Spaces:
Sleeping
Sleeping
Create semantic_agent_interaction.py
Browse files
modules/semantic/semantic_agent_interaction.py
ADDED
|
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modules/semantic/semantic_agent_interaction.py
|
| 2 |
+
import os
|
| 3 |
+
import anthropic
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import logging
|
| 6 |
+
import time
|
| 7 |
+
import json
|
| 8 |
+
from datetime import datetime, timezone
|
| 9 |
+
from io import BytesIO
|
| 10 |
+
import base64
|
| 11 |
+
|
| 12 |
+
# Local imports
|
| 13 |
+
from ..utils.widget_utils import generate_unique_key
|
| 14 |
+
from ..database.semantic_mongo_db import store_semantic_interaction
|
| 15 |
+
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
# Cache for conversation history to avoid redundant API calls
|
| 19 |
+
conversation_cache = {}
|
| 20 |
+
|
| 21 |
+
def get_conversation_cache_key(text, metrics, graph_data, lang_code):
|
| 22 |
+
"""
|
| 23 |
+
Generate a cache key for conversations based on analysis data.
|
| 24 |
+
"""
|
| 25 |
+
text_hash = hash(text[:1000]) # Only use first 1000 chars for hashing
|
| 26 |
+
metrics_hash = hash(json.dumps(metrics, sort_keys=True))
|
| 27 |
+
graph_hash = hash(graph_data[:100]) if graph_data else 0
|
| 28 |
+
return f"{text_hash}_{metrics_hash}_{graph_hash}_{lang_code}"
|
| 29 |
+
|
| 30 |
+
def format_semantic_context(text, metrics, graph_data, lang_code):
|
| 31 |
+
"""
|
| 32 |
+
Format the semantic analysis data for Claude's context.
|
| 33 |
+
"""
|
| 34 |
+
formatted_data = {
|
| 35 |
+
'text_sample': text[:2000], # Limit text sample
|
| 36 |
+
'key_concepts': metrics.get('key_concepts', []),
|
| 37 |
+
'concept_centrality': metrics.get('concept_centrality', {}),
|
| 38 |
+
'graph_description': "Network graph available" if graph_data else "No graph available",
|
| 39 |
+
'language': lang_code
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
return json.dumps(formatted_data, indent=2, ensure_ascii=False)
|
| 43 |
+
|
| 44 |
+
def initiate_semantic_conversation(text, metrics, graph_data, lang_code):
|
| 45 |
+
"""
|
| 46 |
+
Start a conversation with Claude about semantic analysis results.
|
| 47 |
+
"""
|
| 48 |
+
try:
|
| 49 |
+
api_key = os.environ.get("ANTHROPIC_API_KEY")
|
| 50 |
+
if not api_key:
|
| 51 |
+
logger.error("Claude API key not found in environment variables")
|
| 52 |
+
return get_fallback_response(lang_code)
|
| 53 |
+
|
| 54 |
+
# Check cache first
|
| 55 |
+
cache_key = get_conversation_cache_key(text, metrics, graph_data, lang_code)
|
| 56 |
+
if cache_key in conversation_cache:
|
| 57 |
+
logger.info("Using cached conversation starter")
|
| 58 |
+
return conversation_cache[cache_key]
|
| 59 |
+
|
| 60 |
+
# Format context for Claude
|
| 61 |
+
context = format_semantic_context(text, metrics, graph_data, lang_code)
|
| 62 |
+
|
| 63 |
+
# Determine language for prompt
|
| 64 |
+
if lang_code == 'es':
|
| 65 |
+
system_prompt = """Eres un asistente especializado en análisis semántico de textos.
|
| 66 |
+
El usuario ha analizado un texto y quiere discutir los resultados contigo.
|
| 67 |
+
Estos son los datos del análisis:
|
| 68 |
+
- Fragmento del texto analizado
|
| 69 |
+
- Lista de conceptos clave identificados
|
| 70 |
+
- Medidas de centralidad de los conceptos
|
| 71 |
+
- Un grafo de relaciones conceptuales (si está disponible)
|
| 72 |
+
|
| 73 |
+
Tu rol es:
|
| 74 |
+
1. Demostrar comprensión del análisis mostrado
|
| 75 |
+
2. Hacer preguntas relevantes sobre los resultados
|
| 76 |
+
3. Ayudar al usuario a interpretar los hallazgos
|
| 77 |
+
4. Sugerir posibles direcciones para profundizar el análisis
|
| 78 |
+
|
| 79 |
+
Usa un tono profesional pero accesible. Sé conciso pero claro.
