# Importaciones generales import streamlit as st import re import io from io import BytesIO import base64 import matplotlib.pyplot as plt import plotly.graph_objects as go import pandas as pd import numpy as np import time from datetime import datetime from streamlit_player import st_player # Necesitarás instalar esta librería: pip install streamlit-player from spacy import displacy import logging import random from ..utils.widget_utils import generate_unique_key from ..database.morphosintax_mongo_db import store_student_morphosyntax_result from ..database.chat_db import store_chat_history from ..database.morphosintaxis_export import export_user_interactions import logging logger = logging.getLogger(__name__) def display_semantic_analysis_interface(nlp_models, lang_code): t = translations[lang_code] st.header(t['title']) # Opción para introducir texto text_input = st.text_area( t['text_input_label'], height=150, placeholder=t['text_input_placeholder'], ) # Opción para cargar archivo uploaded_file = st.file_uploader(t['file_uploader'], type=['txt']) if st.button(t['analyze_button']): if text_input or uploaded_file is not None: if uploaded_file: text_content = uploaded_file.getvalue().decode('utf-8') else: text_content = text_input # Realizar el análisis analysis_result = perform_semantic_analysis(text_content, nlp_models[lang_code], lang_code) # Guardar el resultado en el estado de la sesión st.session_state.semantic_result = analysis_result # Mostrar resultados display_semantic_results(st.session_state.semantic_result, lang_code, t) # Guardar el resultado del análisis if store_semantic_result(st.session_state.username, text_content, analysis_result): st.success(t['success_message']) else: st.error(t['error_message']) else: st.warning(t['warning_message']) elif 'semantic_result' in st.session_state: # Si hay un resultado guardado, mostrarlo display_semantic_results(st.session_state.semantic_result, lang_code, t) else: st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones def display_semantic_results(result, lang_code, t): if result is None: st.warning(t['no_results']) # Asegúrate de que 'no_results' esté en tus traducciones return # Mostrar conceptos clave with st.expander(t['key_concepts'], expanded=True): concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']]) st.write(concept_text) # Mostrar el gráfico de relaciones conceptuales with st.expander(t['conceptual_relations'], expanded=True): st.pyplot(result['relations_graph'])