}, 'feedback_name_es': '', 'role': 'role', 'discourse_sebastian.marroquin@aideatext.ai_sebastian.marroquin@aideatext.ai': None, 'username': 'sebastian.marroquin@aideatext.ai', 'current_file_contents': 'Uso de stanza en el análisis sintáctico en la enseñanza de la redacción. \r\n\r\nStanza es una biblioteca de procesamiento del lenguaje natural (NLP) desarrollada por Stanford NLP Group, que ofrece una serie de herramientas de análisis lingüístico para muchos idiomas. Sus capacidades se extienden desde la segmentación de texto hasta análisis más complejos como el reconocimiento de partes del discurso, análisis de entidades nombradas, análisis sintáctico y semántico, entre otros. \r\n\r\n\r\nAquí te explico cómo algunas de sus funcionalidades específicas pueden facilitar la implementación de actividades de aprendizaje de la redacción en el nivel medio superior y superior, desde un enfoque andragógico:\r\n\r\nSegmentación de texto en oraciones y palabras.\r\nEsta funcionalidad puede ayudar a los estudiantes a identificar la estructura básica de los textos. \r\nAl descomponer un texto en sus componentes más básicos, los estudiantes pueden empezar a entender cómo se construyen las oraciones y párrafos, lo cual es fundamental para la redacción.\r\n\r\nReconocimiento de partes del discurso (POS tagging): Comprender las partes del discurso es esencial para el análisis sintáctico y la construcción de oraciones coherentes y complejas. Stanza puede ayudar a los estudiantes a identificar automáticamente sustantivos, verbos, adjetivos, etc., en los textos que escriben o analizan, lo que facilita el aprendizaje de la gramática y la sintaxis de manera aplicada.\r\nAnálisis de entidades nombradas (NER): Esta herramienta puede ser útil para actividades de redacción que involucren investigación y análisis de textos. \r\n\r\nAl identificar personas, lugares, organizaciones y otros tipos de entidades dentro de un texto, los estudiantes pueden aprender a distinguir entre diferentes tipos de información y a utilizarlos adecuadamente en sus escritos.\r\n\r\nAnálisis sintáctico: El análisis de la estructura de las oraciones puede mejorar significativamente la calidad de la escritura. Stanza permite analizar cómo las palabras en una oración se relacionan entre sí, lo que puede ayudar a los estudiantes a comprender y aplicar conceptos de coherencia y cohesión en sus textos.\r\n\r\nAnálisis de dependencias: Esta funcionalidad ofrece una visión detallada de las relaciones sintácticas dentro de las oraciones, lo cual es crucial para construir oraciones complejas y bien formadas. Los estudiantes pueden utilizar esta herramienta para revisar y mejorar la estructura sintáctica de sus escritos.\r\nLematización y stemming: Ayuda a los estudiantes a comprender la raíz de las palabras y sus variaciones, lo cual es útil para la ampliación del vocabulario y la correcta utilización de las palabras en diferentes contextos.\r\nDesde el punto de vista andragógico, el uso de herramientas como Stanza puede fomentar un enfoque más autodirigido y reflexivo hacia el aprendizaje de la redacción. Los estudiantes pueden utilizar estas herramientas para analizar y mejorar sus propios textos, recibir retroalimentación inmediata sobre aspectos específicos de su escritura, y llevar a cabo investigaciones lingüísticas que enriquezcan su comprensión del idioma. La incorporación de tecnologías digitales en el aprendizaje se alinea con las necesidades y estilos de aprendizaje de los adultos, promoviendo la autonomía, la autoevaluación y la aplicación práctica de los conocimientos adquiridos.\r\n\r\n \r\nAnexo I. Requerimiento funcional a nivel sintáctico [Producto 1]\r\nEn esta sección vamos a describir las tareas que deberá realizar el o la profesional identificada como usuaria / usuario líder. Para este caso es un profesional competente en la enseñanza y el aprendizaje del idioma castellano y que posee este idioma como lenguaje materno. Entonces requerimos de sus servicios profesionales par que: \r\n[Subproducto 11] Elaborar una secuencia [didáctica] estándar de como enseñaría a mejorar las habilidades de un estudiante partiendo de un análisis sintáctico. No requerimos que nos describa como hacer un análisis sintáctico, sino que como enseña a redactar al estudiante empleando sus diferentes técnicas y métodos dentro del nivel sintáctico. \r\nEjemplo:\r\n\r\nPaso 5: Evaluar. \r\nCuando el estudiante termina de redactar un texto tengo que corregir. Entonces tomo un boli rojo y comienzo a leer y marco las palabras repetidas, pero también cuando no hay relación entre género y número; y así, [en este caso la descripción tiene que ser detallada]\r\nPaso 6: Retro alimentación de la evaluación\r\nEn este momento trato de orientar mis comentarios hacia las fortalezas del estudiante y después le indico como es que puede mejorar su redacción, le presento ejemplos de otros textos que son cercanos a su estilo [en este caso la descripción tiene que ser detallada]\r\n[Subroducto 12] Con los resultados del producto [11] es importante que reporte cuáles tareas podrías ser reemplazadas por funciones en la funcionalidad de análisis semántico de AIdeaText. Es importante que grafique, empleando la interfase de AIdeaText, como se vería está funcionalidad. En ese sentido, es importante que anote que visualizaciones funcionarían mejor (o si ninguna funciona) que otras o si se requiere implementar otras funcionalidades que, de hacerlo de manera manual, serían muy laboriosas de hacer. \r\nEjemplo: \r\nFunción evaluar: La aplicación, al presentar una visualización ya está entregado una evaluación. Pero para el caso sintáctico no sería mejor que devuelva el mismo escrito, pero señalando con un círculo donde se encuentran las palabras repetidas, por ejemplo. [Se debe dibujar como se vería esta función en la interfase]\r\n', 'morphosyntax_clear_chat_sebastian.marroquin@aideatext.ai': False, 'concept_graph': '', 'initialized': True, 'feedback_text_es': '', 'semantic_clear_chat_sebastian.marroquin@aideatext.ai': False, 'discourse_clear_chat_sebastian.marroquin@aideatext.ai': False, 'key_concepts': [('análisis', 12.0), ('estudiante', 12.0), ('texto', 11.0), ('oración', 7.0), ('redacción', 6.0), ('funcionalidad', 6.0), ('aprendizaje', 6.0), ('palabra', 6.0), (']', 6.0), ('herramienta', 5.0)], 'logged_in': True, 'feedback_email_es': '', 'morphosyntax_chat_history': [], 'feedback_submit_es': False, 'toggle_graph': False, 'entity_graph': '', 'graph_id': 'semantic-float-4a0c84f3', 'semantic_file_uploader_sebastian.marroquin@aideatext.ai': None, 'delete_Uso de stanza en el análisis sintác.txt': False, 'page': 'user'}
diff --git a/src/modules/semantic/semantic_agent_interaction.py b/src/modules/semantic/semantic_agent_interaction.py
new file mode 100644
index 0000000000000000000000000000000000000000..93f0fed9c6a89598e27ba00d189f719891231fd2
--- /dev/null
+++ b/src/modules/semantic/semantic_agent_interaction.py
@@ -0,0 +1,404 @@
+# modules/semantic/semantic_agent_interaction.py
+import os
+import anthropic
+import streamlit as st
+import time
+import json
+import base64
+import logging
+
+from datetime import datetime, timezone
+from io import BytesIO
+
+# Local imports
+from ..utils.widget_utils import generate_unique_key
+from ..database.chat_mongo_db import store_chat_history
+
+logger = logging.getLogger(__name__)
+
+# Cache for conversation history to avoid redundant API calls
+conversation_cache = {}
+
+def get_conversation_cache_key(text, metrics, graph_data, lang_code):
+ """
+ Generate a cache key for conversations based on analysis data.
+ """
+ text_hash = hash(text[:1000]) # Only use first 1000 chars for hashing
+ metrics_hash = hash(json.dumps(metrics, sort_keys=True))
+ graph_hash = hash(graph_data[:100]) if graph_data else 0
+ return f"{text_hash}_{metrics_hash}_{graph_hash}_{lang_code}"
+
+def format_semantic_context(text, metrics, graph_data, lang_code):
+ """
+ Format the semantic analysis data for Claude's context.
+ """
+ formatted_data = {
+ 'text_sample': text[:2000], # Limit text sample
+ 'key_concepts': metrics.get('key_concepts', []),
+ 'concept_centrality': metrics.get('concept_centrality', {}),
+ 'graph_description': "Network graph available" if graph_data else "No graph available",
+ 'language': lang_code
+ }
+
+ return json.dumps(formatted_data, indent=2, ensure_ascii=False)
+
+def initiate_semantic_conversation(text, metrics, graph_data, lang_code):
+ """
+ Start a conversation with Claude about semantic analysis results.
+ """
+ try:
+ api_key = os.environ.get("ANTHROPIC_API_KEY")
+ if not api_key:
+ logger.error("Claude API key not found in environment variables")
+ return get_fallback_response(lang_code)
+
+ # Check cache first
+ cache_key = get_conversation_cache_key(text, metrics, graph_data, lang_code)
+ if cache_key in conversation_cache:
+ logger.info("Using cached conversation starter")
+ return conversation_cache[cache_key]
+
+ # Format context for Claude
+ context = format_semantic_context(text, metrics, graph_data, lang_code)
+
+ # Determine language for prompt
+ if lang_code == 'es':
+ system_prompt = """Eres un asistente especializado en análisis semántico de textos.
+ El usuario ha analizado un texto y quiere discutir los resultados contigo.
+ Estos son los datos del análisis:
+ - Fragmento del texto analizado
+ - Lista de conceptos clave identificados
+ - Medidas de centralidad de los conceptos
+ - Un grafo de relaciones conceptuales (si está disponible)
+
+ Tu rol es:
+ 1. Demostrar comprensión del análisis mostrado
+ 2. Hacer preguntas relevantes sobre los resultados
+ 3. Ayudar al usuario a interpretar los hallazgos
+ 4. Sugerir posibles direcciones para profundizar el análisis
+
+ Usa un tono profesional pero accesible. Sé conciso pero claro.
+ """
+ user_prompt = f"""Aquí están los resultados del análisis semántico:
+
+ {context}
+
+ Por favor:
+ 1. Haz un breve resumen de lo que notas en los resultados
+ 2. Formula 2-3 preguntas interesantes que podríamos explorar sobre estos datos
+ 3. Sugiere un aspecto del análisis que podría profundizarse
+
+ Mantén tu respuesta bajo 250 palabras."""
+
+ elif lang_code == 'fr':
+ system_prompt = """Vous êtes un assistant spécialisé dans l'analyse sémantique de textes.
+ L'utilisateur a analysé un texte et souhaite discuter des résultats avec vous.
+ Voici les données d'analyse:
+ - Extrait du texte analysé
+ - Liste des concepts clés identifiés
+ - Mesures de centralité des concepts
+ - Un graphique des relations conceptuelles (si disponible)
+
+ Votre rôle est:
+ 1. Démontrer une compréhension de l'analyse présentée
+ 2. Poser des questions pertinentes sur les résultats
+ 3. Aider l'utilisateur à interpréter les résultats
+ 4. Proposer des pistes pour approfondir l'analyse
+
+ Utilisez un ton professionnel mais accessible. Soyez concis mais clair.
+ """
+ user_prompt = f"""Voici les résultats de l'analyse sémantique:
+
+ {context}
+
+ Veuillez:
+ 1. Faire un bref résumé de ce que vous remarquez dans les résultats
+ 2. Formuler 2-3 questions intéressantes que nous pourrions explorer
+ 3. Suggérer un aspect de l'analyse qui pourrait être approfondi
+
+ Limitez votre réponse à 250 mots."""
+
+ elif lang_code == 'pt':
+ system_prompt = """Você é um assistente especializado em análise semântica de textos.
+ O usuário analisou um texto e quer discutir os resultados com você.
+ Aqui estão os dados da análise:
+ - Trecho do texto analisado
+ - Lista de conceitos-chave identificados
+ - Medidas de centralidade dos conceitos
+ - Um grafo de relações conceituais (se disponível)
+
+ Seu papel é:
+ 1. Demonstrar compreensão da análise apresentada
+ 2. Fazer perguntas relevantes sobre os resultados
+ 3. Ajudar o usuário a interpretar os achados
+ 4. Sugerir possíveis direções para aprofundar a análise
+
+ Use um tom profissional mas acessível. Seja conciso mas claro.
+ """
+ user_prompt = f"""Aqui estão os resultados da análise semântica:
+
+ {context}
+
+ Por favor:
+ 1. Faça um breve resumo do que você nota nos resultados
+ 2. Formule 2-3 perguntas interessantes que poderíamos explorar
+ 3. Sugira um aspecto da análise que poderia ser aprofundado
+
+ Mantenha sua resposta em até 250 palavras."""
+
+ else: # Default to English
+ system_prompt = """You are an assistant specialized in semantic text analysis.
+ The user has analyzed a text and wants to discuss the results with you.
+ Here is the analysis data:
+ - Sample of the analyzed text
+ - List of identified key concepts
+ - Concept centrality measures
+ - A concept relationship graph (if available)
+
+ Your role is to:
+ 1. Demonstrate understanding of the shown analysis
+ 2. Ask relevant questions about the results
+ 3. Help the user interpret the findings
+ 4. Suggest possible directions to deepen the analysis
+
+ Use a professional but accessible tone. Be concise but clear.
+ """
+ user_prompt = f"""Here are the semantic analysis results:
+
+ {context}
+
+ Please:
+ 1. Give a brief summary of what you notice in the results
+ 2. Formulate 2-3 interesting questions we could explore
+ 3. Suggest one aspect of the analysis that could be deepened
+
+ Keep your response under 250 words."""
+
+ # Initialize Claude client
+ client = anthropic.Anthropic(api_key=api_key)
+
+ # Call Claude API
+ start_time = time.time()
+ response = client.messages.create(
+ model="claude-3-sonnet-20240229",
+ max_tokens=1024,
+ temperature=0.7,
+ system=system_prompt,
+ messages=[
+ {"role": "user", "content": user_prompt}
+ ]
+ )
+ logger.info(f"Claude API call completed in {time.time() - start_time:.2f} seconds")
+
+ # Extract response
+ initial_response = response.content[0].text
+
+ # Cache the result
+ conversation_cache[cache_key] = initial_response
+
+ return initial_response
+
+ except Exception as e:
+ logger.error(f"Error initiating semantic conversation: {str(e)}")
+ return get_fallback_response(lang_code)
+
+def continue_conversation(conversation_history, new_message, lang_code):
+ """
+ Continue an existing conversation about semantic analysis.
+ """
+ try:
+ api_key = os.environ.get("ANTHROPIC_API_KEY")
+ if not api_key:
+ logger.error("Claude API key not found in environment variables")
+ return get_fallback_response(lang_code)
+
+ # Prepare conversation history for Claude
+ messages = []
+ for msg in conversation_history:
+ messages.append({
+ "role": "user" if msg["sender"] == "user" else "assistant",
+ "content": msg["message"]
+ })
+
+ # Add the new message
+ messages.append({"role": "user", "content": new_message})
+
+ # System prompt based on language
+ if lang_code == 'es':
+ system_prompt = """Continúa la conversación sobre el análisis semántico.
+ Sé conciso pero útil. Responde en español."""
+ elif lang_code == 'fr':
+ system_prompt = """Continuez la conversation sur l'analyse sémantique.
+ Soyez concis mais utile. Répondez en français."""
+ elif lang_code == 'pt':
+ system_prompt = """Continue a conversa sobre a análise semântica.
