+
gap: 4px; /* Gap reducido */
|
133 |
+
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
134 |
+
flex-shrink: 0; /* Evita que los items se encojan */
|
135 |
+
}
|
136 |
+
.concept-name {
|
137 |
+
font-weight: 500;
|
138 |
+
color: #1f2937;
|
139 |
+
font-size: 0.8em; /* Tamaño de fuente reducido */
|
140 |
+
}
|
141 |
+
.concept-freq {
|
142 |
+
color: #6b7280;
|
143 |
+
font-size: 0.75em; /* Tamaño de fuente reducido */
|
144 |
+
}
|
145 |
+
.graph-section {
|
146 |
+
padding: 20px;
|
147 |
+
background-color: white;
|
148 |
+
}
|
149 |
+
</style>
|
150 |
+
""", unsafe_allow_html=True)
|
151 |
+
|
152 |
+
with st.container():
|
153 |
+
# Conceptos en una sola línea
|
154 |
+
concepts_html = """
|
155 |
+
<div class="unified-container">
|
156 |
+
<div class="concept-table">
|
157 |
+
"""
|
158 |
+
concepts_html += ''.join(
|
159 |
+
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
160 |
+
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
161 |
+
for concept, freq in analysis['key_concepts']
|
162 |
+
)
|
163 |
+
concepts_html += "</div></div>"
|
164 |
+
st.markdown(concepts_html, unsafe_allow_html=True)
|
165 |
+
|
166 |
+
# Grafo
|
167 |
+
if 'concept_graph' in analysis and analysis['concept_graph'] is not None:
|
168 |
+
st.image(
|
169 |
+
analysis['concept_graph'],
|
170 |
+
use_container_width=True
|
171 |
+
)
|
172 |
+
|
173 |
+
# Botones y controles
|
174 |
+
button_col, spacer_col = st.columns([1,5])
|
175 |
+
with button_col:
|
176 |
+
st.download_button(
|
177 |
+
label="📥 " + semantic_t.get('download_graph', "Download"),
|
178 |
+
data=analysis['concept_graph'],
|
179 |
+
file_name="semantic_live_graph.png",
|
180 |
+
mime="image/png",
|
181 |
+
use_container_width=True
|
182 |
+
)
|
183 |
+
|
184 |
+
with st.expander("📊 " + semantic_t.get('graph_help', "Graph Interpretation")):
|
185 |
+
st.markdown("""
|
186 |
+
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
187 |
+
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
188 |
+
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
189 |
+
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
190 |
+
""")
|
191 |
+
else:
|
192 |
+
st.info(semantic_t.get('no_graph', 'No hay datos para mostrar'))
|
193 |
|
194 |
except Exception as e:
|
195 |
logger.error(f"Error general en interfaz semántica en vivo: {str(e)}")
|
196 |
+
st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
197 |
+
|
modules/text_analysis/semantic_analysis.py
CHANGED
@@ -20,6 +20,7 @@ logger = logging.getLogger(__name__)
|
|
20 |
# 4. Importaciones locales
|
21 |
from .stopwords import (
|
22 |
process_text,
|
|
|
23 |
get_custom_stopwords,
|
24 |
get_stopwords_for_spacy
|
25 |
)
|
@@ -182,25 +183,48 @@ def perform_semantic_analysis(text, nlp, lang_code):
|
|
182 |
|
183 |
def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
|
184 |
"""
|
185 |
-
Identifica conceptos clave en el texto.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
"""
|
187 |
try:
|
188 |
word_freq = Counter()
|
189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
for token in doc:
|
191 |
-
|
192 |
-
|
193 |
-
token.
