|
|
|
|
|
import streamlit as st
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
import plotly.graph_objects as go
|
|
import logging
|
|
import io
|
|
|
|
from ..utils.widget_utils import generate_unique_key
|
|
from .discourse_process import perform_discourse_analysis
|
|
from ..database.chat_mongo_db import store_chat_history
|
|
from ..database.discourse_mongo_db import store_student_discourse_result
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
|
"""
|
|
Interfaz para el análisis del discurso
|
|
Args:
|
|
lang_code: Código del idioma actual
|
|
nlp_models: Modelos de spaCy cargados
|
|
discourse_t: Diccionario de traducciones
|
|
"""
|
|
try:
|
|
|
|
if 'discourse_state' not in st.session_state:
|
|
st.session_state.discourse_state = {
|
|
'analysis_count': 0,
|
|
'last_analysis': None,
|
|
'current_files': None
|
|
}
|
|
|
|
|
|
|
|
st.info(discourse_t.get('initial_instruction',
|
|
'Cargue dos archivos de texto para realizar un análisis comparativo del discurso.'))
|
|
|
|
|
|
col1, col2 = st.columns(2)
|
|
with col1:
|
|
st.markdown(discourse_t.get('file1_label', "**Documento 1 (Patrón)**"))
|
|
uploaded_file1 = st.file_uploader(
|
|
discourse_t.get('file_uploader1', "Cargar archivo 1"),
|
|
type=['txt'],
|
|
key=f"discourse_file1_{st.session_state.discourse_state['analysis_count']}"
|
|
)
|
|
|
|
with col2:
|
|
st.markdown(discourse_t.get('file2_label', "**Documento 2 (Comparación)**"))
|
|
uploaded_file2 = st.file_uploader(
|
|
discourse_t.get('file_uploader2', "Cargar archivo 2"),
|
|
type=['txt'],
|
|
key=f"discourse_file2_{st.session_state.discourse_state['analysis_count']}"
|
|
)
|
|
|
|
|
|
col1, col2, col3 = st.columns([1,2,1])
|
|
with col1:
|
|
analyze_button = st.button(
|
|
discourse_t.get('discourse_analyze_button', 'Comparar textos'),
|
|
key=generate_unique_key("discourse", "analyze_button"),
|
|
type="primary",
|
|
icon="🔍",
|
|
disabled=not (uploaded_file1 and uploaded_file2),
|
|
use_container_width=True
|
|
)
|
|
|
|
|
|
if analyze_button and uploaded_file1 and uploaded_file2:
|
|
try:
|
|
with st.spinner(discourse_t.get('processing', 'Procesando análisis...')):
|
|
|
|
text1 = uploaded_file1.getvalue().decode('utf-8')
|
|
text2 = uploaded_file2.getvalue().decode('utf-8')
|
|
|
|
|
|
result = perform_discourse_analysis(
|
|
text1,
|
|
text2,
|
|
nlp_models[lang_code],
|
|
lang_code
|
|
)
|
|
|
|
if result['success']:
|
|
|
|
st.session_state.discourse_result = result
|
|
st.session_state.discourse_state['analysis_count'] += 1
|
|
st.session_state.discourse_state['current_files'] = (
|
|
uploaded_file1.name,
|
|
uploaded_file2.name
|
|
)
|
|
|
|
|
|
if store_student_discourse_result(
|
|
st.session_state.username,
|
|
text1,
|
|
text2,
|
|
result
|
|
):
|
|
st.success(discourse_t.get('success_message', 'Análisis guardado correctamente'))
|
|
|
|
|
|
display_discourse_results(result, lang_code, discourse_t)
|
|
else:
|
|
st.error(discourse_t.get('error_message', 'Error al guardar el análisis'))
|
|
else:
|
|
st.error(discourse_t.get('analysis_error', 'Error en el análisis'))
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en análisis del discurso: {str(e)}")
|
|
st.error(discourse_t.get('error_processing', f'Error procesando archivos: {str(e)}'))
|
|
|
|
|
|
elif 'discourse_result' in st.session_state and st.session_state.discourse_result is not None:
|
|
if st.session_state.discourse_state.get('current_files'):
|
|
st.info(
|
|
discourse_t.get('current_analysis_message', 'Mostrando análisis de los archivos: {} y {}')
|
|
.format(*st.session_state.discourse_state['current_files'])
|
|
)
|
|
display_discourse_results(
|
|
st.session_state.discourse_result,
|
|
lang_code,
|
|
discourse_t
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error general en interfaz del discurso: {str(e)}")
|
|
st.error(discourse_t.get('general_error', 'Se produjo un error. Por favor, intente de nuevo.'))