+ Seja conciso mas útil. Responda em português."""
+ else:
+ system_prompt = """Continue the conversation about semantic analysis.
+ Be concise but helpful. Respond in English."""
+
+ # Initialize Claude client
+ client = anthropic.Anthropic(api_key=api_key)
+
+ # Call Claude API
+ response = client.messages.create(
+ model="claude-3-sonnet-20240229",
+ max_tokens=1024,
+ temperature=0.7,
+ system=system_prompt,
+ messages=messages
+ )
+
+ return response.content[0].text
+
+ except Exception as e:
+ logger.error(f"Error continuing semantic conversation: {str(e)}")
+ return get_fallback_response(lang_code)
+
+def get_fallback_response(lang_code):
+ """
+ Return fallback response if Claude API fails.
+ """
+ if lang_code == 'es':
+ return """Parece que hay un problema técnico. Por favor intenta de nuevo más tarde.
+
+ Mientras tanto, aquí hay algunas preguntas que podrías considerar sobre tu análisis:
+ 1. ¿Qué conceptos tienen la mayor centralidad y por qué podría ser?
+ 2. ¿Hay conexiones inesperadas entre conceptos en tu grafo?
+ 3. ¿Cómo podrías profundizar en las relaciones entre los conceptos clave?"""
+
+ elif lang_code == 'fr':
+ return """Il semble y avoir un problème technique. Veuillez réessayer plus tard.
+
+ En attendant, voici quelques questions que vous pourriez considérer:
+ 1. Quels concepts ont la plus grande centralité et pourquoi?
+ 2. Y a-t-il des connexions inattendues entre les concepts?
+ 3. Comment pourriez-vous approfondir les relations entre les concepts clés?"""
+
+ elif lang_code == 'pt':
+ return """Parece haver um problema técnico. Por favor, tente novamente mais tarde.
+
+ Enquanto isso, aqui estão algumas perguntas que você poderia considerar:
+ 1. Quais conceitos têm maior centralidade e por que isso pode ocorrer?
+ 2. Há conexões inesperadas entre conceitos no seu grafo?
+ 3. Como você poderia aprofundar as relações entre os conceitos-chave?"""
+
+ else:
+ return """There seems to be a technical issue. Please try again later.
+
+ Meanwhile, here are some questions you might consider about your analysis:
+ 1. Which concepts have the highest centrality and why might that be?
+ 2. Are there unexpected connections between concepts in your graph?
+ 3. How could you explore the relationships between key concepts further?"""
+
+def store_conversation(username, text, metrics, graph_data, conversation):
+ try:
+ result = store_chat_history(
+ username=username,
+ messages=conversation,
+ analysis_type='semantic_analysis',
+ metadata={
+ 'text_sample': text[:500],
+ 'key_concepts': metrics.get('key_concepts', []),
+ 'graph_available': bool(graph_data)
+ }
+ )
+ logger.info(f"Conversación semántica guardada: {result}")
+ return result
+ except Exception as e:
+ logger.error(f"Error almacenando conversación semántica: {str(e)}")
+ return False
+
+def display_semantic_chat(text, metrics, graph_data, lang_code, t):
+ """
+ Display the chat interface for semantic analysis discussion.
+ """
+ try:
+ # Initialize session state for conversation if not exists
+ if 'semantic_chat' not in st.session_state:
+ st.session_state.semantic_chat = {
+ 'history': [],
+ 'initialized': False
+ }
+
+ # Container for chat display
+ chat_container = st.container()
+
+ # Initialize conversation if not done yet
+ if not st.session_state.semantic_chat['initialized']:
+ with st.spinner(t.get('initializing_chat', 'Initializing conversation...')):
+ initial_response = initiate_semantic_conversation(
+ text, metrics, graph_data, lang_code
+ )
+
+ st.session_state.semantic_chat['history'].append({
+ "sender": "assistant",
+ "message": initial_response
+ })
+ st.session_state.semantic_chat['initialized'] = True
+
+ # Store initial conversation
+ if 'username' in st.session_state:
+ store_conversation(
+ st.session_state.username,
+ text,
+ metrics,
+ graph_data,
+ st.session_state.semantic_chat['history']
+ )
+
+ # Display chat history
+ with chat_container:
+ st.markdown("### 💬 " + t.get('semantic_discussion', 'Semantic Analysis Discussion'))
+
+ for msg in st.session_state.semantic_chat['history']:
+ if msg["sender"] == "user":
+ st.chat_message("user").write(msg["message"])
+ else:
+ st.chat_message("assistant").write(msg["message"])
+
+ # Input for new message
+ user_input = st.chat_input(
+ t.get('chat_input_placeholder', 'Ask about your semantic analysis...')
+ )
+
+ if user_input:
+ # Add user message to history
+ st.session_state.semantic_chat['history'].append({
+ "sender": "user",
+ "message": user_input
+ })
+
+ # Display user message immediately
+ with chat_container:
+ st.chat_message("user").write(user_input)
+ with st.spinner(t.get('assistant_thinking', 'Assistant is thinking...')):
+ # Get assistant response
+ assistant_response = continue_conversation(
+ st.session_state.semantic_chat['history'],
+ user_input,
+ lang_code
+ )
+
+ # Add assistant response to history
+ st.session_state.semantic_chat['history'].append({
+ "sender": "assistant",
+ "message": assistant_response
+ })
+
+ # Display assistant response
+ st.chat_message("assistant").write(assistant_response)
+
+ # Store updated conversation
+ if 'username' in st.session_state:
+ store_conversation(
+ st.session_state.username,
+ text,
+ metrics,
+ graph_data,
+ st.session_state.semantic_chat['history']
+ )
+
+ except Exception as e:
+ logger.error(f"Error displaying semantic chat: {str(e)}")
+ st.error(t.get('chat_error', 'Error in chat interface. Please try again.'))
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_float.py b/src/modules/semantic/semantic_float.py
new file mode 100644
index 0000000000000000000000000000000000000000..043ab99ab13630b25c8bbbedb4a734b627e4a337
--- /dev/null
+++ b/src/modules/semantic/semantic_float.py
@@ -0,0 +1,213 @@
+import streamlit as st
+import uuid
+import streamlit.components.v1 as components
+
+
+'''
+
+# Lista de estilos de sombra y transición (sin cambios)
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+def semantic_float_init():
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ "center-right": "top: 50%; right: 20px; transform: translateY(-50%);"
+ }
+
+ css = f"""
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+
+ return float_box(content, css=css)
+
+def float_box(content, css=""):
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ components.html(f"""
+
+
+ """, height=0)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ display = "block" if visible else "none"
+ components.html(f"""
+
+ """, height=0)
+
+def update_float_content(box_id, new_content):
+ components.html(f"""
+
+ """, height=0)
+'''
+
+
+# Lista de estilos de sombra (puedes ajustar según tus preferencias)
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+# Lista de estilos de transición
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+def semantic_float_init():
+ """Inicializa los estilos necesarios para los elementos flotantes en la interfaz semántica."""
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ """
+ Crea un contenedor flotante para el gráfico de visualización semántica.
+
+ :param content: Contenido HTML o Markdown para el gráfico
+ :param width: Ancho del contenedor
+ :param height: Altura del contenedor
+ :param position: Posición del contenedor ('top-left', 'top-right', 'bottom-left', 'bottom-right')
+ :param shadow: Índice del estilo de sombra a utilizar
+ :param transition: Índice del estilo de transición a utilizar
+ """
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ }
+
+ css = f"""
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+
+ return float_box(content, css=css)
+
+def float_box(content, css=""):
+ """
+ Crea un contenedor flotante genérico.
+
+ :param content: Contenido HTML o Markdown para el contenedor
+ :param css: Estilos CSS adicionales
+ """
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ """
+ Cambia la visibilidad de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param visible: True para mostrar, False para ocultar
+ """
+ display = "block" if visible else "none"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+def update_float_content(box_id, new_content):
+ """
+ Actualiza el contenido de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param new_content: Nuevo contenido HTML o Markdown
+ """
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_float68ok.py b/src/modules/semantic/semantic_float68ok.py
new file mode 100644
index 0000000000000000000000000000000000000000..a57a08d49e3c3945b90a1a358305e520a6e1d650
--- /dev/null
+++ b/src/modules/semantic/semantic_float68ok.py
@@ -0,0 +1,467 @@
+import streamlit as st
+import uuid
+import streamlit.components.v1 as components
+import streamlit.components.v1 as stc
+
+########################## PRUEBA 1 #########################
+ # COMBINADO CON SEMANCTIC_INTERFACE_68OK APARECEN DOS BOX FLOTANTES
+# Lista de estilos de sombra (puedes ajustar según tus preferencias)
+
+'''
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+# Lista de estilos de transición
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+def semantic_float_init():
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+####################################################
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ }
+ css = f"""
+ width: {width};
+ height: {height};
+ position: fixed;
+ z-index: 9999;
+ background-color: white;
+ border: 1px solid #ddd;
+ padding: 10px;
+ overflow: auto;
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+ return float_box(content, css=css)
+
+#########################################################
+def float_box(content, css=""):
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ st.markdown(f"""
+
+ {content}
+
+ """, unsafe_allow_html=True)
+ return box_id
+
+#########################################################
+
+def toggle_float_visibility(box_id, visible):
+ """
+ Cambia la visibilidad de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param visible: True para mostrar, False para ocultar
+ """
+ display = "block" if visible else "none"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+###########################################################
+def update_float_content(box_id, new_content):
+ """
+ Actualiza el contenido de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param new_content: Nuevo contenido HTML o Markdown
+ """
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario
+'''
+
+################################################# version backup #########################
+ # COMBINADO CON SEMANCTIC_INTERFACE_68OK APARECEN SOLO UN CUADRO A LA DERECJHA Y AL CENTRO
+ # Lista de estilos de sombra (puedes ajustar según tus preferencias)
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+# Lista de estilos de transición
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+
+def semantic_float_init():
+ """Inicializa los estilos necesarios para los elementos flotantes en la interfaz semántica."""
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ """
+ Crea un contenedor flotante para el gráfico de visualización semántica.
+
+ :param content: Contenido HTML o Markdown para el gráfico
+ :param width: Ancho del contenedor
+ :param height: Altura del contenedor
+ :param position: Posición del contenedor ('top-left', 'top-right', 'bottom-left', 'bottom-right')
+ :param shadow: Índice del estilo de sombra a utilizar
+ :param transition: Índice del estilo de transición a utilizar
+ """
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ }
+
+ css = f"""
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+
+ return float_box(content, css=css)
+
+def float_box(content, css=""):
+ """
+ Crea un contenedor flotante genérico.
+
+ :param content: Contenido HTML o Markdown para el contenedor
+ :param css: Estilos CSS adicionales
+ """
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ """
+ Cambia la visibilidad de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param visible: True para mostrar, False para ocultar
+ """
+ display = "block" if visible else "none"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+def update_float_content(box_id, new_content):
+ """
+ Actualiza el contenido de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param new_content: Nuevo contenido HTML o Markdown
+ """
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario
+#################FIN BLOQUE DEL BACK UP#################################################
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+'''
+############ TEST #########################################
+def semantic_float_init():
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="center-right", shadow=0, transition=0):
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ "center-right": "top: 50%; right: 20px; transform: translateY(-50%);"
+ }
+
+ css = f"""
+ position: fixed;
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['center-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ z-index: 9999;
+ display: block !important;
+ background-color: white;
+ border: 1px solid #ddd;
+ border-radius: 5px;
+ padding: 10px;
+ overflow: auto;
+ """
+
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ html_content = f"""
+
+ {content}
+
+
+ """
+
+ components.html(html_content, height=600, scrolling=True)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ display = "block" if visible else "none"
+ components.html(f"""
+
+ """, height=0)
+
+def update_float_content(box_id, new_content):
+ components.html(f"""
+
+ """, height=0)
+
+
+
+
+
+
+
+
+
+
+############BackUp #########################################
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+# Lista de estilos de sombra y transición (sin cambios)
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+def semantic_float_init():
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ "center-right": "top: 50%; right: 20px; transform: translateY(-50%);"
+ }
+
+ css = f"""
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+
+ return float_box(content, css=css)
+
+def float_box(content, css=""):
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ components.html(f"""
+
+
+ """, height=0)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ display = "block" if visible else "none"
+ components.html(f"""
+
+ """, height=0)
+
+def update_float_content(box_id, new_content):
+ components.html(f"""
+
+ """, height=0)
+'''
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_float_old.py b/src/modules/semantic/semantic_float_old.py
new file mode 100644
index 0000000000000000000000000000000000000000..192c7a46004ab8b35c2046cde482a001088475c7
--- /dev/null
+++ b/src/modules/semantic/semantic_float_old.py
@@ -0,0 +1,220 @@
+import streamlit as st
+import uuid
+import streamlit.components.v1 as components
+import base64
+
+'''
+
+# Lista de estilos de sombra y transición (sin cambios)
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+def semantic_float_init():
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ "center-right": "top: 50%; right: 20px; transform: translateY(-50%);"
+ }
+
+ css = f"""
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+
+ return float_box(content, css=css)
+
+def float_box(content, css=""):
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ components.html(f"""
+
+
+ """, height=0)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ display = "block" if visible else "none"
+ components.html(f"""
+
+ """, height=0)
+
+def update_float_content(box_id, new_content):
+ components.html(f"""
+
+ """, height=0)
+'''
+
+
+# Lista de estilos de sombra (puedes ajustar según tus preferencias)
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+# Lista de estilos de transición
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+
+def encode_image_to_base64(image_path):
+ with open(image_path, "rb") as image_file:
+ encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
+ return f"data:image/png;base64,{encoded_string}"
+
+
+def semantic_float_init():
+ """Inicializa los estilos necesarios para los elementos flotantes en la interfaz semántica."""
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ """
+ Crea un contenedor flotante para el gráfico de visualización semántica.
+
+ :param content: Contenido HTML o Markdown para el gráfico
+ :param width: Ancho del contenedor
+ :param height: Altura del contenedor
+ :param position: Posición del contenedor ('top-left', 'top-right', 'bottom-left', 'bottom-right')
+ :param shadow: Índice del estilo de sombra a utilizar
+ :param transition: Índice del estilo de transición a utilizar
+ """
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ }
+
+ css = f"""
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+
+ return float_box(content, css=css)
+
+def float_box(content, css=""):
+ """
+ Crea un contenedor flotante genérico.