|
| 80 |
+
"""
|
| 81 |
+
user_prompt = f"""Aquí están los resultados del análisis semántico:
|
| 82 |
+
|
| 83 |
+
{context}
|
| 84 |
+
|
| 85 |
+
Por favor:
|
| 86 |
+
1. Haz un breve resumen de lo que notas en los resultados
|
| 87 |
+
2. Formula 2-3 preguntas interesantes que podríamos explorar sobre estos datos
|
| 88 |
+
3. Sugiere un aspecto del análisis que podría profundizarse
|
| 89 |
+
|
| 90 |
+
Mantén tu respuesta bajo 250 palabras."""
|
| 91 |
+
|
| 92 |
+
elif lang_code == 'fr':
|
| 93 |
+
system_prompt = """Vous êtes un assistant spécialisé dans l'analyse sémantique de textes.
|
| 94 |
+
L'utilisateur a analysé un texte et souhaite discuter des résultats avec vous.
|
| 95 |
+
Voici les données d'analyse:
|
| 96 |
+
- Extrait du texte analysé
|
| 97 |
+
- Liste des concepts clés identifiés
|
| 98 |
+
- Mesures de centralité des concepts
|
| 99 |
+
- Un graphique des relations conceptuelles (si disponible)
|
| 100 |
+
|
| 101 |
+
Votre rôle est:
|
| 102 |
+
1. Démontrer une compréhension de l'analyse présentée
|
| 103 |
+
2. Poser des questions pertinentes sur les résultats
|
| 104 |
+
3. Aider l'utilisateur à interpréter les résultats
|
| 105 |
+
4. Proposer des pistes pour approfondir l'analyse
|
| 106 |
+
|
| 107 |
+
Utilisez un ton professionnel mais accessible. Soyez concis mais clair.
|
| 108 |
+
"""
|
| 109 |
+
user_prompt = f"""Voici les résultats de l'analyse sémantique:
|
| 110 |
+
|
| 111 |
+
{context}
|
| 112 |
+
|
| 113 |
+
Veuillez:
|
| 114 |
+
1. Faire un bref résumé de ce que vous remarquez dans les résultats
|
| 115 |
+
2. Formuler 2-3 questions intéressantes que nous pourrions explorer
|
| 116 |
+
3. Suggérer un aspect de l'analyse qui pourrait être approfondi
|
| 117 |
+
|
| 118 |
+
Limitez votre réponse à 250 mots."""
|
| 119 |
+
|
| 120 |
+
elif lang_code == 'pt':
|
| 121 |
+
system_prompt = """Você é um assistente especializado em análise semântica de textos.
|
| 122 |
+
O usuário analisou um texto e quer discutir os resultados com você.
|
| 123 |
+
Aqui estão os dados da análise:
|
| 124 |
+
- Trecho do texto analisado
|
| 125 |
+
- Lista de conceitos-chave identificados
|
| 126 |
+
- Medidas de centralidade dos conceitos
|
| 127 |
+
- Um grafo de relações conceituais (se disponível)
|
| 128 |
+
|
| 129 |
+
Seu papel é:
|
| 130 |
+
1. Demonstrar compreensão da análise apresentada
|
| 131 |
+
2. Fazer perguntas relevantes sobre os resultados
|
| 132 |
+
3. Ajudar o usuário a interpretar os achados
|
| 133 |
+
4. Sugerir possíveis direções para aprofundar a análise
|
| 134 |
+
|
| 135 |
+
Use um tom profissional mas acessível. Seja conciso mas claro.
|
| 136 |
+
"""
|
| 137 |
+
user_prompt = f"""Aqui estão os resultados da análise semântica:
|
| 138 |
+
|
| 139 |
+
{context}
|
| 140 |
+
|
| 141 |
+
Por favor:
|
| 142 |
+
1. Faça um breve resumo do que você nota nos resultados
|
| 143 |
+
2. Formule 2-3 perguntas interessantes que poderíamos explorar
|
| 144 |
+
3. Sugira um aspecto da análise que poderia ser aprofundado
|
| 145 |
+
|
| 146 |
+
Mantenha sua resposta em até 250 palavras."""
|
| 147 |
+
|
| 148 |
+
else: # Default to English
|
| 149 |
+
system_prompt = """You are an assistant specialized in semantic text analysis.