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
|
|
197 |
word_freq[token.lemma_.lower()] += 1
|
198 |
|
|
|
199 |
concepts = [(word, freq) for word, freq in word_freq.items()
|
200 |
if freq >= min_freq]
|
201 |
concepts.sort(key=lambda x: x[1], reverse=True)
|
202 |
|
203 |
-
logger.info(f"Identified {len(concepts)} key concepts")
|
204 |
return concepts[:10]
|
205 |
|
206 |
except Exception as e:
|
@@ -208,9 +232,10 @@ def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
|
|
208 |
return []
|
209 |
|
210 |
########################################################################
|
|
|
211 |
def create_concept_graph(doc, key_concepts):
|
212 |
"""
|
213 |
-
Crea un grafo de relaciones entre conceptos.
|
214 |
Args:
|
215 |
doc: Documento procesado por spaCy
|
216 |
key_concepts: Lista de tuplas (concepto, frecuencia)
|
@@ -223,26 +248,30 @@ def create_concept_graph(doc, key_concepts):
|
|
223 |
# Crear un conjunto de conceptos clave para búsqueda rápida
|
224 |
concept_words = {concept[0].lower() for concept in key_concepts}
|
225 |
|
|
|
|
|
|
|
|
|
|
|
226 |
# Añadir nodos al grafo
|
227 |
for concept, freq in key_concepts:
|
228 |
G.add_node(concept.lower(), weight=freq)
|
229 |
|
230 |
# Analizar cada oración
|
231 |
for sent in doc.sents:
|
232 |
-
# Obtener conceptos en la oración actual
|
233 |
current_concepts = []
|
234 |
for token in sent:
|
235 |
-
if token.
|
|
|
236 |
current_concepts.append(token.lemma_.lower())
|
237 |
|
238 |
# Crear conexiones entre conceptos en la misma oración
|
239 |
for i, concept1 in enumerate(current_concepts):
|
240 |
for concept2 in current_concepts[i+1:]:
|
241 |
if concept1 != concept2:
|
242 |
-
# Si ya existe la arista, incrementar el peso
|
243 |
if G.has_edge(concept1, concept2):
|
244 |
G[concept1][concept2]['weight'] += 1
|
245 |
-
# Si no existe, crear nueva arista con peso 1
|
246 |
else:
|
247 |
G.add_edge(concept1, concept2, weight=1)
|
248 |
|
@@ -250,53 +279,109 @@ def create_concept_graph(doc, key_concepts):
|
|
250 |
|
251 |
except Exception as e:
|
252 |
logger.error(f"Error en create_concept_graph: {str(e)}")
|
253 |
-
# Retornar un grafo vacío en caso de error
|
254 |
return nx.Graph()
|
255 |
|
256 |
###############################################################################
|
|
|
257 |
def visualize_concept_graph(G, lang_code):
|
258 |
"""
|
259 |
-
Visualiza el grafo de conceptos con
|
|
|
|
|
|
|
|
|
|
|
260 |
"""
|
261 |
try:
|
262 |
-
# Crear nueva figura con mayor tamaño
|
263 |
-
fig = plt.
|
264 |
|
265 |
if not G.nodes():
|
266 |
logger.warning("Grafo vacío, retornando figura vacía")
|
267 |
return fig
|
268 |
|
269 |
-
#
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
# Calcular factor de escala basado en número de nodos
|
273 |
-
num_nodes = len(
|
274 |
scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200
|
275 |
|
276 |
# Obtener pesos ajustados
|
277 |
-
node_weights = [
|
278 |
-
edge_weights = [
|
279 |
-
|
280 |
-
#
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
# Ajustar tamaño de fuente según número de nodos
|
292 |
font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
return fig
|
302 |
|
@@ -304,7 +389,6 @@ def visualize_concept_graph(G, lang_code):
|
|
304 |
logger.error(f"Error en visualize_concept_graph: {str(e)}")
|
305 |
return plt.figure() # Retornar figura vacía en caso de error
|
306 |
|
307 |
-
|
308 |
########################################################################
|
309 |
def create_entity_graph(entities):
|
310 |
G = nx.Graph()
|
|
|
20 |
# 4. Importaciones locales
|
21 |
from .stopwords import (
|
22 |
process_text,
|
23 |
+
clean_text,
|
24 |
get_custom_stopwords,
|
25 |
get_stopwords_for_spacy
|
26 |
)
|
|
|
183 |
|
184 |
def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
|
185 |
"""
|
186 |
+
Identifica conceptos clave en el texto, excluyendo entidades nombradas.