|
|
|
|
|
|
|
|
|
|
def display_discourse_results(result, lang_code, discourse_t):
|
|
"""
|
|
Muestra los resultados del análisis del discurso
|
|
Versión actualizada con:
|
|
- Un solo expander para interpretación
|
|
- Botón de descarga combinado
|
|
- Sin mensaje de "próxima actualización"
|
|
- Estilo consistente con semantic_interface
|
|
"""
|
|
if not result.get('success'):
|
|
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles'))
|
|
return
|
|
|
|
|
|
st.markdown("""
|
|
<style>
|
|
.concept-table {
|
|
display: flex;
|
|
flex-wrap: wrap;
|
|
gap: 10px;
|
|
margin-bottom: 20px;
|
|
}
|
|
.concept-item {
|
|
background-color: #f0f2f6;
|
|
border-radius: 5px;
|
|
padding: 8px 12px;
|
|
display: flex;
|
|
align-items: center;
|
|
gap: 8px;
|
|
}
|
|
.concept-name {
|
|
font-weight: bold;
|
|
}
|
|
.concept-freq {
|
|
color: #666;
|
|
font-size: 0.9em;
|
|
}
|
|
.download-btn-container {
|
|
display: flex;
|
|
justify-content: center;
|
|
margin-top: 15px;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
|
|
|
|
col1, col2 = st.columns(2)
|
|
|
|
|
|
with col1:
|
|
st.subheader(discourse_t.get('compare_doc1_title', 'Documento 1'))
|
|
if 'key_concepts1' in result:
|
|
df1 = pd.DataFrame(
|
|
result['key_concepts1'],
|
|
columns=[discourse_t.get('concept', 'Concepto'), discourse_t.get('frequency', 'Frecuencia')]
|
|
)
|
|
st.write(
|
|
'<div class="concept-table">' +
|
|
''.join([
|
|
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
|
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
|
for concept, freq in df1.values
|
|
]) + "</div>",
|
|
unsafe_allow_html=True
|
|
)
|
|
|
|
if 'graph1' in result and result['graph1']:
|
|
st.image(result['graph1'], use_container_width=True)
|
|
|
|
|
|
with col2:
|
|
st.subheader(discourse_t.get('compare_doc2_title', 'Documento 2'))
|
|
if 'key_concepts2' in result:
|
|
df2 = pd.DataFrame(
|
|
result['key_concepts2'],
|
|
columns=[discourse_t.get('concept', 'Concepto'), discourse_t.get('frequency', 'Frecuencia')]
|
|
)
|
|
st.write(
|
|
'<div class="concept-table">' +
|
|
''.join([
|
|
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
|
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
|
for concept, freq in df2.values
|
|
]) + "</div>",
|
|
unsafe_allow_html=True
|
|
)
|
|
|
|
if 'graph2' in result and result['graph2']:
|
|
st.image(result['graph2'], use_container_width=True)
|
|
|
|
|
|
st.markdown("""
|
|
<style>
|
|
div[data-testid="stExpander"] div[role="button"] p {
|
|
text-align: center;
|
|
font-weight: bold;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
|
|
with st.expander("📊 " + discourse_t.get('semantic_graph_interpretation', "Interpretación de los gráficos")):
|
|
st.markdown(f"""
|
|
- 🔀 {discourse_t.get('compare_arrow_meaning', 'Las flechas indican la dirección de la relación entre conceptos')}
|
|
- 🎨 {discourse_t.get('compare_color_meaning', 'Los colores más intensos indican conceptos más centrales en el texto')}
|
|
- ⭕ {discourse_t.get('compare_size_meaning', 'El tamaño de los nodos representa la frecuencia del concepto')}
|
|
- ↔️ {discourse_t.get('compare_thickness_meaning', 'El grosor de las líneas indica la fuerza de la conexión')}
|
|
""")
|
|
|
|
|
|
if 'graph1' in result and 'graph2' in result and result['graph1'] and result['graph2']:
|
|
|
|
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 10))
|
|
|
|
|
|
if isinstance(result['graph1'], bytes):
|
|
img1 = plt.imread(io.BytesIO(result['graph1']))
|
|
ax1.imshow(img1)
|
|
ax1.axis('off')
|
|
ax1.set_title(discourse_t.get('compare_doc1_title', 'Documento 1'))
|
|
|
|
|
|
if isinstance(result['graph2'], bytes):
|
|
img2 = plt.imread(io.BytesIO(result['graph2']))
|
|
ax2.imshow(img2)
|
|
ax2.axis('off')
|
|
ax2.set_title(discourse_t.get('compare_doc2_title', 'Documento 2'))
|
|
|
|
plt.tight_layout()
|
|
|
|
|
|
buf = io.BytesIO()
|
|
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
|
|
buf.seek(0)
|
|
|
|
|
|
st.markdown('<div class="download-btn-container">', unsafe_allow_html=True)
|
|
st.download_button(
|
|
label="📥 " + discourse_t.get('download_both_graphs', "Descargar ambos gráficos"),
|
|
data=buf,
|
|
file_name="comparison_graphs.png",
|
|
mime="image/png",
|
|
use_container_width=True
|
|
)
|
|
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
plt.close() |