+
+ :param content: Contenido HTML o Markdown para el contenedor
+ :param css: Estilos CSS adicionales
+ """
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ """
+ Cambia la visibilidad de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param visible: True para mostrar, False para ocultar
+ """
+ display = "block" if visible else "none"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+def update_float_content(box_id, new_content):
+ """
+ Actualiza el contenido de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param new_content: Nuevo contenido HTML o Markdown
+ """
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario
diff --git a/src/modules/semantic/semantic_float_reset.py b/src/modules/semantic/semantic_float_reset.py
new file mode 100644
index 0000000000000000000000000000000000000000..1d782eb27f4493283de556391ef49334ed6e7256
--- /dev/null
+++ b/src/modules/semantic/semantic_float_reset.py
@@ -0,0 +1,94 @@
+import streamlit as st
+import uuid
+import streamlit.components.v1 as components
+import base64
+
+# Lista de estilos de sombra
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+# Lista de estilos de transición
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+
+]
+
+###################################################################################
+def semantic_float_init():
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ components.html("""
+
+
+ """, height=0)
+
+def float_graph(content):
+ js = f"""
+
+ """
+ components.html(js, height=0)
+
+def toggle_float_visibility(visible):
+ js = f"""
+
+ """
+ components.html(js, height=0)
+
+def update_float_content(new_content):
+ js = f"""
+
+ """
+ components.html(js, height=0)
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_float_reset_23-9-2024.py b/src/modules/semantic/semantic_float_reset_23-9-2024.py
new file mode 100644
index 0000000000000000000000000000000000000000..5d8fb602fec66518348fcfa37e1a272284a7adf4
--- /dev/null
+++ b/src/modules/semantic/semantic_float_reset_23-9-2024.py
@@ -0,0 +1,128 @@
+import streamlit as st
+import uuid
+import streamlit.components.v1 as components
+import base64
+
+# Lista de estilos de sombra
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+# Lista de estilos de transición
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+def semantic_float_init():
+ components.html("""
+
+ """, height=0)
+
+def float_graph(content, width="40%", height="60%", position="center-right", shadow=0, transition=0):
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ "center-right": "top: 50%; right: 20px; transform: translateY(-50%);"
+ }
+
+ css = f"""
+ position: fixed;
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['center-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ z-index: 9999;
+ display: block !important;
+ background-color: white;
+ border: 1px solid #ddd;
+ border-radius: 5px;
+ padding: 10px;
+ overflow: auto;
+ """
+
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ components.html(f"""
+
+ {content}
+
+
+ """, height=0)
+ return box_id
+
+def float_box(content, css=""):
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ components.html(f"""
+
+ {content}
+
+
+ """, height=0)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ display = "block" if visible else "none"
+ components.html(f"""
+
+ """, height=0)
+
+def update_float_content(box_id, new_content):
+ components.html(f"""
+
+ """, height=0)
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface.py b/src/modules/semantic/semantic_interface.py
new file mode 100644
index 0000000000000000000000000000000000000000..db991fb859817405bd7be3033d6a58824331dde2
--- /dev/null
+++ b/src/modules/semantic/semantic_interface.py
@@ -0,0 +1,290 @@
+#modules/semantic/semantic_interface.py
+import streamlit as st
+from streamlit_float import *
+from streamlit_antd_components import *
+from streamlit.components.v1 import html
+import spacy_streamlit
+import io
+from io import BytesIO
+import base64
+import matplotlib.pyplot as plt
+import pandas as pd
+import re
+
+import logging
+
+# Configuración del logger
+logger = logging.getLogger(__name__)
+
+# Importaciones locales
+from .semantic_process import (
+ process_semantic_input,
+ format_semantic_results
+)
+
+from ..utils.widget_utils import generate_unique_key
+from ..database.semantic_mongo_db import store_student_semantic_result
+from ..database.chat_mongo_db import store_chat_history, get_chat_history
+
+from ..semantic.semantic_agent_interaction import display_semantic_chat
+from ..chatbot.sidebar_chat import display_sidebar_chat
+
+# from ..database.semantic_export import export_user_interactions
+
+###############################
+
+def display_semantic_interface(lang_code, nlp_models, semantic_t):
+ try:
+ # 1. Inicializar el estado de la sesión
+ if 'semantic_state' not in st.session_state:
+ st.session_state.semantic_state = {
+ 'analysis_count': 0,
+ 'last_analysis': None,
+ 'current_file': None,
+ 'pending_analysis': False # Nuevo flag para controlar el análisis pendiente
+ }
+
+ # 2. Área de carga de archivo con mensaje informativo
+ uploaded_file = st.file_uploader(
+ semantic_t.get('semantic_file_uploader', 'Upload a text file for semantic analysis'),
+ type=['txt'],
+ key=f"semantic_file_uploader_{st.session_state.semantic_state['analysis_count']}"
+ )
+
+ # 2.1 Verificar si hay un archivo cargado y un análisis pendiente
+
+ if uploaded_file is not None and st.session_state.semantic_state.get('pending_analysis', False):
+
+ try:
+ with st.spinner(semantic_t.get('processing', 'Processing...')):
+ # Realizar análisis
+ text_content = uploaded_file.getvalue().decode('utf-8')
+ st.session_state.semantic_state['text_content'] = text_content # <-- Guardar el texto
+
+ analysis_result = process_semantic_input(
+ text_content,
+ lang_code,
+ nlp_models,
+ semantic_t
+ )
+
+ if analysis_result['success']:
+ # Guardar resultado
+ st.session_state.semantic_result = analysis_result
+ st.session_state.semantic_state['analysis_count'] += 1
+ st.session_state.semantic_state['current_file'] = uploaded_file.name
+
+ # Preparar datos para MongoDB
+ analysis_data = {
+ 'key_concepts': analysis_result['analysis'].get('key_concepts', []),
+ 'concept_centrality': analysis_result['analysis'].get('concept_centrality', {}),
+ 'concept_graph': analysis_result['analysis'].get('concept_graph')
+ }
+
+ # Guardar en base de datos
+ storage_success = store_student_semantic_result(
+ st.session_state.username,
+ text_content,
+ analysis_result['analysis'],
+ lang_code # Pasamos el código de idioma directamente
+ )
+
+ if storage_success:
+ st.success(
+ semantic_t.get('analysis_complete',
+ 'Análisis completado y guardado. Para realizar un nuevo análisis, cargue otro archivo.')
+ )
+ else:
+ st.error(semantic_t.get('error_message', 'Error saving analysis'))
+ else:
+ st.error(analysis_result['message'])
+
+ # Restablecer el flag de análisis pendiente
+ st.session_state.semantic_state['pending_analysis'] = False
+
+ except Exception as e:
+ logger.error(f"Error en análisis semántico: {str(e)}")
+ st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
+ # Restablecer el flag de análisis pendiente en caso de error
+ st.session_state.semantic_state['pending_analysis'] = False
+
+ # 3. Columnas para los botones y mensajes
+ col1, col2 = st.columns([1,4])
+
+ # 4. Botón de análisis
+ with col1:
+ analyze_button = st.button(
+ semantic_t.get('semantic_analyze_button', 'Analyze'),
+ key=f"semantic_analyze_button_{st.session_state.semantic_state['analysis_count']}",
+ type="primary",
+ icon="🔍",
+ disabled=uploaded_file is None,
+ use_container_width=True
+ )
+
+ # 5. Procesar análisis
+ if analyze_button and uploaded_file is not None:
+ # En lugar de realizar el análisis inmediatamente, establecer el flag
+ st.session_state.semantic_state['pending_analysis'] = True
+ # Forzar la recarga de la aplicación
+ st.rerun()
+
+ # 6. Mostrar resultados previos o mensaje inicial
+ elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None:
+ # Mostrar mensaje sobre el análisis actual
+ #st.info(
+ # semantic_t.get('current_analysis_message',
+ # 'Mostrando análisis del archivo: {}. Para realizar un nuevo análisis, cargue otro archivo.'
+ # ).format(st.session_state.semantic_state["current_file"])
+ #)
+
+ display_semantic_results(
+ st.session_state.semantic_result,
+ lang_code,
+ semantic_t
+ )
+
+ # --- BOTÓN PARA ACTIVAR EL AGENTE VIRTUAL (NUEVA POSICIÓN CORRECTA) ---
+ if st.button("💬 Consultar con Asistente"):
+ if 'semantic_result' not in st.session_state:
+ st.error("Primero complete el análisis semántico")
+ return
+
+ # Guardar TODOS los datos necesarios
+ st.session_state.semantic_agent_data = {
+ 'text': st.session_state.semantic_state['text_content'], # Texto completo
+ 'metrics': st.session_state.semantic_result['analysis'], # Métricas
+ 'graph_data': st.session_state.semantic_result['analysis'].get('concept_graph')
+ }
+ st.session_state.semantic_agent_active = True
+ st.rerun()
+
+ # Mostrar notificación si el agente está activo
+ if st.session_state.get('semantic_agent_active', False):
+ st.success(semantic_t.get('semantic_agent_ready_message', 'El agente virtual está listo. Abre el chat en la barra lateral.'))
+
+ else:
+ st.info(semantic_t.get('upload_prompt', 'Cargue un archivo para comenzar el análisis'))
+
+ except Exception as e:
+ logger.error(f"Error general en interfaz semántica: {str(e)}")
+ st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
+
+
+#######################################
+
+def display_semantic_results(semantic_result, lang_code, semantic_t):
+ """
+ Muestra los resultados del análisis semántico de conceptos clave.
+ """
+ if semantic_result is None or not semantic_result['success']:
+ st.warning(semantic_t.get('no_results', 'No results available'))
+ return
+
+ analysis = semantic_result['analysis']
+
+ # Mostrar conceptos clave en formato horizontal (se mantiene igual)
+ st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
+ if 'key_concepts' in analysis and analysis['key_concepts']:
+ df = pd.DataFrame(
+ analysis['key_concepts'],
+ columns=[
+ semantic_t.get('concept', 'Concept'),
+ semantic_t.get('frequency', 'Frequency')
+ ]
+ )
+
+ st.write(
+ """
+
+
+ """ +
+ ''.join([
+ f'
{concept}'
+ f'({freq:.2f})
'
+ for concept, freq in df.values
+ ]) +
+ "
",
+ unsafe_allow_html=True
+ )
+ else:
+ st.info(semantic_t.get('no_concepts', 'No key concepts found'))
+
+ # Gráfico de conceptos (versión modificada)
+ if 'concept_graph' in analysis and analysis['concept_graph'] is not None:
+ try:
+ # Sección del gráfico (sin div contenedor)
+ st.image(
+ analysis['concept_graph'],
+ use_container_width=True
+ )
+
+ # --- SOLO ESTE BLOQUE ES NUEVO ---
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+ # ---------------------------------
+
+ # Expandible con la interpretación (se mantiene igual)
+ with st.expander("📊 " + semantic_t.get('semantic_graph_interpretation', "Interpretación del gráfico semántico")):
+ st.markdown(f"""
+ - 🔀 {semantic_t.get('semantic_arrow_meaning', 'Las flechas indican la dirección de la relación entre conceptos')}
+ - 🎨 {semantic_t.get('semantic_color_meaning', 'Los colores más intensos indican conceptos más centrales en el texto')}
+ - ⭕ {semantic_t.get('semantic_size_meaning', 'El tamaño de los nodos representa la frecuencia del concepto')}
+ - ↔️ {semantic_t.get('semantic_thickness_meaning', 'El grosor de las líneas indica la fuerza de la conexión')}
+ """)
+
+ # Contenedor para botones (se mantiene igual pero centrado)
+ st.markdown("""
+
+
+ """, unsafe_allow_html=True)
+
+ st.download_button(
+ label="📥 " + semantic_t.get('download_semantic_network_graph', "Descargar gráfico de red semántica"),
+ data=analysis['concept_graph'],
+ file_name="semantic_graph.png",
+ mime="image/png",
+ use_container_width=True
+ )
+
+ st.markdown("
", unsafe_allow_html=True)
+
+ except Exception as e:
+ logger.error(f"Error displaying graph: {str(e)}")
+ st.error(semantic_t.get('graph_error', 'Error displaying the graph'))
+ else:
+ st.info(semantic_t.get('no_graph', 'No concept graph available'))
diff --git a/src/modules/semantic/semantic_interfaceBackUp_2092024_1800.py b/src/modules/semantic/semantic_interfaceBackUp_2092024_1800.py
new file mode 100644
index 0000000000000000000000000000000000000000..f9ef8533a44841e7fdcc66abd8b4c7a25b9e2914
--- /dev/null
+++ b/src/modules/semantic/semantic_interfaceBackUp_2092024_1800.py
@@ -0,0 +1,146 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2, tab3, tab4, tab5 = st.tabs(["Upload", "Analyze", "Results", "Chat", "Export"])
+
+ with tab1:
+ tab21, tab22 = st.tabs(["File Management", "File Analysis"])
+
+ with tab21:
+ st.subheader("Upload and Manage Files")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.write("No files uploaded yet.")
+
+ with tab22:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ with tab2:
+ st.subheader("Analysis Results")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ col1, col2 = st.columns(2)
+ with col1:
+ if 'concept_graph' in st.session_state:
+ st.subheader("Concept Graph")
+ st.pyplot(st.session_state.concept_graph)
+ with col2:
+ if 'entity_graph' in st.session_state:
+ st.subheader("Entity Graph")
+ st.pyplot(st.session_state.entity_graph)
+
+ with tab3:
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+
+ with chat_container:
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+
+ user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
+
+ chat_history.append({"role": "assistant", "content": response})
+ st.session_state.semantic_chat_history = chat_history
+
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with tab4:
+ st.subheader("Export Results")
+ # Add export functionality here
+
+ with tab5:
+ st.subheader("Help")
+ # Add help information here
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interfaceBorrados.py b/src/modules/semantic/semantic_interfaceBorrados.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b2167adff34762e28fbd9ee65c64dd371ef713c
--- /dev/null
+++ b/src/modules/semantic/semantic_interfaceBorrados.py
@@ -0,0 +1,196 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
diff --git a/src/modules/semantic/semantic_interfaceKoKo.py b/src/modules/semantic/semantic_interfaceKoKo.py
new file mode 100644
index 0000000000000000000000000000000000000000..3a704b30129e521564b9222face9ec5c818bafea
--- /dev/null
+++ b/src/modules/semantic/semantic_interfaceKoKo.py
@@ -0,0 +1,239 @@
+import streamlit as st
+from streamlit_float import *
+import logging
+import sys
+import io
+from io import BytesIO
+from datetime import datetime
+import re
+import base64
+import matplotlib.pyplot as plt
+import plotly.graph_objects as go
+import pandas as pd
+import numpy as np
+
+from .flexible_analysis_handler import FlexibleAnalysisHandler
+
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+from .semantic_process import process_semantic_analysis
+
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import manage_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+
+semantic_float_init()
+logging.basicConfig(level=logging.DEBUG)
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+
+##
+def fig_to_base64(fig):
+ buf = io.BytesIO()
+ fig.savefig(buf, format='png')
+ buf.seek(0)
+ img_str = base64.b64encode(buf.getvalue()).decode()
+ return f'
'
+##
+
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ #st.set_page_config(layout="wide")
+
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ if 'show_graph' not in st.session_state:
+ st.session_state.show_graph = False
+
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = None
+
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ if 'show_graph' not in st.session_state:
+ st.session_state.show_graph = False
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ col1, col2 = st.columns([2, 1])
+
+ with col1:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ st.markdown('', unsafe_allow_html=True)
+ for message in reversed(st.session_state.semantic_chat_history):
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+ st.markdown('
', unsafe_allow_html=True)
+
+ st.markdown('', unsafe_allow_html=True)
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col2:
+ st.subheader("Document Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("Select a file to analyze", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = manage_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ logger.debug("Calling process_semantic_analysis")
+ analysis_result = process_semantic_analysis(file_contents, nlp_model, lang_code)
+
+ # Crear una instancia de FlexibleAnalysisHandler con los resultados del análisis
+ handler = FlexibleAnalysisHandler(analysis_result)
+
+ logger.debug(f"Type of analysis_result: {type(analysis_result)}")
+ logger.debug(f"Keys in analysis_result: {analysis_result.keys() if isinstance(analysis_result, dict) else 'Not a dict'}")
+
+ st.session_state.concept_graph = handler.get_concept_graph()
+ st.session_state.entity_graph = handler.get_entity_graph()
+ st.session_state.key_concepts = handler.get_key_concepts()
+ st.session_state.show_graph = True
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("File Management")
+
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if manage_file_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+
+ st.subheader("Manage Uploaded Files")
+
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ #########################################################################################################################
+ # Floating graph visualization
+ if st.session_state.show_graph:
+ if st.session_state.graph_id is None:
+ st.session_state.graph_id = float_graph(
+ content="Loading graph...