|
187 |
+
Args:
|
188 |
+
doc: Documento procesado por spaCy
|
189 |
+
stopwords: Lista de stopwords
|
190 |
+
min_freq: Frecuencia mínima para considerar un concepto
|
191 |
+
min_length: Longitud mínima del concepto
|
192 |
+
Returns:
|
193 |
+
List[Tuple[str, int]]: Lista de tuplas (concepto, frecuencia)
|
194 |
"""
|
195 |
try:
|
196 |
word_freq = Counter()
|
197 |
|
198 |
+
# Crear conjunto de tokens que son parte de entidades
|
199 |
+
entity_tokens = set()
|
200 |
+
for ent in doc.ents:
|
201 |
+
entity_tokens.update(token.i for token in ent)
|
202 |
+
|
203 |
+
# Procesar tokens
|
204 |
for token in doc:
|
205 |
+
# Verificar si el token no es parte de una entidad nombrada
|
206 |
+
if (token.i not in entity_tokens and # No es parte de una entidad
|
207 |
+
token.lemma_.lower() not in stopwords and # No es stopword
|
208 |
+
len(token.lemma_) >= min_length and # Longitud mínima
|
209 |
+
token.is_alpha and # Es alfabético
|
210 |
+
not token.is_punct and # No es puntuación
|
211 |
+
not token.like_num and # No es número
|
212 |
+
not token.is_space and # No es espacio
|
213 |
+
not token.is_stop and # No es stopword de spaCy
|
214 |
+
not token.pos_ == 'PROPN' and # No es nombre propio
|
215 |
+
not token.pos_ == 'SYM' and # No es símbolo
|
216 |
+
not token.pos_ == 'NUM' and # No es número
|
217 |
+
not token.pos_ == 'X'): # No es otro
|
218 |
|
219 |
+
# Convertir a minúsculas y añadir al contador
|
220 |
word_freq[token.lemma_.lower()] += 1
|
221 |
|
222 |
+
# Filtrar conceptos por frecuencia mínima y ordenar por frecuencia
|
223 |
concepts = [(word, freq) for word, freq in word_freq.items()
|
224 |
if freq >= min_freq]
|
225 |
concepts.sort(key=lambda x: x[1], reverse=True)
|
226 |
|
227 |
+
logger.info(f"Identified {len(concepts)} key concepts after excluding entities")
|
228 |
return concepts[:10]
|
229 |
|
230 |
except Exception as e:
|
|
|
232 |
return []
|
233 |
|
234 |
########################################################################
|
235 |
+
|
236 |
def create_concept_graph(doc, key_concepts):
|
237 |
"""
|
238 |
+
Crea un grafo de relaciones entre conceptos, ignorando entidades.
|
239 |
Args:
|
240 |
doc: Documento procesado por spaCy
|
241 |
key_concepts: Lista de tuplas (concepto, frecuencia)
|
|
|
248 |
# Crear un conjunto de conceptos clave para búsqueda rápida
|
249 |
concept_words = {concept[0].lower() for concept in key_concepts}
|
250 |
|
251 |
+
# Crear conjunto de tokens que son parte de entidades
|
252 |
+
entity_tokens = set()
|
253 |
+
for ent in doc.ents:
|
254 |
+
entity_tokens.update(token.i for token in ent)
|
255 |
+
|
256 |
# Añadir nodos al grafo
|
257 |
for concept, freq in key_concepts:
|
258 |
G.add_node(concept.lower(), weight=freq)
|
259 |
|
260 |
# Analizar cada oración
|
261 |
for sent in doc.sents:
|
262 |
+
# Obtener conceptos en la oración actual, excluyendo entidades
|
263 |
current_concepts = []
|
264 |
for token in sent:
|
265 |
+
if (token.i not in entity_tokens and
|
266 |
+
token.lemma_.lower() in concept_words):
|
267 |
current_concepts.append(token.lemma_.lower())
|
268 |
|
269 |
# Crear conexiones entre conceptos en la misma oración
|
270 |
for i, concept1 in enumerate(current_concepts):
|
271 |
for concept2 in current_concepts[i+1:]:
|
272 |
if concept1 != concept2:
|
|
|
273 |
if G.has_edge(concept1, concept2):
|
274 |
G[concept1][concept2]['weight'] += 1
|
|
|
275 |
else:
|
276 |
G.add_edge(concept1, concept2, weight=1)
|
277 |
|
|
|
279 |
|
280 |
except Exception as e:
|
281 |
logger.error(f"Error en create_concept_graph: {str(e)}")
|
|
|
282 |
return nx.Graph()
|
283 |
|
284 |
###############################################################################
|
285 |
+
|
286 |
def visualize_concept_graph(G, lang_code):
|
287 |
"""
|
288 |
+
Visualiza el grafo de conceptos con layout consistente.