|
| 150 |
+
The user has analyzed a text and wants to discuss the results with you.
|
| 151 |
+
Here is the analysis data:
|
| 152 |
+
- Sample of the analyzed text
|
| 153 |
+
- List of identified key concepts
|
| 154 |
+
- Concept centrality measures
|
| 155 |
+
- A concept relationship graph (if available)
|
| 156 |
+
|
| 157 |
+
Your role is to:
|
| 158 |
+
1. Demonstrate understanding of the shown analysis
|
| 159 |
+
2. Ask relevant questions about the results
|
| 160 |
+
3. Help the user interpret the findings
|
| 161 |
+
4. Suggest possible directions to deepen the analysis
|
| 162 |
+
|
| 163 |
+
Use a professional but accessible tone. Be concise but clear.
|
| 164 |
+
"""
|
| 165 |
+
user_prompt = f"""Here are the semantic analysis results:
|
| 166 |
+
|
| 167 |
+
{context}
|
| 168 |
+
|
| 169 |
+
Please:
|
| 170 |
+
1. Give a brief summary of what you notice in the results
|
| 171 |
+
2. Formulate 2-3 interesting questions we could explore
|
| 172 |
+
3. Suggest one aspect of the analysis that could be deepened
|
| 173 |
+
|
| 174 |
+
Keep your response under 250 words."""
|
| 175 |
+
|
| 176 |
+
# Initialize Claude client
|
| 177 |
+
client = anthropic.Anthropic(api_key=api_key)
|
| 178 |
+
|
| 179 |
+
# Call Claude API
|
| 180 |
+
start_time = time.time()
|
| 181 |
+
response = client.messages.create(
|
| 182 |
+
model="claude-3-sonnet-20240229",
|
| 183 |
+
max_tokens=1024,
|
| 184 |
+
temperature=0.7,
|
| 185 |
+
system=system_prompt,
|
| 186 |
+
messages=[
|
| 187 |
+
{"role": "user", "content": user_prompt}
|
| 188 |
+
]
|
| 189 |
+
)
|
| 190 |
+
logger.info(f"Claude API call completed in {time.time() - start_time:.2f} seconds")
|
| 191 |
+
|
| 192 |
+
# Extract response
|
| 193 |
+
initial_response = response.content[0].text
|
| 194 |
+
|
| 195 |
+
# Cache the result
|
| 196 |
+
conversation_cache[cache_key] = initial_response
|
| 197 |
+
|
| 198 |
+
return initial_response
|
| 199 |
+
|
| 200 |
+
except Exception as e:
|
| 201 |
+
logger.error(f"Error initiating semantic conversation: {str(e)}")
|
| 202 |
+
return get_fallback_response(lang_code)
|
| 203 |
+
|
| 204 |
+
def continue_conversation(conversation_history, new_message, lang_code):
|
| 205 |
+
"""
|
| 206 |
+
Continue an existing conversation about semantic analysis.
|
| 207 |
+
"""
|
| 208 |
+
try:
|
| 209 |
+
api_key = os.environ.get("ANTHROPIC_API_KEY")
|
| 210 |
+
if not api_key:
|
| 211 |
+
logger.error("Claude API key not found in environment variables")
|
| 212 |
+
return get_fallback_response(lang_code)
|
| 213 |
+
|
| 214 |
+
# Prepare conversation history for Claude
|
| 215 |
+
messages = []
|
| 216 |
+
for msg in conversation_history:
|
| 217 |
+
messages.append({
|
| 218 |
+
"role": "user" if msg["sender"] == "user" else "assistant",
|
| 219 |
+
"content": msg["message"]
|
| 220 |
+
})
|
| 221 |
+
|
| 222 |
+
# Add the new message
|
| 223 |
+
messages.append({"role": "user", "content": new_message})
|
| 224 |
+
|
| 225 |
+
# System prompt based on language
|
| 226 |
+
if lang_code == 'es':
|
| 227 |
+
system_prompt = """Continúa la conversación sobre el análisis semántico.
|
| 228 |
+
Sé conciso pero útil. Responde en español."""
|
| 229 |
+
elif lang_code == 'fr':
|
| 230 |
+
system_prompt = """Continuez la conversation sur l'analyse sémantique.
|
| 231 |
+
Soyez concis mais utile. Répondez en français."""