",
+ width="40%",
+ height="60%",
+ position="bottom-right",
+ shadow=2,
+ transition=1
+ )
+
+ graph_id = st.session_state.graph_id
+
+ if 'key_concepts' in st.session_state:
+ key_concepts_html = "Key Concepts:
" + ', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]) + "
"
+ update_float_content(graph_id, key_concepts_html)
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ update_float_content(graph_id, st.session_state.concept_graph)
+ else:
+ update_float_content(graph_id, "No concept graph available.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ update_float_content(graph_id, st.session_state.entity_graph)
+ else:
+ update_float_content(graph_id, "No entity graph available.")
+
+ if st.button("Close Graph", key="close_graph"):
+ toggle_float_visibility(graph_id, False)
+ st.session_state.show_graph = False
+ st.session_state.graph_id = None
+ st.rerun()
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interfaceSideBar.py b/src/modules/semantic/semantic_interfaceSideBar.py
new file mode 100644
index 0000000000000000000000000000000000000000..79f0777328d68330ea531f7104abbf8a4ab0fdfb
--- /dev/null
+++ b/src/modules/semantic/semantic_interfaceSideBar.py
@@ -0,0 +1,207 @@
+import streamlit as st
+from streamlit_float import *
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Sidebar for chat
+ with st.sidebar:
+ st.subheader("Chat with AI")
+
+ messages = st.container(height=400)
+
+ # Display chat messages
+ for message in st.session_state.semantic_chat_history:
+ with messages.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ # Chat input
+ if prompt := st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')):
+ st.session_state.semantic_chat_history.append({"role": "user", "content": prompt})
+
+ with messages.chat_message("user"):
+ st.markdown(prompt)
+
+ with messages.chat_message("assistant"):
+ message_placeholder = st.empty()
+ full_response = ""
+
+ if prompt.startswith('/analyze_current'):
+ assistant_response = process_semantic_chat_input(prompt, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ assistant_response = st.session_state.semantic_chatbot.generate_response(prompt, lang_code, context=st.session_state.get('file_contents', ''))
+
+ # Simulate stream of response with milliseconds delay
+ for chunk in assistant_response.split():
+ full_response += chunk + " "
+ message_placeholder.markdown(full_response + "▌")
+ message_placeholder.markdown(full_response)
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": full_response})
+
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Main content area
+ st.title("Semantic Analysis")
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Visualization
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_1.py b/src/modules/semantic/semantic_interface_1.py
new file mode 100644
index 0000000000000000000000000000000000000000..29c22b3d1f16b0574cd5ad4b2cbd12d188b19784
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_1.py
@@ -0,0 +1,55 @@
+import streamlit as st
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot
+from ..database.database_oldFromV2 import store_semantic_result
+from ..text_analysis.semantic_analysis import perform_semantic_analysis
+from ..utils.widget_utils import generate_unique_key
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ st.subheader(t['title'])
+
+ # Inicializar el chatbot si no existe
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ # Sección para cargar archivo
+ uploaded_file = st.file_uploader(t['file_uploader'], type=['txt', 'pdf', 'docx', 'doc', 'odt'])
+ if uploaded_file:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ st.session_state.file_contents = file_contents
+
+ # Mostrar el historial del chat
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+ if "visualization" in message:
+ st.pyplot(message["visualization"])
+
+ # Input del usuario
+ user_input = st.chat_input(t['semantic_initial_message'], key=generate_unique_key('semantic', st.session_state.username))
+
+ if user_input:
+ # Procesar el input del usuario
+ response, visualization = process_semantic_analysis(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents'), t)
+
+ # Actualizar el historial del chat
+ chat_history.append({"role": "user", "content": user_input})
+ chat_history.append({"role": "assistant", "content": response, "visualization": visualization})
+ st.session_state.semantic_chat_history = chat_history
+
+ # Mostrar el resultado más reciente
+ with st.chat_message("assistant"):
+ st.write(response)
+ if visualization:
+ st.pyplot(visualization)
+
+ # Guardar el resultado en la base de datos si es un análisis
+ if user_input.startswith('/analisis_semantico'):
+ result = perform_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code)
+ store_semantic_result(st.session_state.username, st.session_state.file_contents, result)
+
+ # Botón para limpiar el historial del chat
+ if st.button(t['clear_chat'], key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_2.py b/src/modules/semantic/semantic_interface_2.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b24e101d56541b3f533183b78dceda8f961880c
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_2.py
@@ -0,0 +1,167 @@
+import streamlit as st
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ #st.set_page_config(layout="wide")
+
+ # Estilo CSS personalizado
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')}
+
+ """, unsafe_allow_html=True)
+
+ # Inicializar el chatbot si no existe
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ # Contenedor para la gestión de archivos
+ with st.container():
+ st.markdown('', unsafe_allow_html=True)
+ col1, col2, col3, col4 = st.columns(4)
+
+ with col1:
+ if st.button(get_translation(t, 'upload_file', 'Upload File'), key=generate_unique_key('semantic', 'upload_button')):
+ uploaded_file = st.file_uploader(get_translation(t, 'file_uploader', 'Choose a file'), type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved to database successfully'))
+ st.session_state.file_contents = file_contents
+ st.rerun()
+ else:
+ st.error(get_translation(t, 'file_upload_error', 'Error uploading file'))
+
+ with col2:
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_file', 'Select a file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox(get_translation(t, 'file_list', 'File List'), options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+ if selected_file != get_translation(t, 'select_file', 'Select a file'):
+ if st.button(get_translation(t, 'load_file', 'Load File'), key=generate_unique_key('semantic', 'load_file')):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ st.success(get_translation(t, 'file_loaded_success', 'File loaded successfully'))
+ else:
+ st.error(get_translation(t, 'file_load_error', 'Error loading file'))
+
+ with col3:
+ if st.button(get_translation(t, 'analyze_document', 'Analyze Document'), key=generate_unique_key('semantic', 'analyze_document')):
+ if 'file_contents' in st.session_state:
+ with st.spinner(get_translation(t, 'analyzing', 'Analyzing...')):
+ graph, key_concepts = process_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code)
+ st.session_state.graph = graph
+ st.session_state.key_concepts = key_concepts
+ st.success(get_translation(t, 'analysis_completed', 'Analysis completed'))
+ else:
+ st.error(get_translation(t, 'no_file_uploaded', 'No file uploaded'))
+
+ with col4:
+ if st.button(get_translation(t, 'delete_file', 'Delete File'), key=generate_unique_key('semantic', 'delete_file')):
+ if selected_file and selected_file != get_translation(t, 'select_file', 'Select a file'):
+ if delete_file(st.session_state.username, selected_file, 'semantic'):
+ st.success(get_translation(t, 'file_deleted_success', 'File deleted successfully'))
+ if 'file_contents' in st.session_state:
+ del st.session_state.file_contents
+ st.rerun()
+ else:
+ st.error(get_translation(t, 'file_delete_error', 'Error deleting file'))
+ else:
+ st.error(get_translation(t, 'no_file_selected', 'No file selected'))
+
+ st.markdown('
', unsafe_allow_html=True)
+
+ # Crear dos columnas: una para el chat y otra para la visualización
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat'))
+ # Chat interface
+ chat_container = st.container()
+
+ with chat_container:
+ # Mostrar el historial del chat
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+
+ # Input del usuario
+ user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ # Añadir el mensaje del usuario al historial
+ chat_history.append({"role": "user", "content": user_input})
+
+ # Generar respuesta del chatbot
+ chatbot = st.session_state.semantic_chatbot
+ response = chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents'))
+
+ # Añadir la respuesta del chatbot al historial
+ chat_history.append({"role": "assistant", "content": response})
+
+ # Actualizar el historial en session_state
+ st.session_state.semantic_chat_history = chat_history
+
+ # Forzar la actualización de la interfaz
+ st.rerun()
+
+ with col_graph:
+ st.subheader(get_translation(t, 'graph_title', 'Semantic Graph'))
+
+ # Mostrar conceptos clave en un expander horizontal
+ with st.expander(get_translation(t, 'key_concepts_title', 'Key Concepts'), expanded=True):
+ if 'key_concepts' in st.session_state:
+ st.markdown('', unsafe_allow_html=True)
+ for concept, freq in st.session_state.key_concepts:
+ st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if 'graph' in st.session_state:
+ st.pyplot(st.session_state.graph)
+
+ # Botón para limpiar el historial del chat
+ if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_2192024_1632.py b/src/modules/semantic/semantic_interface_2192024_1632.py
new file mode 100644
index 0000000000000000000000000000000000000000..cd2aff2f6a40d46999fd4548dd5697dd09f16e80
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_2192024_1632.py
@@ -0,0 +1,244 @@
+import streamlit as st
+import logging
+import time
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization --1
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ # Create a container for the chat messages
+ chat_container = st.container()
+
+ # Display chat messages from history on app rerun
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+'''
+ # Accept user input
+ if prompt := st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')):
+ # Add user message to chat history
+ st.session_state.semantic_chat_history.append({"role": "user", "content": prompt})
+ # Display user message in chat message container
+ with st.chat_message("user"):
+ st.markdown(prompt)
+
+ # Generate and display assistant response
+ with st.chat_message("assistant"):
+ message_placeholder = st.empty()
+ full_response = ""
+
+ if prompt.startswith('/analyze_current'):
+ assistant_response = process_semantic_chat_input(prompt, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ assistant_response = st.session_state.semantic_chatbot.generate_response(prompt, lang_code, context=st.session_state.get('file_contents', ''))
+
+ # Simulate stream of response with milliseconds delay
+ for chunk in assistant_response.split():
+ full_response += chunk + " "
+ time.sleep(0.05)
+ # Add a blinking cursor to simulate typing
+ message_placeholder.markdown(full_response + "▌")
+ message_placeholder.markdown(full_response)
+
+ # Add assistant response to chat history
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": full_response})
+
+ # Add a clear chat button
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = [{"role": "assistant", "content": "Chat cleared. How can I assist you?"}]
+ st.rerun()
+
+'''
+
+'''
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+'''
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_3.py b/src/modules/semantic/semantic_interface_3.py
new file mode 100644
index 0000000000000000000000000000000000000000..b42b4101804f09c8cf78d9458a9c4ad20f2ece4d
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_3.py
@@ -0,0 +1,182 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"""
+
+ {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')}
+
+ """, unsafe_allow_html=True)
+
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ # Contenedor para la gestión de archivos
+ with st.container():
+ st.markdown('', unsafe_allow_html=True)
+ col1, col2, col3, col4 = st.columns(4)
+
+ with col1:
+ uploaded_file = st.file_uploader(get_translation(t, 'upload_file', 'Upload File'), type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.session_state.file_contents = file_contents
+ st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully'))
+ st.rerun()
+ else:
+ st.error(get_translation(t, 'file_upload_error', 'Error uploading file'))
+
+ with col2:
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ st.success(get_translation(t, 'file_loaded_success', 'File loaded successfully'))
+ else:
+ st.error(get_translation(t, 'file_load_error', 'Error loading file'))
+
+ with col3:
+ if st.button(get_translation(t, 'analyze_document', 'Analyze Document'), key=generate_unique_key('semantic', 'analyze_document')):
+ if 'file_contents' in st.session_state:
+ with st.spinner(get_translation(t, 'analyzing', 'Analyzing...')):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(st.session_state.file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success(get_translation(t, 'analysis_completed', 'Analysis completed'))
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error(get_translation(t, 'no_file_uploaded', 'No file uploaded'))
+
+ with col4:
+ if st.button(get_translation(t, 'delete_file', 'Delete File'), key=generate_unique_key('semantic', 'delete_file')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ if delete_file(st.session_state.username, selected_file, 'semantic'):
+ st.success(get_translation(t, 'file_deleted_success', 'File deleted successfully'))
+ if 'file_contents' in st.session_state:
+ del st.session_state.file_contents
+ st.rerun()
+ else:
+ st.error(get_translation(t, 'file_delete_error', 'Error deleting file'))
+ else:
+ st.error(get_translation(t, 'no_file_selected', 'No file selected'))
+
+ st.markdown('
', unsafe_allow_html=True)
+
+ # Contenedor para la sección de análisis
+ st.markdown('', unsafe_allow_html=True)
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat'))
+ chat_container = st.container()
+
+ with chat_container:
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+
+ user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
+
+ chat_history.append({"role": "assistant", "content": response})
+ st.session_state.semantic_chat_history = chat_history
+
+ with col_graph:
+ st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs'))
+
+ # Mostrar conceptos clave y entidades horizontalmente
+ if 'key_concepts' in st.session_state:
+ st.write(get_translation(t, 'key_concepts_title', 'Key Concepts'))
+ st.markdown('
', unsafe_allow_html=True)
+ for concept, freq in st.session_state.key_concepts:
+ st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if 'entities' in st.session_state:
+ st.write(get_translation(t, 'entities_title', 'Entities'))
+ st.markdown('
', unsafe_allow_html=True)
+ for entity, type in st.session_state.entities.items():
+ st.markdown(f'{entity}: {type}', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ # Usar pestañas para mostrar los gráficos
+ tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab1:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+
+ with tab2:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+
+ st.markdown('
', unsafe_allow_html=True)
+
+ if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_4.py b/src/modules/semantic/semantic_interface_4.py
new file mode 100644
index 0000000000000000000000000000000000000000..fab61a80830dc404e0c3d7694f93803f900061b5
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_4.py
@@ -0,0 +1,188 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+ st.markdown('', unsafe_allow_html=True)
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
+
+ chat_history.append({"role": "assistant", "content": response})
+ st.session_state.semantic_chat_history = chat_history
+
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ st.markdown('', unsafe_allow_html=True)
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+ st.markdown('
', unsafe_allow_html=True)
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_5.py b/src/modules/semantic/semantic_interface_5.py
new file mode 100644
index 0000000000000000000000000000000000000000..b9c2c13e29ee1fe2b8048e233b65bcaaa02af6fc
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_5.py
@@ -0,0 +1,195 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Estilo CSS personalizado
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_6.py b/src/modules/semantic/semantic_interface_6.py
new file mode 100644
index 0000000000000000000000000000000000000000..6b9e483a32c03f1fc3dbf0a6aa2e65f71a284e35
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_6.py
@@ -0,0 +1,223 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+
+ # Crear el grafo flotante
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(
+ content="Loading graph...
",
+ width="40%",
+ height="60%",
+ position="bottom-right",
+ shadow=2,
+ transition=1
+ )
+
+ # Actualizar el contenido del grafo flotante
+ update_float_content(st.session_state.graph_id, f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """)
+
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ with st.expander("Chat with AI", expanded=True):
+ chat_container = st.container()
+
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state and st.session_state.concept_graph:
+ st.image(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state and st.session_state.entity_graph:
+ st.image(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+
+ # Botón para cerrar el grafo flotante
+ if st.button("Close Graph", key="close_graph"):
+ if 'graph_id' in st.session_state:
+ toggle_float_visibility(st.session_state.graph_id, False)
+ del st.session_state.graph_id
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_61.py b/src/modules/semantic/semantic_interface_61.py
new file mode 100644
index 0000000000000000000000000000000000000000..a2ac1e16628009ab14da1eb7cf94c967a22805ea
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_61.py
@@ -0,0 +1,198 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+ col_left, col_right = st.columns([1, 1])
+
+ with col_left:
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(
+ content="Loading graph...