|
289 |
+
Args:
|
290 |
+
G: networkx.Graph - Grafo de conceptos
|
291 |
+
lang_code: str - Código del idioma
|
292 |
+
Returns:
|
293 |
+
matplotlib.figure.Figure - Figura del grafo
|
294 |
"""
|
295 |
try:
|
296 |
+
# Crear nueva figura con mayor tamaño y definir los ejes explícitamente
|
297 |
+
fig, ax = plt.subplots(figsize=(15, 10))
|
298 |
|
299 |
if not G.nodes():
|
300 |
logger.warning("Grafo vacío, retornando figura vacía")
|
301 |
return fig
|
302 |
|
303 |
+
# Convertir grafo no dirigido a dirigido para mostrar flechas
|
304 |
+
DG = nx.DiGraph(G)
|
305 |
+
|
306 |
+
# Calcular centralidad de los nodos para el color
|
307 |
+
centrality = nx.degree_centrality(G)
|
308 |
+
|
309 |
+
# Establecer semilla para reproducibilidad
|
310 |
+
seed = 42
|
311 |
+
|
312 |
+
# Calcular layout con parámetros fijos
|
313 |
+
pos = nx.spring_layout(
|
314 |
+
DG,
|
315 |
+
k=2, # Distancia ideal entre nodos
|
316 |
+
iterations=50, # Número de iteraciones
|
317 |
+
seed=seed # Semilla fija para reproducibilidad
|
318 |
+
)
|
319 |
|
320 |
# Calcular factor de escala basado en número de nodos
|
321 |
+
num_nodes = len(DG.nodes())
|
322 |
scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200
|
323 |
|
324 |
# Obtener pesos ajustados
|
325 |
+
node_weights = [DG.nodes[node].get('weight', 1) * scale_factor for node in DG.nodes()]
|
326 |
+
edge_weights = [DG[u][v].get('weight', 1) for u, v in DG.edges()]
|
327 |
+
|
328 |
+
# Crear mapa de colores basado en centralidad
|
329 |
+
node_colors = [plt.cm.viridis(centrality[node]) for node in DG.nodes()]
|
330 |
+
|
331 |
+
# Dibujar nodos
|
332 |
+
nodes = nx.draw_networkx_nodes(
|
333 |
+
DG,
|
334 |
+
pos,
|
335 |
+
node_size=node_weights,
|
336 |
+
node_color=node_colors,
|
337 |
+
alpha=0.7,
|
338 |
+
ax=ax
|
339 |
+
)
|
340 |
+
|
341 |
+
# Dibujar aristas con flechas
|
342 |
+
edges = nx.draw_networkx_edges(
|
343 |
+
DG,
|
344 |
+
pos,
|
345 |
+
width=edge_weights,
|
346 |
+
alpha=0.6,
|
347 |
+
edge_color='gray',
|
348 |
+
arrows=True,
|
349 |
+
arrowsize=20,
|
350 |
+
arrowstyle='->',
|
351 |
+
connectionstyle='arc3,rad=0.2',
|
352 |
+
ax=ax
|
353 |
+
)
|
354 |
|
355 |
# Ajustar tamaño de fuente según número de nodos
|
356 |
font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8
|
357 |
|
358 |
+
# Dibujar etiquetas con fondo blanco para mejor legibilidad
|
359 |
+
labels = nx.draw_networkx_labels(
|
360 |
+
DG,
|
361 |
+
pos,
|
362 |
+
font_size=font_size,
|
363 |
+
font_weight='bold',
|
364 |
+
bbox=dict(
|
365 |
+
facecolor='white',
|
366 |
+
edgecolor='none',
|
367 |
+
alpha=0.7
|
368 |
+
),
|
369 |
+
ax=ax
|
370 |
+
)
|
371 |
+
|
372 |
+
# Añadir leyenda de centralidad
|
373 |
+
sm = plt.cm.ScalarMappable(
|
374 |
+
cmap=plt.cm.viridis,
|
375 |
+
norm=plt.Normalize(vmin=0, vmax=1)
|
376 |
+
)
|
377 |
+
sm.set_array([])
|
378 |
+
plt.colorbar(sm, ax=ax, label='Centralidad del concepto')
|
379 |
+
|
380 |
+
plt.title("Red de conceptos relacionados", pad=20, fontsize=14)
|
381 |
+
ax.set_axis_off()
|
382 |
+
|
383 |
+