|
| 232 |
+
elif lang_code == 'pt':
|
| 233 |
+
system_prompt = """Continue a conversa sobre a análise semântica.
|
| 234 |
+
Seja conciso mas útil. Responda em português."""
|
| 235 |
+
else:
|
| 236 |
+
system_prompt = """Continue the conversation about semantic analysis.
|
| 237 |
+
Be concise but helpful. Respond in English."""
|
| 238 |
+
|
| 239 |
+
# Initialize Claude client
|
| 240 |
+
client = anthropic.Anthropic(api_key=api_key)
|
| 241 |
+
|
| 242 |
+
# Call Claude API
|
| 243 |
+
response = client.messages.create(
|
| 244 |
+
model="claude-3-sonnet-20240229",
|
| 245 |
+
max_tokens=1024,
|
| 246 |
+
temperature=0.7,
|
| 247 |
+
system=system_prompt,
|
| 248 |
+
messages=messages
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
return response.content[0].text
|
| 252 |
+
|
| 253 |
+
except Exception as e:
|
| 254 |
+
logger.error(f"Error continuing semantic conversation: {str(e)}")
|
| 255 |
+
return get_fallback_response(lang_code)
|
| 256 |
+
|
| 257 |
+
def get_fallback_response(lang_code):
|
| 258 |
+
"""
|
| 259 |
+
Return fallback response if Claude API fails.
|
| 260 |
+
"""
|
| 261 |
+
if lang_code == 'es':
|
| 262 |
+
return """Parece que hay un problema técnico. Por favor intenta de nuevo más tarde.
|
| 263 |
+
|
| 264 |
+
Mientras tanto, aquí hay algunas preguntas que podrías considerar sobre tu análisis:
|
| 265 |
+
1. ¿Qué conceptos tienen la mayor centralidad y por qué podría ser?
|
| 266 |
+
2. ¿Hay conexiones inesperadas entre conceptos en tu grafo?
|
| 267 |
+
3. ¿Cómo podrías profundizar en las relaciones entre los conceptos clave?"""
|
| 268 |
+
|
| 269 |
+
elif lang_code == 'fr':
|
| 270 |
+
return """Il semble y avoir un problème technique. Veuillez réessayer plus tard.
|
| 271 |
+
|
| 272 |
+
En attendant, voici quelques questions que vous pourriez considérer:
|
| 273 |
+
1. Quels concepts ont la plus grande centralité et pourquoi?
|
| 274 |
+
2. Y a-t-il des connexions inattendues entre les concepts?
|
| 275 |
+
3. Comment pourriez-vous approfondir les relations entre les concepts clés?"""
|
| 276 |
+
|
| 277 |
+
elif lang_code == 'pt':
|
| 278 |
+
return """Parece haver um problema técnico. Por favor, tente novamente mais tarde.
|
| 279 |
+
|
| 280 |
+
Enquanto isso, aqui estão algumas perguntas que você poderia considerar:
|
| 281 |
+
1. Quais conceitos têm maior centralidade e por que isso pode ocorrer?
|
| 282 |
+
2. Há conexões inesperadas entre conceitos no seu grafo?
|
| 283 |
+
3. Como você poderia aprofundar as relações entre os conceitos-chave?"""
|
| 284 |
+
|
| 285 |
+
else:
|
| 286 |
+
return """There seems to be a technical issue. Please try again later.
|
| 287 |
+
|
| 288 |
+
Meanwhile, here are some questions you might consider about your analysis:
|
| 289 |
+
1. Which concepts have the highest centrality and why might that be?
|
| 290 |
+
2. Are there unexpected connections between concepts in your graph?
|
| 291 |
+
3. How could you explore the relationships between key concepts further?"""
|
| 292 |
+
|
| 293 |
+
def store_conversation(username, text, metrics, graph_data, conversation):
|
| 294 |
+
"""
|
| 295 |
+
Store the conversation in the database.
|
| 296 |
+
"""
|
| 297 |
+
try:
|
| 298 |
+
result = store_semantic_interaction(
|
| 299 |
+
username=username,
|
| 300 |
+
text=text,
|
| 301 |
+
metrics=metrics,
|
| 302 |
+
graph_data=graph_data,
|
| 303 |
+
conversation=conversation
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
logger.info(f"Conversation stored successfully: {result}")
|
| 307 |
+
return result
|
| 308 |
+
except Exception as e:
|
| 309 |
+
logger.error(f"Error storing conversation: {str(e)}")
|
| 310 |
+
return False
|
| 311 |
+
|
| 312 |
+
def display_semantic_chat(text, metrics, graph_data, lang_code, t):
|
| 313 |
+
"""
|
| 314 |
+
Display the chat interface for semantic analysis discussion.