",
+ width="40%",
+ height="60%",
+ position="bottom-right",
+ shadow=2,
+ transition=1
+ )
+
+ update_float_content(st.session_state.graph_id, f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """)
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([2, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ toggle_float_visibility(st.session_state.graph_id, not st.session_state.get('graph_visible', True))
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_right:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+ with tab_concept:
+ if 'concept_graph' in st.session_state and st.session_state.concept_graph:
+ st.image(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+ with tab_entity:
+ if 'entity_graph' in st.session_state and st.session_state.entity_graph:
+ st.image(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_610.py b/src/modules/semantic/semantic_interface_610.py
new file mode 100644
index 0000000000000000000000000000000000000000..7584017bdca599b7345e9728e5cdd887be94c885
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_610.py
@@ -0,0 +1,186 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import *
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Crear o actualizar el elemento flotante con el grafo
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ st.session_state.graph_id = float_graph(graph_content, width="30%", height="80%", position="center-right", shadow=2)
+ st.session_state.graph_visible = True
+
+ # Depuración: Mostrar los primeros 100 caracteres del grafo
+ st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}")
+ st.write(f"Debug: Graph ID: {st.session_state.graph_id}")
+
+ except Exception as e:
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+
+# Al final del archivo, después de todo el código:
+if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ components.html(f"""
+
+ """, height=0)
+
+# Añadir un botón para alternar la visibilidad del grafo
+if st.button("Toggle Graph Visibility"):
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', False)
+ if st.session_state.graph_visible:
+ st.write("Graph should be visible now")
+ else:
+ st.write("Graph should be hidden now")
+ st.experimental_rerun()
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_62.py b/src/modules/semantic/semantic_interface_62.py
new file mode 100644
index 0000000000000000000000000000000000000000..2cf56020a9772617f5f09a69450887c7e50614a8
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_62.py
@@ -0,0 +1,206 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+ col_left, col_right = st.columns([3, 2])
+
+ with col_left:
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Crear o actualizar el grafo flotante
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(
+ content="Loading graph...
",
+ width="40%",
+ height="60%",
+ position="bottom-right",
+ shadow=2,
+ transition=1
+ )
+ update_float_content(st.session_state.graph_id, f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+ with chat_container:
+ st.markdown('', unsafe_allow_html=True)
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat and Graph", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ if st.session_state.semantic_chat_history:
+ if st.button("Do you want to export the analysis before clearing?"):
+ # Aquí puedes implementar la lógica para exportar el análisis
+ st.success("Analysis exported successfully")
+ st.session_state.semantic_chat_history = []
+ if 'graph_id' in st.session_state:
+ toggle_float_visibility(st.session_state.graph_id, False)
+ del st.session_state.graph_id
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ st.rerun()
+
+ with col_right:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state and st.session_state.key_concepts:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+ with tab_concept:
+ if 'concept_graph' in st.session_state and st.session_state.concept_graph:
+ st.image(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+ with tab_entity:
+ if 'entity_graph' in st.session_state and st.session_state.entity_graph:
+ st.image(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_63.py b/src/modules/semantic/semantic_interface_63.py
new file mode 100644
index 0000000000000000000000000000000000000000..c32cf8d098b8ffb30163db19deef434fb2653d50
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_63.py
@@ -0,0 +1,215 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ # Barra de progreso
+ progress_bar = st.progress(0)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+ col_left, col_right = st.columns([2, 3]) # Invertimos las proporciones
+
+ with col_left:
+ st.subheader("File Selection and Chat")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ progress_bar.progress(10)
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ progress_bar.progress(30)
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ progress_bar.progress(70)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ progress_bar.progress(100)
+ st.success("Analysis completed successfully")
+
+ # Crear o actualizar el grafo flotante
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(
+ content="Loading graph...
",
+ width="40%",
+ height="60%",
+ position="bottom-right",
+ shadow=2,
+ transition=1
+ )
+ update_float_content(st.session_state.graph_id, f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ finally:
+ progress_bar.empty()
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+ with chat_container:
+ st.markdown('', unsafe_allow_html=True)
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat and Graph", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ if st.session_state.semantic_chat_history:
+ if st.button("Do you want to export the analysis before clearing?"):
+ # Aquí puedes implementar la lógica para exportar el análisis
+ st.success("Analysis exported successfully")
+ st.session_state.semantic_chat_history = []
+ if 'graph_id' in st.session_state:
+ toggle_float_visibility(st.session_state.graph_id, False)
+ del st.session_state.graph_id
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ st.rerun()
+
+ with col_right:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state and st.session_state.key_concepts:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+ with tab_concept:
+ if 'concept_graph' in st.session_state and st.session_state.concept_graph:
+ st.image(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+ with tab_entity:
+ if 'entity_graph' in st.session_state and st.session_state.entity_graph:
+ st.image(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_64.py b/src/modules/semantic/semantic_interface_64.py
new file mode 100644
index 0000000000000000000000000000000000000000..731678c700b81bdb8043dfa75ef875544ef44860
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_64.py
@@ -0,0 +1,170 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Actualizar el grafo flotante
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(graph_content, width="40%", height="60%", position="top-right")
+ else:
+ update_float_content(st.session_state.graph_id, graph_content)
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+ with chat_container:
+ st.markdown('', unsafe_allow_html=True)
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'
{message["content"]}
', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Botón para alternar la visibilidad del grafo flotante
+ if 'graph_id' in st.session_state:
+ if st.button("Toggle Graph Visibility"):
+ toggle_float_visibility(st.session_state.graph_id, not st.session_state.get('graph_visible', True))
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_65.py b/src/modules/semantic/semantic_interface_65.py
new file mode 100644
index 0000000000000000000000000000000000000000..6ea2f629e954c34ed7407e1d06241dc5040f1879
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_65.py
@@ -0,0 +1,176 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Actualizar el grafo flotante
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(graph_content, width="40%", height="auto", position="center-right")
+ else:
+ update_float_content(st.session_state.graph_id, graph_content)
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+ with chat_container:
+ st.markdown('', unsafe_allow_html=True)
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'
{message["content"]}
', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_66.py b/src/modules/semantic/semantic_interface_66.py
new file mode 100644
index 0000000000000000000000000000000000000000..cfa57fb062f09215e606e80cdbe9dfdacfcda759
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_66.py
@@ -0,0 +1,186 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Actualizar el contenido del grafo
+ st.session_state.graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(st.session_state.graph_content, width="40%", height="auto", position="center-right")
+ else:
+ update_float_content(st.session_state.graph_id, st.session_state.graph_content)
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+ with chat_container:
+ st.markdown('', unsafe_allow_html=True)
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'
{message["content"]}
', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+ # Mostrar el grafo flotante si está visible
+ if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
+ st.markdown(
+ f"""
+
+ {st.session_state.graph_content}
+
+ """,
+ unsafe_allow_html=True
+ )
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_67.py b/src/modules/semantic/semantic_interface_67.py
new file mode 100644
index 0000000000000000000000000000000000000000..952286e515d0b2aaded7d0e4ae21e5d4f6de8115
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_67.py
@@ -0,0 +1,189 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Actualizar el contenido del grafo
+ st.session_state.graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right")
+ else:
+ update_float_content(st.session_state.graph_id, st.session_state.graph_content)
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+ # Mostrar el grafo flotante si está visible
+ if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
+ st.markdown(
+ f"""
+
+ {st.session_state.graph_content}
+
+ """,
+ unsafe_allow_html=True
+ )
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_68.py b/src/modules/semantic/semantic_interface_68.py
new file mode 100644
index 0000000000000000000000000000000000000000..7d76233b4405d8e141d906c75f98c4cba2cb822e
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_68.py
@@ -0,0 +1,195 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph_base64, entity_graph_base64, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Aquí cambiamos el contenido del elemento flotante para mostrar un video de YouTube
+ youtube_video_id = "dQw4w9WgXcQ" # Cambia esto por el ID del video que quieras mostrar
+ video_content = f"""
+
+ """
+ st.session_state.graph_id = float_graph(video_content, width="800px", height="600px", position="center-right")
+ st.session_state.graph_visible = True
+ st.session_state.graph_content = video_content
+
+ # Log para depuración
+ st.write(f"Debug: Graph ID: {st.session_state.get('graph_id')}")
+ st.write(f"Debug: Graph visible: {st.session_state.get('graph_visible')}")
+
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+ # Mostrar el grafo flotante si está visible
+ if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
+ st.markdown(
+ f"""
+
+ {st.session_state.graph_content}
+
+ """,
+ unsafe_allow_html=True
+ )
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_681.py b/src/modules/semantic/semantic_interface_681.py
new file mode 100644
index 0000000000000000000000000000000000000000..9384c9f712a4145c14d5d43a1657e11e92cbeaea
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_681.py
@@ -0,0 +1,165 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ analyze_button = st.button("Analyze Document")
+ with col2:
+ toggle_graph = st.checkbox("Show Graph", value=st.session_state.graph_visible)
+
+ if analyze_button:
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ float_graph(graph_content)
+ st.session_state.graph_visible = True
+ toggle_float_visibility(True)
+
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ if toggle_graph != st.session_state.graph_visible:
+ st.session_state.graph_visible = toggle_graph
+ toggle_float_visibility(toggle_graph)
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible si está activado
+ if st.session_state.graph_visible:
+ toggle_float_visibility(True)
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_681_23-9-24.py b/src/modules/semantic/semantic_interface_681_23-9-24.py
new file mode 100644
index 0000000000000000000000000000000000000000..69477b49cf6dd9be21b06e330813aa2fe274e3ec
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_681_23-9-24.py
@@ -0,0 +1,222 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import *
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(graph_content, width="800px", height="600px", position="center-right")
+ st.write(f"New graph created with ID: {st.session_state.graph_id}")
+ else:
+ update_float_content(st.session_state.graph_id, graph_content)
+ st.write(f"Existing graph updated with ID: {st.session_state.graph_id}")
+
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+
+ # Depuración
+ st.write(f"Debug: Graph ID: {st.session_state.graph_id}")
+ st.write(f"Debug: Graph visible: {st.session_state.graph_visible}")
+ st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}")
+
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+
+ st.markdown('', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ col1, col2, col3 = st.columns([3, 1, 1])
+
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Añadir botones para controlar el elemento flotante
+ col1, col2 = st.columns(2)
+ with col1:
+ if st.button("Show Graph"):
+ if 'graph_id' in st.session_state:
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+ st.write(f"Showing graph with ID: {st.session_state.graph_id}")
+ else:
+ st.write("No graph available to show")
+
+ with col2:
+ if st.button("Hide Graph"):
+ if 'graph_id' in st.session_state:
+ toggle_float_visibility(st.session_state.graph_id, False)
+ st.session_state.graph_visible = False
+ st.write(f"Hiding graph with ID: {st.session_state.graph_id}")
+ else:
+ st.write("No graph available to hide")
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_68ok copy.py b/src/modules/semantic/semantic_interface_68ok copy.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc16cf6f6c19e45753d432af4e13c32f5880841a
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_68ok copy.py
@@ -0,0 +1,215 @@
+import streamlit as st
+import streamlit_float
+import streamlit_option_menu
+import streamlit_antd_components
+import streamlit.components.v1 as components
+import streamlit.components.v1 as stc
+import logging
+from .semantic_process import *
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float68ok import *
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph_base64, entity_graph_base64, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ if concept_graph_base64:
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ st.session_state.graph_id = float_graph(graph_content, width="800px", height="600px", position="center-right")
+ st.session_state.graph_visible = True
+ st.session_state.graph_content = graph_content
+
+ if entity_graph_base64:
+ entity_graph_content = f"""
+ Entity Graph:
+
+ """
+ st.session_state.entity_graph_id = float_graph(entity_graph_content, width="800px", height="600px", position="bottom-left")
+
+ # Log para depuración
+ st.write(f"Debug: Graph ID: {st.session_state.get('graph_id')}")
+ st.write(f"Debug: Graph visible: {st.session_state.get('graph_visible')}")
+ st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph_base64[:100]}")
+
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ col1, col2, col3 = st.columns([3, 1, 1])
+
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+# Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+# Mostrar el grafo flotante si está visible
+if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
+ components.html(
+ f"""
+
+ {st.session_state.graph_content}
+
+ """,
+ height=600,
+ scrolling=True
+ )
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_68ok.py b/src/modules/semantic/semantic_interface_68ok.py
new file mode 100644
index 0000000000000000000000000000000000000000..8a34d56f794a81dca38b251a21fba4ca16b5a6ad
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_68ok.py
@@ -0,0 +1,98 @@
+import streamlit as st
+import logging
+from ..database.database_oldFromV2 import manage_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ st.subheader(t['semantic_title'])
+
+ text_input = st.text_area(
+ t['warning_message'],
+ height=150,
+ key=generate_unique_key("semantic", "text_area")
+ )
+
+ if st.button(
+ t['results_title'],
+ key=generate_unique_key("semantic", "analyze_button")
+ ):
+ if text_input:
+ # Aquí iría tu lógica de análisis morfosintáctico
+ # Por ahora, solo mostraremos un mensaje de placeholder
+ st.info(t['analysis_placeholder'])
+ else:
+ st.warning(t['no_text_warning'])
+
+
+'''
+def display_semantic_interface(lang_code, nlp_models, t):
+ st.title("Semantic Analysis")
+
+ tab1, tab2 = st.tabs(["File Management", "Analysis"])
+
+ with tab1:
+ display_file_management(lang_code, t)
+
+ with tab2:
+ # Aquí irá el código para el análisis semántico (lo implementaremos después)
+ st.write("Semantic analysis section will be implemented here.")
+
+def display_file_management(lang_code, t):
+ st.header("File Management")
+
+ # File Upload Section
+ st.subheader("Upload New File")
+ uploaded_file = st.file_uploader(
+ "Choose a file to upload",
+ type=['txt', 'pdf', 'docx', 'doc', 'odt'],
+ key=generate_unique_key('semantic', 'file_uploader')
+ )
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if manage_file_contents(st.session_state.username, uploaded_file.name, file_contents, 'semantic'):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+
+
+ # File Management Section
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ try:
+ logger.info(f"Attempting to delete file: {file['file_name']} for user: {st.session_state.username}")
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ logger.info(f"File {file['file_name']} deleted successfully for user: {st.session_state.username}")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ logger.error(f"Failed to delete file {file['file_name']} for user: {st.session_state.username}")
+ except Exception as e:
+ st.error(f"An error occurred while deleting file {file['file_name']}: {str(e)}")
+ logger.exception(f"Exception occurred while deleting file {file['file_name']} for user: {st.session_state.username}")
+
+ else:
+ st.info("No files uploaded yet.")