# Ajustar el layout para que la barra de color no se superponga
|
384 |
+
plt.tight_layout()
|
385 |
|
386 |
return fig
|
387 |
|
|
|
389 |
logger.error(f"Error en visualize_concept_graph: {str(e)}")
|
390 |
return plt.figure() # Retornar figura vacía en caso de error
|
391 |
|
|
|
392 |
########################################################################
|
393 |
def create_entity_graph(entities):
|
394 |
G = nx.Graph()
|
modules/ui/ui.py
CHANGED
@@ -64,6 +64,8 @@ from ..semantic.semantic_interface import (
|
|
64 |
|
65 |
from ..semantic.semantic_live_interface import display_semantic_live_interface
|
66 |
|
|
|
|
|
67 |
from ..discourse.discourse_interface import ( # Agregar esta importación
|
68 |
display_discourse_interface,
|
69 |
display_discourse_results
|
@@ -328,6 +330,10 @@ def user_page(lang_code, t):
|
|
328 |
if 'selected_tab' not in st.session_state:
|
329 |
st.session_state.selected_tab = 0
|
330 |
|
|
|
|
|
|
|
|
|
331 |
# Manejar la carga inicial de datos del usuario
|
332 |
if 'user_data' not in st.session_state:
|
333 |
with st.spinner(t.get('loading_data', "Cargando tus datos...")):
|
@@ -394,66 +400,136 @@ def user_page(lang_code, t):
|
|
394 |
# Mostrar chatbot en sidebar
|
395 |
display_sidebar_chat(lang_code, chatbot_t)
|
396 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
# Sistema de tabs
|
398 |
-
|
399 |
t.get('morpho_tab', 'Análisis Morfosintáctico'),
|
400 |
-
t.get('semantic_live_tab', 'Análisis Semántico Vivo'),
|
401 |
t.get('semantic_tab', 'Análisis Semántico'),
|
402 |
-
t.get('
|
|
|
403 |
t.get('activities_tab', 'Mis Actividades'),
|
404 |
t.get('feedback_tab', 'Formulario de Comentarios')
|
405 |
-
]
|
|
|
|
|
406 |
|
407 |
# Manejar el contenido de cada tab
|
408 |
for index, tab in enumerate(tabs):
|
409 |
-
if tab.selected:
|
410 |
-
st.session_state.selected_tab = index
|
411 |
-
|
412 |
with tab:
|
413 |
try:
|
414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
display_morphosyntax_interface(
|
416 |
st.session_state.lang_code,
|
417 |
st.session_state.nlp_models,
|
418 |
t.get('TRANSLATIONS', {})
|
419 |
)
|
420 |
|
421 |
-
elif index == 1: #
|
|
|
422 |
display_semantic_live_interface(
|
423 |
st.session_state.lang_code,
|
424 |
st.session_state.nlp_models,
|
425 |
t.get('TRANSLATIONS', {})
|
426 |
)
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
display_semantic_interface(
|
431 |
st.session_state.lang_code,
|
432 |
st.session_state.nlp_models,
|
433 |
t.get('TRANSLATIONS', {})
|
434 |
)
|
435 |
|
436 |
-
elif index == 3:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
display_discourse_interface(
|
438 |
st.session_state.lang_code,
|
439 |
st.session_state.nlp_models,
|
440 |
t.get('TRANSLATIONS', {})
|
441 |
)
|
442 |
-
|
|
|
|
|
443 |
display_student_activities(
|
444 |
username=st.session_state.username,
|
445 |
lang_code=st.session_state.lang_code,
|
446 |
t=t.get('ACTIVITIES_TRANSLATIONS', {})
|
447 |
)
|
448 |
-
|
|
|
|
|
449 |
display_feedback_form(
|
450 |
st.session_state.lang_code,
|
451 |
t
|
452 |
)
|
|
|
453 |
except Exception as e:
|
|
|
|
|
|
|