|
| 315 |
+
"""
|
| 316 |
+
try:
|
| 317 |
+
# Initialize session state for conversation if not exists
|
| 318 |
+
if 'semantic_chat' not in st.session_state:
|
| 319 |
+
st.session_state.semantic_chat = {
|
| 320 |
+
'history': [],
|
| 321 |
+
'initialized': False
|
| 322 |
+
}
|
| 323 |
+
|
| 324 |
+
# Container for chat display
|
| 325 |
+
chat_container = st.container()
|
| 326 |
+
|
| 327 |
+
# Initialize conversation if not done yet
|
| 328 |
+
if not st.session_state.semantic_chat['initialized']:
|
| 329 |
+
with st.spinner(t.get('initializing_chat', 'Initializing conversation...')):
|
| 330 |
+
initial_response = initiate_semantic_conversation(
|
| 331 |
+
text, metrics, graph_data, lang_code
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
st.session_state.semantic_chat['history'].append({
|
| 335 |
+
"sender": "assistant",
|
| 336 |
+
"message": initial_response
|
| 337 |
+
})
|
| 338 |
+
st.session_state.semantic_chat['initialized'] = True
|
| 339 |
+
|
| 340 |
+
# Store initial conversation
|
| 341 |
+
if 'username' in st.session_state:
|
| 342 |
+
store_conversation(
|
| 343 |
+
st.session_state.username,
|
| 344 |
+
text,
|
| 345 |
+
metrics,
|
| 346 |
+
graph_data,
|
| 347 |
+
st.session_state.semantic_chat['history']
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
# Display chat history
|
| 351 |
+
with chat_container:
|
| 352 |
+
st.markdown("### 💬 " + t.get('semantic_discussion', 'Semantic Analysis Discussion'))
|
| 353 |
+
|
| 354 |
+
for msg in st.session_state.semantic_chat['history']:
|
| 355 |
+
if msg["sender"] == "user":
|
| 356 |
+
st.chat_message("user").write(msg["message"])
|
| 357 |
+
else:
|
| 358 |
+
st.chat_message("assistant").write(msg["message"])
|
| 359 |
+
|
| 360 |
+
# Input for new message
|
| 361 |
+
user_input = st.chat_input(
|
| 362 |
+
t.get('chat_input_placeholder', 'Ask about your semantic analysis...')
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
if user_input:
|
| 366 |
+
# Add user message to history
|
| 367 |
+
st.session_state.semantic_chat['history'].append({
|
| 368 |
+
"sender": "user",
|
| 369 |
+
"message": user_input
|
| 370 |
+
})
|
| 371 |
+
|
| 372 |
+
# Display user message immediately
|
| 373 |
+
with chat_container:
|
| 374 |
+
st.chat_message("user").write(user_input)
|
| 375 |
+
with st.spinner(t.get('assistant_thinking', 'Assistant is thinking...')):
|
| 376 |
+
# Get assistant response
|
| 377 |
+
assistant_response = continue_conversation(
|
| 378 |
+
st.session_state.semantic_chat['history'],
|
| 379 |
+
user_input,
|
| 380 |
+
lang_code
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
# Add assistant response to history
|
| 384 |
+
st.session_state.semantic_chat['history'].append({
|
| 385 |
+
"sender": "assistant",
|
| 386 |
+
"message": assistant_response
|
| 387 |
+
})
|
| 388 |
+
|
| 389 |
+
# Display assistant response
|
| 390 |
+
st.chat_message("assistant").write(assistant_response)
|
| 391 |
+
|
| 392 |
+
# Store updated conversation
|
| 393 |
+
if 'username' in st.session_state:
|
| 394 |
+
store_conversation(
|
| 395 |
+
st.session_state.username,
|
| 396 |
+
text,
|
| 397 |
+
metrics,
|
| 398 |
+
graph_data,
|
| 399 |
+
st.session_state.semantic_chat['history']
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
except Exception as e:
|
| 403 |
+
logger.error(f"Error displaying semantic chat: {str(e)}")
|
| 404 |
+
st.error(t.get('chat_error', 'Error in chat interface. Please try again.'))
|