+
+if __name__ == "__main__":
+ # This is just for testing purposes
+ class MockTranslation(dict):
+ def __getitem__(self, key):
+ return key
+
+ display_semantic_interface('en', {}, MockTranslation())
+
+ '''
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_68okBackUp.py b/src/modules/semantic/semantic_interface_68okBackUp.py
new file mode 100644
index 0000000000000000000000000000000000000000..a8d8eaeafca312b1fa3d6ef2fc81bf2bf7a844ad
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_68okBackUp.py
@@ -0,0 +1,209 @@
+import streamlit as st
+import streamlit.components.v1 as components
+import streamlit.components.v1 as stc
+import logging
+from .semantic_process import *
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float68ok import *
+
+concept_graph_base64, entity_graph_base64, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Actualizar el contenido del grafo
+ st.session_state.graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right")
+ else:
+ update_float_content(st.session_state.graph_id, st.session_state.graph_content)
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ col1, col2, col3 = st.columns([3, 1, 1])
+
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+ # Mostrar el grafo flotante si está visible
+ if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
+ st.markdown(
+ f"""
+
+ {st.session_state.graph_content}
+
+ """,
+ unsafe_allow_html=True
+ )
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_69.py b/src/modules/semantic/semantic_interface_69.py
new file mode 100644
index 0000000000000000000000000000000000000000..9491c4a0cd7e20c82eeb3bed69d2f3417e92e1d4
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_69.py
@@ -0,0 +1,167 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import *
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Crear o actualizar el elemento flotante con el grafo
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(graph_content, width="540px", height="540px", position="center-right")
+ else:
+ update_float_content(st.session_state.graph_id, graph_content)
+
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+
+ # Depuración: Mostrar el grafo directamente en la interfaz
+ #st.image(f"data:image/png;base64,{concept_graph}", caption="Concept Graph (Debug View)", use_column_width=True)
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_6_Ok-23-9-24.py b/src/modules/semantic/semantic_interface_6_Ok-23-9-24.py
new file mode 100644
index 0000000000000000000000000000000000000000..c56fcc1da26f832d7e3e5037453ed17469943284
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_6_Ok-23-9-24.py
@@ -0,0 +1,223 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+
+ # Crear el grafo flotante
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(
+ content="Loading graph...
",
+ width="40%",
+ height="60%",
+ position="bottom-right",
+ shadow=2,
+ transition=1
+ )
+
+ # Actualizar el contenido del grafo flotante
+ update_float_content(st.session_state.graph_id, f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """)
+
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ with st.expander("Chat with AI", expanded=True):
+ chat_container = st.container()
+
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state and st.session_state.concept_graph:
+ st.image(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state and st.session_state.entity_graph:
+ st.image(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+
+ # Botón para cerrar el grafo flotante
+ if st.button("Close Graph", key="close_graph"):
+ if 'graph_id' in st.session_state:
+ toggle_float_visibility(st.session_state.graph_id, False)
+ del st.session_state.graph_id
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_6_StarPoint.py b/src/modules/semantic/semantic_interface_6_StarPoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..128c21dd4422f723c9b35a7484ab0b2af79f69d2
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_6_StarPoint.py
@@ -0,0 +1,196 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ with st.expander("Chat with AI", expanded=True):
+ chat_container = st.container()
+
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ col1, col2 = st.columns([3, 1])
+
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_7.py b/src/modules/semantic/semantic_interface_7.py
new file mode 100644
index 0000000000000000000000000000000000000000..26893a836e36378aad6d6fbc4a259bb7a9126b22
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_7.py
@@ -0,0 +1,201 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_BackUp_18-5-2025.py b/src/modules/semantic/semantic_interface_BackUp_18-5-2025.py
new file mode 100644
index 0000000000000000000000000000000000000000..720b92ae9dca3db9f560de190b2581ae0e24bfb4
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_BackUp_18-5-2025.py
@@ -0,0 +1,261 @@
+#modules/semantic/semantic_interface.py
+import streamlit as st
+from streamlit_float import *
+from streamlit_antd_components import *
+from streamlit.components.v1 import html
+import spacy_streamlit
+import io
+from io import BytesIO
+import base64
+import matplotlib.pyplot as plt
+import pandas as pd
+import re
+import logging
+
+# Configuración del logger
+logger = logging.getLogger(__name__)
+
+# Importaciones locales
+from .semantic_process import (
+ process_semantic_input,
+ format_semantic_results
+)
+
+from ..utils.widget_utils import generate_unique_key
+from ..database.semantic_mongo_db import store_student_semantic_result
+from ..database.chat_mongo_db import store_chat_history, get_chat_history
+
+# from ..database.semantic_export import export_user_interactions
+
+
+###############################
+
+# En semantic_interface.py
+def display_semantic_interface(lang_code, nlp_models, semantic_t):
+ try:
+ # 1. Inicializar el estado de la sesión
+ if 'semantic_state' not in st.session_state:
+ st.session_state.semantic_state = {
+ 'analysis_count': 0,
+ 'last_analysis': None,
+ 'current_file': None,
+ 'pending_analysis': False # Nuevo flag para controlar el análisis pendiente
+ }
+
+ # 2. Área de carga de archivo con mensaje informativo
+ st.info(semantic_t.get('initial_instruction',
+ 'Para comenzar un nuevo análisis semántico, cargue un archivo de texto (.txt)'))
+
+ uploaded_file = st.file_uploader(
+ semantic_t.get('semantic_file_uploader', 'Upload a text file for semantic analysis'),
+ type=['txt'],
+ key=f"semantic_file_uploader_{st.session_state.semantic_state['analysis_count']}"
+ )
+
+ # 2.1 Verificar si hay un archivo cargado y un análisis pendiente
+ if uploaded_file is not None and st.session_state.semantic_state.get('pending_analysis', False):
+ try:
+ with st.spinner(semantic_t.get('processing', 'Processing...')):
+ # Realizar análisis
+ text_content = uploaded_file.getvalue().decode('utf-8')
+
+ analysis_result = process_semantic_input(
+ text_content,
+ lang_code,
+ nlp_models,
+ semantic_t
+ )
+
+ if analysis_result['success']:
+ # Guardar resultado
+ st.session_state.semantic_result = analysis_result
+ st.session_state.semantic_state['analysis_count'] += 1
+ st.session_state.semantic_state['current_file'] = uploaded_file.name
+
+ # Guardar en base de datos
+ storage_success = store_student_semantic_result(
+ st.session_state.username,
+ text_content,
+ analysis_result['analysis']
+ )
+
+ if storage_success:
+ st.success(
+ semantic_t.get('analysis_complete',
+ 'Análisis completado y guardado. Para realizar un nuevo análisis, cargue otro archivo.')
+ )
+ else:
+ st.error(semantic_t.get('error_message', 'Error saving analysis'))
+ else:
+ st.error(analysis_result['message'])
+
+ # Restablecer el flag de análisis pendiente
+ st.session_state.semantic_state['pending_analysis'] = False
+
+ except Exception as e:
+ logger.error(f"Error en análisis semántico: {str(e)}")
+ st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
+ # Restablecer el flag de análisis pendiente en caso de error
+ st.session_state.semantic_state['pending_analysis'] = False
+
+ # 3. Columnas para los botones y mensajes
+ col1, col2 = st.columns([1,4])
+
+ # 4. Botón de análisis
+ with col1:
+ analyze_button = st.button(
+ semantic_t.get('semantic_analyze_button', 'Analyze'),
+ key=f"semantic_analyze_button_{st.session_state.semantic_state['analysis_count']}",
+ type="primary",
+ icon="🔍",
+ disabled=uploaded_file is None,
+ use_container_width=True
+ )
+
+ # 5. Procesar análisis
+ if analyze_button and uploaded_file is not None:
+ # En lugar de realizar el análisis inmediatamente, establecer el flag
+ st.session_state.semantic_state['pending_analysis'] = True
+ # Forzar la recarga de la aplicación
+ st.rerun()
+
+ # 6. Mostrar resultados previos o mensaje inicial
+ elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None:
+ # Mostrar mensaje sobre el análisis actual
+ st.info(
+ semantic_t.get('current_analysis_message',
+ 'Mostrando análisis del archivo: {}. Para realizar un nuevo análisis, cargue otro archivo.'
+ ).format(st.session_state.semantic_state["current_file"])
+ )
+
+ display_semantic_results(
+ st.session_state.semantic_result,
+ lang_code,
+ semantic_t
+ )
+ else:
+ st.info(semantic_t.get('upload_prompt', 'Cargue un archivo para comenzar el análisis'))
+
+ except Exception as e:
+ logger.error(f"Error general en interfaz semántica: {str(e)}")
+ st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
+
+
+#######################################
+
+def display_semantic_results(semantic_result, lang_code, semantic_t):
+ """
+ Muestra los resultados del análisis semántico de conceptos clave.
+ """
+ if semantic_result is None or not semantic_result['success']:
+ st.warning(semantic_t.get('no_results', 'No results available'))
+ return
+
+ analysis = semantic_result['analysis']
+
+ # Mostrar conceptos clave en formato horizontal (se mantiene igual)
+ st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
+ if 'key_concepts' in analysis and analysis['key_concepts']:
+ df = pd.DataFrame(
+ analysis['key_concepts'],
+ columns=[
+ semantic_t.get('concept', 'Concept'),
+ semantic_t.get('frequency', 'Frequency')
+ ]
+ )
+
+ st.write(
+ """
+
+
+ """ +
+ ''.join([
+ f'
{concept}'
+ f'({freq:.2f})
'
+ for concept, freq in df.values
+ ]) +
+ "
",
+ unsafe_allow_html=True
+ )
+ else:
+ st.info(semantic_t.get('no_concepts', 'No key concepts found'))
+
+ # Gráfico de conceptos (versión modificada)
+ if 'concept_graph' in analysis and analysis['concept_graph'] is not None:
+ try:
+ # Sección del gráfico (sin div contenedor)
+ st.image(
+ analysis['concept_graph'],
+ use_container_width=True
+ )
+
+ # --- SOLO ESTE BLOQUE ES NUEVO ---
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+ # ---------------------------------
+
+ # Expandible con la interpretación (se mantiene igual)
+ with st.expander("📊 " + semantic_t.get('semantic_graph_interpretation', "Interpretación del gráfico semántico")):
+ st.markdown(f"""
+ - 🔀 {semantic_t.get('semantic_arrow_meaning', 'Las flechas indican la dirección de la relación entre conceptos')}
+ - 🎨 {semantic_t.get('semantic_color_meaning', 'Los colores más intensos indican conceptos más centrales en el texto')}
+ - ⭕ {semantic_t.get('semantic_size_meaning', 'El tamaño de los nodos representa la frecuencia del concepto')}
+ - ↔️ {semantic_t.get('semantic_thickness_meaning', 'El grosor de las líneas indica la fuerza de la conexión')}
+ """)
+
+ # Contenedor para botones (se mantiene igual pero centrado)
+ st.markdown("""
+
+
+ """, unsafe_allow_html=True)
+
+ st.download_button(
+ label="📥 " + semantic_t.get('download_semantic_network_graph', "Descargar gráfico de red semántica"),
+ data=analysis['concept_graph'],
+ file_name="semantic_graph.png",
+ mime="image/png",
+ use_container_width=True
+ )
+
+ st.markdown("
", unsafe_allow_html=True)
+
+ except Exception as e:
+ logger.error(f"Error displaying graph: {str(e)}")
+ st.error(semantic_t.get('graph_error', 'Error displaying the graph'))
+ else:
+ st.info(semantic_t.get('no_graph', 'No concept graph available'))
+
diff --git "a/src/modules/semantic/semantic_interface_Despu\303\251s.py" "b/src/modules/semantic/semantic_interface_Despu\303\251s.py"
new file mode 100644
index 0000000000000000000000000000000000000000..2d289197b51402d9a108eacfd06668a2394fbdfe
--- /dev/null
+++ "b/src/modules/semantic/semantic_interface_Despu\303\251s.py"
@@ -0,0 +1,116 @@
+import streamlit as st
+import logging
+from io import BytesIO
+import base64
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import (
+ initialize_mongodb_connection,
+ initialize_database_connections,
+ create_admin_user,
+ create_student_user,
+ get_user,
+ get_student_data,
+ store_file_contents,
+ retrieve_file_contents,
+ get_user_files,
+ delete_file,
+ store_application_request,
+ store_user_feedback,
+ store_morphosyntax_result,
+ store_semantic_result,
+ store_discourse_analysis_result,
+ store_chat_history,
+ export_analysis_and_chat,
+ get_user_analysis_summary,
+ get_user_recents_chats,
+ get_user_analysis_details
+ )
+
+from ..utils.widget_utils import generate_unique_key
+from .flexible_analysis_handler import FlexibleAnalysisHandler
+
+semantic_float_init()
+logging.basicConfig(level=logging.DEBUG)
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def fig_to_base64(fig):
+ buf = BytesIO()
+ fig.savefig(buf, format='png')
+ buf.seek(0)
+ img_str = base64.b64encode(buf.getvalue()).decode()
+ return f'
'
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ st.set_page_config(layout="wide")
+
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+ if 'show_graph' not in st.session_state:
+ st.session_state.show_graph = False
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = None
+
+ st.header(t['title'])
+
+ # Opción para introducir texto
+ text_input = st.text_area(
+ t['text_input_label'],
+ height=150,
+ placeholder=t['text_input_placeholder'],
+ )
+
+ # Opción para cargar archivo
+ uploaded_file = st.file_uploader(t['file_uploader'], type=['txt'])
+
+ if st.button(t['analyze_button']):
+ if text_input or uploaded_file is not None:
+ if uploaded_file:
+ text_content = uploaded_file.getvalue().decode('utf-8')
+ else:
+ text_content = text_input
+
+ # Realizar el análisis
+ analysis_result = process_semantic_analysis(text_content, nlp_models[lang_code], lang_code)
+
+ # Guardar el resultado en el estado de la sesión
+ st.session_state.semantic_result = analysis_result
+
+ # Mostrar resultados
+ display_semantic_results(st.session_state.semantic_result, lang_code, t)
+
+ # Guardar el resultado del análisis
+ if store_semantic_result(st.session_state.username, text_content, analysis_result):
+ st.success(t['success_message'])
+ else:
+ st.error(t['error_message'])
+ else:
+ st.warning(t['warning_message'])
+
+ elif 'semantic_result' in st.session_state:
+
+ # Si hay un resultado guardado, mostrarlo
+ display_semantic_results(st.session_state.semantic_result, lang_code, t)
+
+ else:
+ st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones
+
+def display_semantic_results(result, lang_code, t):
+ if result is None:
+ st.warning(t['no_results']) # Asegúrate de que 'no_results' esté en tus traducciones
+ return
+
+ # Mostrar conceptos clave
+ with st.expander(t['key_concepts'], expanded=True):
+ concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']])
+ st.write(concept_text)
+
+ # Mostrar el gráfico de relaciones conceptuales
+ with st.expander(t['conceptual_relations'], expanded=True):
+ st.pyplot(result['relations_graph'])
diff --git a/src/modules/semantic/semantic_interface_StreamLitChat.py b/src/modules/semantic/semantic_interface_StreamLitChat.py
new file mode 100644
index 0000000000000000000000000000000000000000..e0eb527289912cd0295833c4e93cd2e91bd3b6d2
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_StreamLitChat.py
@@ -0,0 +1,157 @@
+import streamlit as st
+import logging
+from streamlit_chat import message
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'messages' not in st.session_state:
+ st.session_state.messages = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+
+ st.title("Semantic Analysis")
+
+ # Crear dos columnas principales: una para el chat y otra para la visualización
+ chat_col, viz_col = st.columns([1, 1])
+
+ with chat_col:
+ st.subheader("Chat with AI")
+
+ # Contenedor para los mensajes del chat
+ chat_container = st.container()
+
+ # Input para el chat
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ # Añadir mensaje del usuario
+ st.session_state.messages.append({"role": "user", "content": user_input})
+
+ # Generar respuesta del asistente
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ # Añadir respuesta del asistente
+ st.session_state.messages.append({"role": "assistant", "content": response})
+
+ # Mostrar mensajes en el contenedor del chat
+ with chat_container:
+ for i, msg in enumerate(st.session_state.messages):
+ message(msg['content'], is_user=msg['role'] == 'user', key=f"{i}_{msg['role']}")
+
+ # Botón para limpiar el chat
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.messages = []
+ st.rerun()
+
+ with viz_col:
+ st.subheader("Visualization")
+
+ # Selector de archivo y botón de análisis
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("Select a file to analyze", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Visualización de conceptos clave
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ # Pestañas para los gráficos
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+
+ # Sección de carga de archivos
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+
+ # Gestión de archivos cargados
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_Test.py b/src/modules/semantic/semantic_interface_Test.py
new file mode 100644
index 0000000000000000000000000000000000000000..435d574d8c6ff1b985807249e9a02061e0bd4a54
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_Test.py
@@ -0,0 +1,22 @@
+import streamlit as st
+from streamlit_float import *
+
+# Limpiar el caché al inicio