|
|
454 |
logger.error(f"Error en tab {index}: {str(e)}")
|
455 |
st.error(t.get('tab_error', 'Error al cargar esta sección'))
|
456 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
# Panel de depuración (solo visible en desarrollo)
|
458 |
if st.session_state.get('debug_mode', False):
|
459 |
with st.expander("Debug Info"):
|
|
|
64 |
|
65 |
from ..semantic.semantic_live_interface import display_semantic_live_interface
|
66 |
|
67 |
+
from ..discourse.discourse_live_interface import display_discourse_live_interface
|
68 |
+
|
69 |
from ..discourse.discourse_interface import ( # Agregar esta importación
|
70 |
display_discourse_interface,
|
71 |
display_discourse_results
|
|
|
330 |
if 'selected_tab' not in st.session_state:
|
331 |
st.session_state.selected_tab = 0
|
332 |
|
333 |
+
# Inicializar el estado del análisis en vivo
|
334 |
+
if 'semantic_live_active' not in st.session_state:
|
335 |
+
st.session_state.semantic_live_active = False
|
336 |
+
|
337 |
# Manejar la carga inicial de datos del usuario
|
338 |
if 'user_data' not in st.session_state:
|
339 |
with st.spinner(t.get('loading_data', "Cargando tus datos...")):
|
|
|
400 |
# Mostrar chatbot en sidebar
|
401 |
display_sidebar_chat(lang_code, chatbot_t)
|
402 |
|
403 |
+
# Inicializar estados para todos los tabs
|
404 |
+
if 'tab_states' not in st.session_state:
|
405 |
+
st.session_state.tab_states = {
|
406 |
+
'morpho_active': False,
|
407 |
+
'semantic_live_active': False,
|
408 |
+
'semantic_active': False,
|
409 |
+
'discourse_live_active': False,
|
410 |
+
'discourse_active': False,
|
411 |
+
'activities_active': False,
|
412 |
+
'feedback_active': False
|
413 |
+
}
|
414 |
+
|
415 |
# Sistema de tabs
|
416 |
+
tab_names = [
|
417 |
t.get('morpho_tab', 'Análisis Morfosintáctico'),
|
418 |
+
t.get('semantic_live_tab', 'Análisis Semántico Vivo'),
|
419 |
t.get('semantic_tab', 'Análisis Semántico'),
|
420 |
+
t.get('discourse_live_tab', 'Análisis de Discurso Vivo'),
|
421 |
+
t.get('discourse_tab', 'Análsis de Discurso'),
|
422 |
t.get('activities_tab', 'Mis Actividades'),
|
423 |
t.get('feedback_tab', 'Formulario de Comentarios')
|
424 |
+
]
|
425 |
+
|
426 |
+
tabs = st.tabs(tab_names)
|
427 |
|
428 |
# Manejar el contenido de cada tab
|
429 |
for index, tab in enumerate(tabs):
|
|
|
|
|
|
|
430 |
with tab:
|
431 |
try:
|
432 |
+
# Actualizar el tab seleccionado solo si no hay un análisis activo
|
433 |
+
if tab.selected and st.session_state.selected_tab != index:
|
434 |
+
can_switch = True
|
435 |
+
for state_key in st.session_state.tab_states.keys():
|
436 |
+
if st.session_state.tab_states[state_key] and index != get_tab_index(state_key):
|
437 |
+
can_switch = False
|
438 |
+
break
|
439 |
+
if can_switch:
|
440 |
+
st.session_state.selected_tab = index
|
441 |
+
|
442 |
+
if index == 0: # Morfosintáctico
|
443 |
+
st.session_state.tab_states['morpho_active'] = True
|
444 |
display_morphosyntax_interface(
|
445 |
st.session_state.lang_code,
|
446 |
st.session_state.nlp_models,
|
447 |
t.get('TRANSLATIONS', {})
|
448 |
)
|
449 |