+st.cache_data.clear()
+st.cache_resource.clear()
+
+
+# initialize float feature/capability
+float_init()
+
+col1, col2 = st.columns(2)
+
+# Fix/float the whole column
+col1.write("This entire column is fixed/floating")
+col1.float()
+
+with col2:
+ container = st.container()
+ # Fix/float a single container inside
+ container.write("This text is in a container that is fixed")
+ container.float()
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_afterParty.py b/src/modules/semantic/semantic_interface_afterParty.py
new file mode 100644
index 0000000000000000000000000000000000000000..2d289197b51402d9a108eacfd06668a2394fbdfe
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_afterParty.py
@@ -0,0 +1,116 @@
+import streamlit as st
+import logging
+from io import BytesIO
+import base64
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import (
+ initialize_mongodb_connection,
+ initialize_database_connections,
+ create_admin_user,
+ create_student_user,
+ get_user,
+ get_student_data,
+ store_file_contents,
+ retrieve_file_contents,
+ get_user_files,
+ delete_file,
+ store_application_request,
+ store_user_feedback,
+ store_morphosyntax_result,
+ store_semantic_result,
+ store_discourse_analysis_result,
+ store_chat_history,
+ export_analysis_and_chat,
+ get_user_analysis_summary,
+ get_user_recents_chats,
+ get_user_analysis_details
+ )
+
+from ..utils.widget_utils import generate_unique_key
+from .flexible_analysis_handler import FlexibleAnalysisHandler
+
+semantic_float_init()
+logging.basicConfig(level=logging.DEBUG)
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def fig_to_base64(fig):
+ buf = BytesIO()
+ fig.savefig(buf, format='png')
+ buf.seek(0)
+ img_str = base64.b64encode(buf.getvalue()).decode()
+ return f'
'
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ st.set_page_config(layout="wide")
+
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+ if 'show_graph' not in st.session_state:
+ st.session_state.show_graph = False
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = None
+
+ st.header(t['title'])
+
+ # Opción para introducir texto
+ text_input = st.text_area(
+ t['text_input_label'],
+ height=150,
+ placeholder=t['text_input_placeholder'],
+ )
+
+ # Opción para cargar archivo
+ uploaded_file = st.file_uploader(t['file_uploader'], type=['txt'])
+
+ if st.button(t['analyze_button']):
+ if text_input or uploaded_file is not None:
+ if uploaded_file:
+ text_content = uploaded_file.getvalue().decode('utf-8')
+ else:
+ text_content = text_input
+
+ # Realizar el análisis
+ analysis_result = process_semantic_analysis(text_content, nlp_models[lang_code], lang_code)
+
+ # Guardar el resultado en el estado de la sesión
+ st.session_state.semantic_result = analysis_result
+
+ # Mostrar resultados
+ display_semantic_results(st.session_state.semantic_result, lang_code, t)
+
+ # Guardar el resultado del análisis
+ if store_semantic_result(st.session_state.username, text_content, analysis_result):
+ st.success(t['success_message'])
+ else:
+ st.error(t['error_message'])
+ else:
+ st.warning(t['warning_message'])
+
+ elif 'semantic_result' in st.session_state:
+
+ # Si hay un resultado guardado, mostrarlo
+ display_semantic_results(st.session_state.semantic_result, lang_code, t)
+
+ else:
+ st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones
+
+def display_semantic_results(result, lang_code, t):
+ if result is None:
+ st.warning(t['no_results']) # Asegúrate de que 'no_results' esté en tus traducciones
+ return
+
+ # Mostrar conceptos clave
+ with st.expander(t['key_concepts'], expanded=True):
+ concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']])
+ st.write(concept_text)
+
+ # Mostrar el gráfico de relaciones conceptuales
+ with st.expander(t['conceptual_relations'], expanded=True):
+ st.pyplot(result['relations_graph'])
diff --git a/src/modules/semantic/semantic_interface_backup2092024_1930 copy.py b/src/modules/semantic/semantic_interface_backup2092024_1930 copy.py
new file mode 100644
index 0000000000000000000000000000000000000000..fab61a80830dc404e0c3d7694f93803f900061b5
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_backup2092024_1930 copy.py
@@ -0,0 +1,188 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+ st.markdown('', unsafe_allow_html=True)
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
+
+ chat_history.append({"role": "assistant", "content": response})
+ st.session_state.semantic_chat_history = chat_history
+
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ st.markdown('', unsafe_allow_html=True)
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+ st.markdown('
', unsafe_allow_html=True)
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_backup2092024_1930.py b/src/modules/semantic/semantic_interface_backup2092024_1930.py
new file mode 100644
index 0000000000000000000000000000000000000000..3d97ce833c0da8a58ea642ca760ba50503b998a9
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_backup2092024_1930.py
@@ -0,0 +1,192 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .flexible_analysis_handler import FlexibleAnalysisHandler # Añade esta línea
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ analysis_result = process_semantic_analysis(file_contents, nlp_model, lang_code)
+
+ handler = FlexibleAnalysisHandler(analysis_result)
+
+ st.session_state.concept_graph = handler.get_concept_graph()
+ st.session_state.entity_graph = handler.get_entity_graph()
+ st.session_state.key_concepts = handler.get_key_concepts()
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+ st.markdown('', unsafe_allow_html=True)
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
+
+ chat_history.append({"role": "assistant", "content": response})
+ st.session_state.semantic_chat_history = chat_history
+
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ st.markdown('', unsafe_allow_html=True)
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+ st.markdown('
', unsafe_allow_html=True)
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_backup_2092024.py b/src/modules/semantic/semantic_interface_backup_2092024.py
new file mode 100644
index 0000000000000000000000000000000000000000..549e15f8d5e26c1ecfbe0bff01c05f539da7a296
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_backup_2092024.py
@@ -0,0 +1,165 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"""
+
+ {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')}
+
+ """, unsafe_allow_html=True)
+
+ # File management container
+ st.markdown('', unsafe_allow_html=True)
+ col1, col2, col3, col4 = st.columns(4)
+
+ with col1:
+ if st.button("Upload File", key=generate_unique_key('semantic', 'upload_button')):
+ st.session_state.show_uploader = True
+
+ with col2:
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ with col3:
+ analyze_button = st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document'))
+
+ with col4:
+ delete_button = st.button("Delete File", key=generate_unique_key('semantic', 'delete_file'))
+
+ st.markdown('
', unsafe_allow_html=True)
+
+ # File uploader (hidden by default)
+ if st.session_state.get('show_uploader', False):
+ uploaded_file = st.file_uploader("Choose a file", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.session_state.file_contents = file_contents
+ st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully'))
+ st.session_state.show_uploader = False # Hide uploader after successful upload
+ else:
+ st.error(get_translation(t, 'file_upload_error', 'Error uploading file'))
+
+
+ # Contenedor para la sección de análisis
+ st.markdown('', unsafe_allow_html=True)
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat'))
+ chat_container = st.container()
+
+ with chat_container:
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+
+ user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
+
+ chat_history.append({"role": "assistant", "content": response})
+ st.session_state.semantic_chat_history = chat_history
+
+ with col_graph:
+ st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs'))
+
+ # Mostrar conceptos clave y entidades horizontalmente
+ if 'key_concepts' in st.session_state:
+ st.write(get_translation(t, 'key_concepts_title', 'Key Concepts'))
+ st.markdown('
', unsafe_allow_html=True)
+ for concept, freq in st.session_state.key_concepts:
+ st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if 'entities' in st.session_state:
+ st.write(get_translation(t, 'entities_title', 'Entities'))
+ st.markdown('
', unsafe_allow_html=True)
+ for entity, type in st.session_state.entities.items():
+ st.markdown(f'{entity}: {type}', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ # Usar pestañas para mostrar los gráficos
+ tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab1:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+
+ with tab2:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+
+ st.markdown('
', unsafe_allow_html=True)
+
+ if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_backup_2192024_1230.py b/src/modules/semantic/semantic_interface_backup_2192024_1230.py
new file mode 100644
index 0000000000000000000000000000000000000000..241407616ae3ce590be4cb7268b82eef2325d8a8
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_backup_2192024_1230.py
@@ -0,0 +1,194 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ with st.expander("Chat with AI", expanded=True):
+ chat_container = st.container()
+
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_chatforup.py b/src/modules/semantic/semantic_interface_chatforup.py
new file mode 100644
index 0000000000000000000000000000000000000000..47c5d8789c4fa9de0c544bad98ecc137cfc2825c
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_chatforup.py
@@ -0,0 +1,196 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_stcontainerforchat.py b/src/modules/semantic/semantic_interface_stcontainerforchat.py
new file mode 100644
index 0000000000000000000000000000000000000000..47c5d8789c4fa9de0c544bad98ecc137cfc2825c
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_stcontainerforchat.py
@@ -0,0 +1,196 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_test610.py b/src/modules/semantic/semantic_interface_test610.py
new file mode 100644
index 0000000000000000000000000000000000000000..4ae439ec0086c3baa0bc74374358a81e8f865135
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_test610.py
@@ -0,0 +1,212 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+#from .semantic_float import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+from .semantic_float_reset import *
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Depuración: Mostrar los primeros 100 caracteres del grafo
+ logger.debug(f"Concept graph base64 (first 100 chars): {concept_graph[:100]}")
+ st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}")
+
+ # Actualizar el contenido del grafo
+ st.session_state.graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right")
+ else:
+ update_float_content(st.session_state.graph_id, st.session_state.graph_content)
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+
+ # Depuración: Verificar si el grafo se está creando
+ logger.debug(f"Graph ID: {st.session_state.graph_id}")
+ logger.debug(f"Graph visible: {st.session_state.graph_visible}")
+
+ # Mostrar el grafo directamente en la interfaz para verificación
+ st.image(f"data:image/png;base64,{concept_graph}", caption="Concept Graph (Debug View)", use_column_width=True)
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+ # Mostrar el grafo flotante si está visible
+ if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
+ st.markdown(
+ f"""
+
+ {st.session_state.graph_content}
+
+ """,
+ unsafe_allow_html=True
+ )
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_interface_vOk.py b/src/modules/semantic/semantic_interface_vOk.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b2167adff34762e28fbd9ee65c64dd371ef713c
--- /dev/null
+++ b/src/modules/semantic/semantic_interface_vOk.py
@@ -0,0 +1,196 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
diff --git a/src/modules/semantic/semantic_live_interface.py b/src/modules/semantic/semantic_live_interface.py
new file mode 100644
index 0000000000000000000000000000000000000000..d4251d304deda779ea88a7d1a8c784317b58db31
--- /dev/null
+++ b/src/modules/semantic/semantic_live_interface.py
@@ -0,0 +1,197 @@
+# modules/semantic/semantic_live_interface.py
+import streamlit as st
+from streamlit_float import *
+from streamlit_antd_components import *
+import pandas as pd
+import logging
+
+# Configuración del logger
+logger = logging.getLogger(__name__)
+
+# Importaciones locales
+from .semantic_process import (
+ process_semantic_input,
+ format_semantic_results
+)
+
+from ..utils.widget_utils import generate_unique_key
+from ..database.semantic_mongo_db import store_student_semantic_result
+from ..database.chat_mongo_db import store_chat_history, get_chat_history
+
+def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
+ """
+ Interfaz para el análisis semántico en vivo con proporciones de columna ajustadas
+ """
+ try:
+ # 1. Inicializar el estado de la sesión de manera más robusta
+ if 'semantic_live_state' not in st.session_state:
+ st.session_state.semantic_live_state = {
+ 'analysis_count': 0,
+ 'current_text': '',
+ 'last_result': None,
+ 'text_changed': False
+ }
+
+ # 2. Función para manejar cambios en el texto
+ def on_text_change():
+ current_text = st.session_state.semantic_live_text
+ st.session_state.semantic_live_state['current_text'] = current_text
+ st.session_state.semantic_live_state['text_changed'] = True
+
+ # 3. Crear columnas con nueva proporción (1:3)
+ input_col, result_col = st.columns([1, 3])
+
+ # Columna izquierda: Entrada de texto
+ with input_col:
+ st.subheader(semantic_t.get('enter_text', 'Ingrese su texto'))
+
+ # Área de texto con manejo de eventos
+ text_input = st.text_area(
+ semantic_t.get('text_input_label', 'Escriba o pegue su texto aquí'),
+ height=500,
+ key="semantic_live_text",
+ value=st.session_state.semantic_live_state.get('current_text', ''),
+ on_change=on_text_change,
+ label_visibility="collapsed" # Oculta el label para mayor estabilidad
+ )
+
+ # Botón de análisis y procesamiento
+ analyze_button = st.button(
+ semantic_t.get('analyze_button', 'Analizar'),
+ key="semantic_live_analyze",
+ type="primary",
+ icon="🔍",
+ disabled=not text_input,
+ use_container_width=True
+ )
+
+ if analyze_button and text_input:
+ try:
+ with st.spinner(semantic_t.get('processing', 'Procesando...')):
+ analysis_result = process_semantic_input(
+ text_input,
+ lang_code,
+ nlp_models,
+ semantic_t
+ )
+
+ if analysis_result['success']:
+ st.session_state.semantic_live_state['last_result'] = analysis_result
+ st.session_state.semantic_live_state['analysis_count'] += 1
+ st.session_state.semantic_live_state['text_changed'] = False
+
+ store_student_semantic_result(
+ st.session_state.username,
+ text_input,
+ analysis_result['analysis']
+ )
+ else:
+ st.error(analysis_result.get('message', 'Error en el análisis'))
+
+ except Exception as e:
+ logger.error(f"Error en análisis: {str(e)}")
+ st.error(semantic_t.get('error_processing', 'Error al procesar el texto'))
+
+ # Columna derecha: Visualización de resultados
+ with result_col:
+ st.subheader(semantic_t.get('live_results', 'Resultados en vivo'))
+
+ if 'last_result' in st.session_state.semantic_live_state and \
+ st.session_state.semantic_live_state['last_result'] is not None:
+
+ analysis = st.session_state.semantic_live_state['last_result']['analysis']
+
+ if 'key_concepts' in analysis and analysis['key_concepts'] and \
+ 'concept_graph' in analysis and analysis['concept_graph'] is not None:
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ with st.container():
+ # Conceptos en una sola línea
+ concepts_html = """
+
+
+ """
+ concepts_html += ''.join(
+ f'
{concept}'
+ f'({freq:.2f})
'
+ for concept, freq in analysis['key_concepts']
+ )
+ concepts_html += "
"
+ st.markdown(concepts_html, unsafe_allow_html=True)
+
+ # Grafo
+ if 'concept_graph' in analysis and analysis['concept_graph'] is not None:
+ st.image(
+ analysis['concept_graph'],
+ use_container_width=True
+ )
+
+ # Botones y controles
+ button_col, spacer_col = st.columns([1,5])
+ with button_col:
+ st.download_button(
+ label="📥 " + semantic_t.get('download_graph', "Download"),
+ data=analysis['concept_graph'],
+ file_name="semantic_live_graph.png",
+ mime="image/png",
+ use_container_width=True
+ )
+
+ with st.expander("📊 " + semantic_t.get('graph_help', "Graph Interpretation")):
+ st.markdown("""
+ - 🔀 Las flechas indican la dirección de la relación entre conceptos
+ - 🎨 Los colores más intensos indican conceptos más centrales en el texto
+ - ⭕ El tamaño de los nodos representa la frecuencia del concepto
+ - ↔️ El grosor de las líneas indica la fuerza de la conexión
+ """)
+ else:
+ st.info(semantic_t.get('no_graph', 'No hay datos para mostrar'))
+
+ except Exception as e:
+ logger.error(f"Error general en interfaz semántica en vivo: {str(e)}")
+ st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
+
diff --git a/src/modules/semantic/semantic_process.py b/src/modules/semantic/semantic_process.py
new file mode 100644
index 0000000000000000000000000000000000000000..2af775603e809f255f4d0d5e66707c0b33ff6c48
--- /dev/null
+++ b/src/modules/semantic/semantic_process.py
@@ -0,0 +1,109 @@
+# modules/semantic/semantic_process.py
+import streamlit as st
+import matplotlib.pyplot as plt
+import io
+import base64
+import logging
+
+from ..text_analysis.semantic_analysis import (
+ perform_semantic_analysis,
+ identify_key_concepts,
+ create_concept_graph,
+ visualize_concept_graph
+)
+from ..database.semantic_mongo_db import store_student_semantic_result
+
+logger = logging.getLogger(__name__)
+
+def process_semantic_input(text, lang_code, nlp_models, t):
+ """
+ Procesa el texto ingresado para realizar el análisis semántico.