|
450 |
+
elif index == 1: # Semántico Vivo
|
451 |
+
st.session_state.tab_states['semantic_live_active'] = True
|
452 |
display_semantic_live_interface(
|
453 |
st.session_state.lang_code,
|
454 |
st.session_state.nlp_models,
|
455 |
t.get('TRANSLATIONS', {})
|
456 |
)
|
457 |
+
|
458 |
+
elif index == 2: # Semántico
|
459 |
+
st.session_state.tab_states['semantic_active'] = True
|
460 |
display_semantic_interface(
|
461 |
st.session_state.lang_code,
|
462 |
st.session_state.nlp_models,
|
463 |
t.get('TRANSLATIONS', {})
|
464 |
)
|
465 |
|
466 |
+
elif index == 3: # Discurso Vivo
|
467 |
+
st.session_state.tab_states['discourse_live_active'] = True
|
468 |
+
display_discourse_live_interface(
|
469 |
+
st.session_state.lang_code,
|
470 |
+
st.session_state.nlp_models,
|
471 |
+
t.get('TRANSLATIONS', {})
|
472 |
+
)
|
473 |
+
|
474 |
+
|
475 |
+
elif index == 4: # Discurso
|
476 |
+
st.session_state.tab_states['discourse_active'] = True
|
477 |
display_discourse_interface(
|
478 |
st.session_state.lang_code,
|
479 |
st.session_state.nlp_models,
|
480 |
t.get('TRANSLATIONS', {})
|
481 |
)
|
482 |
+
|
483 |
+
elif index == 5: # Actividades
|
484 |
+
st.session_state.tab_states['activities_active'] = True
|
485 |
display_student_activities(
|
486 |
username=st.session_state.username,
|
487 |
lang_code=st.session_state.lang_code,
|
488 |
t=t.get('ACTIVITIES_TRANSLATIONS', {})
|
489 |
)
|
490 |
+
|
491 |
+
elif index == 6: # Feedback
|
492 |
+
st.session_state.tab_states['feedback_active'] = True
|
493 |
display_feedback_form(
|
494 |
st.session_state.lang_code,
|
495 |
t
|
496 |
)
|
497 |
+
|
498 |
except Exception as e:
|
499 |
+
# Desactivar el estado en caso de error
|
500 |
+
state_key = get_state_key_for_index(index)
|
501 |
+
if state_key:
|
502 |
+
st.session_state.tab_states[state_key] = False
|
503 |
logger.error(f"Error en tab {index}: {str(e)}")
|
504 |
st.error(t.get('tab_error', 'Error al cargar esta sección'))
|
505 |
|
506 |
+
# Funciones auxiliares para manejar los estados de los tabs
|
507 |
+
def get_tab_index(state_key):
|
508 |
+
"""Obtiene el índice del tab basado en la clave de estado"""
|
509 |
+
index_map = {
|
510 |
+
'morpho_active': 0,
|
511 |
+
'semantic_live_active': 1,
|
512 |
+
'semantic_active': 2,
|
513 |
+
'discourse_live_active': 3,
|
514 |
+
'discourse_active': 4,
|
515 |
+
'activities_active': 5,
|
516 |
+
'feedback_active': 6
|
517 |
+
}
|
518 |
+
return index_map.get(state_key, -1)
|
519 |
+
|
520 |
+
def get_state_key_for_index(index):
|
521 |
+
"""Obtiene la clave de estado basada en el índice del tab"""
|
522 |
+
state_map = {
|
523 |
+
0: 'morpho_active',
|
524 |
+
1: 'semantic_live_active',
|
525 |
+
2: 'semantic_active',
|
526 |
+
3: 'discourse_live_active',
|
527 |
+
3: 'discourse_active',
|
528 |
+
4: 'activities_active',
|
529 |
+
5: 'feedback_active'
|
530 |
+
}
|
531 |
+
return state_map.get(index)
|
532 |
+
|
533 |
# Panel de depuración (solo visible en desarrollo)
|
534 |
if st.session_state.get('debug_mode', False):
|
535 |
with st.expander("Debug Info"):
|