+ """
+ try:
+ logger.info(f"Iniciando análisis semántico para texto de {len(text)} caracteres")
+
+ # Realizar el análisis semántico
+ nlp = nlp_models[lang_code]
+ analysis_result = perform_semantic_analysis(text, nlp, lang_code)
+
+ if not analysis_result['success']:
+ return {
+ 'success': False,
+ 'message': analysis_result['error'],
+ 'analysis': None
+ }
+
+ logger.info("Análisis semántico completado. Guardando resultados...")
+
+ # Intentar guardar en la base de datos
+ try:
+ store_result = store_student_semantic_result(
+ st.session_state.username,
+ text,
+ analysis_result,
+ lang_code
+ )
+ if not store_result:
+ logger.warning("No se pudo guardar el análisis en la base de datos")
+ except Exception as db_error:
+ logger.error(f"Error al guardar en base de datos: {str(db_error)}")
+
+ # Devolver el resultado incluso si falla el guardado
+ return {
+ 'success': True,
+ 'message': t.get('success_message', 'Analysis completed successfully'),
+ 'analysis': {
+ 'key_concepts': analysis_result['key_concepts'],
+ 'concept_graph': analysis_result['concept_graph']
+ }
+ }
+
+ except Exception as e:
+ logger.error(f"Error en process_semantic_input: {str(e)}")
+ return {
+ 'success': False,
+ 'message': str(e),
+ 'analysis': None
+ }
+
+def format_semantic_results(analysis_result, t):
+ """
+ Formatea los resultados del análisis para su visualización.
+ """
+ try:
+ if not analysis_result['success']:
+ return {
+ 'formatted_text': analysis_result['message'],
+ 'visualizations': None
+ }
+
+ formatted_sections = []
+ analysis = analysis_result['analysis']
+
+ # Formatear conceptos clave
+ if 'key_concepts' in analysis:
+ concepts_section = [f"### {t.get('key_concepts', 'Key Concepts')}"]
+ concepts_section.extend([
+ f"- {concept}: {frequency:.2f}"
+ for concept, frequency in analysis['key_concepts']
+ ])
+ formatted_sections.append('\n'.join(concepts_section))
+
+ return {
+ 'formatted_text': '\n\n'.join(formatted_sections),
+ 'visualizations': {
+ 'concept_graph': analysis.get('concept_graph')
+ }
+ }
+
+ except Exception as e:
+ logger.error(f"Error en format_semantic_results: {str(e)}")
+ return {
+ 'formatted_text': str(e),
+ 'visualizations': None
+ }
+
+__all__ = [
+ 'process_semantic_input',
+ 'format_semantic_results'
+]
\ No newline at end of file
diff --git a/src/modules/semantic/semantic_process_23-9-24.py b/src/modules/semantic/semantic_process_23-9-24.py
new file mode 100644
index 0000000000000000000000000000000000000000..6f3a7adb62c8f15ccd4616fd3e4b20beddf33be3
--- /dev/null
+++ b/src/modules/semantic/semantic_process_23-9-24.py
@@ -0,0 +1,62 @@
+import logging
+import io
+import base64
+import matplotlib.pyplot as plt
+from ..text_analysis.semantic_analysis import perform_semantic_analysis
+from .flexible_analysis_handler import FlexibleAnalysisHandler
+
+logger = logging.getLogger(__name__)
+
+def encode_image_to_base64(image_data):
+ if isinstance(image_data, str): # Si es una ruta de archivo
+ with open(image_data, "rb") as image_file:
+ encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
+ elif isinstance(image_data, bytes): # Si son datos de imagen en memoria
+ encoded_string = base64.b64encode(image_data).decode("utf-8")
+ else:
+ raise ValueError("Invalid image data type. Expected string (file path) or bytes.")
+ return encoded_string #
+
+def process_semantic_analysis(file_contents, nlp_model, lang_code):
+ logger.info(f"Starting semantic analysis processing for language: {lang_code}")
+ try:
+ result = perform_semantic_analysis(file_contents, nlp_model, lang_code)
+ #handler = FlexibleAnalysisHandler(result)
+
+ #concept_graph = handler.get_graph('concept_graph')
+ #entity_graph = handler.get_graph('entity_graph')
+ #key_concepts = handler.get_key_concepts()
+
+ concept_graph = result['concept_graph']
+ entity_graph = result['entity_graph']
+ key_concepts = result['key_concepts']
+
+ # Convertir los gráficos a base64
+ concept_graph_base64 = fig_to_base64(concept_graph) if concept_graph else None
+ entity_graph_base64 = fig_to_base64(entity_graph) if entity_graph else None
+
+ logger.info("Semantic analysis processing completed successfully")
+ return concept_graph_base64, entity_graph_base64, key_concepts
+ except Exception as e:
+ logger.error(f"Error in semantic analysis processing: {str(e)}")
+ return None, None, [] # Retorna valores vacíos en caso de error
+
+'''
+logger = logging.getLogger(__name__)
+logging.basicConfig(level=logging.DEBUG)
+
+def process_semantic_analysis(file_contents, nlp_model, lang_code):
+ logger.info(f"Starting semantic analysis for language: {lang_code}")
+ try:
+ logger.debug("Calling perform_semantic_analysis")
+ result = perform_semantic_analysis(file_contents, nlp_model, lang_code)
+ logger.debug(f"Result keys: {result.keys()}")
+ logger.debug(f"Type of concept_graph: {type(result['concept_graph'])}")
+ logger.debug(f"Type of entity_graph: {type(result['entity_graph'])}")
+ logger.debug(f"Number of key_concepts: {len(result['key_concepts'])}")
+ logger.info("Semantic analysis completed successfully")
+ return result['concept_graph'], result['entity_graph'], result['key_concepts']
+ except Exception as e:
+ logger.error(f"Error in semantic analysis: {str(e)}")
+ raise
+'''
\ No newline at end of file
diff --git a/src/modules/studentact/6-3-2025_current_situation_interface.py b/src/modules/studentact/6-3-2025_current_situation_interface.py
new file mode 100644
index 0000000000000000000000000000000000000000..d0a081ebd3cbb0846071b7ff68bfb5ee5c1e075a
--- /dev/null
+++ b/src/modules/studentact/6-3-2025_current_situation_interface.py
@@ -0,0 +1,486 @@
+# modules/studentact/current_situation_interface-vOK.py
+
+import streamlit as st
+import logging
+from ..utils.widget_utils import generate_unique_key
+import matplotlib.pyplot as plt
+import numpy as np
+from ..database.current_situation_mongo_db import store_current_situation_result
+
+# Importaciones locales
+from translations import get_translations
+
+from .current_situation_analysis import (
+ analyze_text_dimensions,
+ analyze_clarity,
+ analyze_vocabulary_diversity,
+ analyze_cohesion,
+ analyze_structure,
+ get_dependency_depths,
+ normalize_score,
+ generate_sentence_graphs,
+ generate_word_connections,
+ generate_connection_paths,
+ create_vocabulary_network,
+ create_syntax_complexity_graph,
+ create_cohesion_heatmap,
+ generate_recommendations
+)
+
+# Configuración del estilo de matplotlib para el gráfico de radar
+plt.rcParams['font.family'] = 'sans-serif'
+plt.rcParams['axes.grid'] = True
+plt.rcParams['axes.spines.top'] = False
+plt.rcParams['axes.spines.right'] = False
+
+logger = logging.getLogger(__name__)
+####################################
+
+TEXT_TYPES = {
+ 'academic_article': {
+ 'name': 'Artículo Académico',
+ 'thresholds': {
+ 'vocabulary': {'min': 0.70, 'target': 0.85},
+ 'structure': {'min': 0.75, 'target': 0.90},
+ 'cohesion': {'min': 0.65, 'target': 0.80},
+ 'clarity': {'min': 0.70, 'target': 0.85}
+ }
+ },
+ 'student_essay': {
+ 'name': 'Trabajo Universitario',
+ 'thresholds': {
+ 'vocabulary': {'min': 0.60, 'target': 0.75},
+ 'structure': {'min': 0.65, 'target': 0.80},
+ 'cohesion': {'min': 0.55, 'target': 0.70},
+ 'clarity': {'min': 0.60, 'target': 0.75}
+ }
+ },
+ 'general_communication': {
+ 'name': 'Comunicación General',
+ 'thresholds': {
+ 'vocabulary': {'min': 0.50, 'target': 0.65},
+ 'structure': {'min': 0.55, 'target': 0.70},
+ 'cohesion': {'min': 0.45, 'target': 0.60},
+ 'clarity': {'min': 0.50, 'target': 0.65}
+ }
+ }
+}
+####################################
+
+def display_current_situation_interface(lang_code, nlp_models, t):
+ """
+ Interfaz simplificada con gráfico de radar para visualizar métricas.
+ """
+ # Inicializar estados si no existen
+ if 'text_input' not in st.session_state:
+ st.session_state.text_input = ""
+ if 'text_area' not in st.session_state: # Añadir inicialización de text_area
+ st.session_state.text_area = ""
+ if 'show_results' not in st.session_state:
+ st.session_state.show_results = False
+ if 'current_doc' not in st.session_state:
+ st.session_state.current_doc = None
+ if 'current_metrics' not in st.session_state:
+ st.session_state.current_metrics = None
+
+ try:
+ # Container principal con dos columnas
+ with st.container():
+ input_col, results_col = st.columns([1,2])
+
+ with input_col:
+ # Text area con manejo de estado
+ text_input = st.text_area(
+ t.get('input_prompt', "Escribe o pega tu texto aquí:"),
+ height=400,
+ key="text_area",
+ value=st.session_state.text_input,
+ help="Este texto será analizado para darte recomendaciones personalizadas"
+ )
+
+ # Función para manejar cambios de texto
+ if text_input != st.session_state.text_input:
+ st.session_state.text_input = text_input
+ st.session_state.show_results = False
+
+ if st.button(
+ t.get('analyze_button', "Analizar mi escritura"),
+ type="primary",
+ disabled=not text_input.strip(),
+ use_container_width=True,
+ ):
+ try:
+ with st.spinner(t.get('processing', "Analizando...")):
+ doc = nlp_models[lang_code](text_input)
+ metrics = analyze_text_dimensions(doc)
+
+ storage_success = store_current_situation_result(
+ username=st.session_state.username,
+ text=text_input,
+ metrics=metrics,
+ feedback=None
+ )
+
+ if not storage_success:
+ logger.warning("No se pudo guardar el análisis en la base de datos")
+
+ st.session_state.current_doc = doc
+ st.session_state.current_metrics = metrics
+ st.session_state.show_results = True
+
+ except Exception as e:
+ logger.error(f"Error en análisis: {str(e)}")
+ st.error(t.get('analysis_error', "Error al analizar el texto"))
+
+ # Mostrar resultados en la columna derecha
+ with results_col:
+ if st.session_state.show_results and st.session_state.current_metrics is not None:
+ # Primero los radio buttons para tipo de texto
+ st.markdown("### Tipo de texto")
+ text_type = st.radio(
+ "",
+ options=list(TEXT_TYPES.keys()),
+ format_func=lambda x: TEXT_TYPES[x]['name'],
+ horizontal=True,
+ key="text_type_radio",
+ help="Selecciona el tipo de texto para ajustar los criterios de evaluación"
+ )
+
+ st.session_state.current_text_type = text_type
+
+ # Luego mostrar los resultados
+ display_results(
+ metrics=st.session_state.current_metrics,
+ text_type=text_type
+ )
+
+ except Exception as e:
+ logger.error(f"Error en interfaz principal: {str(e)}")
+ st.error("Ocurrió un error al cargar la interfaz")
+
+###################################3333
+
+'''
+def display_results(metrics, text_type=None):
+ """
+ Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
+ """
+ try:
+ # Usar valor por defecto si no se especifica tipo
+ text_type = text_type or 'student_essay'
+
+ # Obtener umbrales según el tipo de texto
+ thresholds = TEXT_TYPES[text_type]['thresholds']
+
+ # Crear dos columnas para las métricas y el gráfico
+ metrics_col, graph_col = st.columns([1, 1.5])
+
+ # Columna de métricas
+ with metrics_col:
+ metrics_config = [
+ {
+ 'label': "Vocabulario",
+ 'key': 'vocabulary',
+ 'value': metrics['vocabulary']['normalized_score'],
+ 'help': "Riqueza y variedad del vocabulario",
+ 'thresholds': thresholds['vocabulary']
+ },
+ {
+ 'label': "Estructura",
+ 'key': 'structure',
+ 'value': metrics['structure']['normalized_score'],
+ 'help': "Organización y complejidad de oraciones",
+ 'thresholds': thresholds['structure']
+ },
+ {
+ 'label': "Cohesión",
+ 'key': 'cohesion',
+ 'value': metrics['cohesion']['normalized_score'],
+ 'help': "Conexión y fluidez entre ideas",
+ 'thresholds': thresholds['cohesion']
+ },
+ {
+ 'label': "Claridad",
+ 'key': 'clarity',
+ 'value': metrics['clarity']['normalized_score'],
+ 'help': "Facilidad de comprensión del texto",
+ 'thresholds': thresholds['clarity']
+ }
+ ]
+
+ # Mostrar métricas
+ for metric in metrics_config:
+ value = metric['value']
+ if value < metric['thresholds']['min']:
+ status = "⚠️ Por mejorar"
+ color = "inverse"
+ elif value < metric['thresholds']['target']:
+ status = "📈 Aceptable"
+ color = "off"
+ else:
+ status = "✅ Óptimo"
+ color = "normal"
+
+ st.metric(
+ metric['label'],
+ f"{value:.2f}",
+ f"{status} (Meta: {metric['thresholds']['target']:.2f})",
+ delta_color=color,
+ help=metric['help']
+ )
+ st.markdown("", unsafe_allow_html=True)
+
+ # Gráfico radar en la columna derecha
+ with graph_col:
+ display_radar_chart(metrics_config, thresholds)
+
+ except Exception as e:
+ logger.error(f"Error mostrando resultados: {str(e)}")
+ st.error("Error al mostrar los resultados")
+'''
+
+######################################
+######################################
+def display_results(metrics, text_type=None):
+ """
+ Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
+ """
+ try:
+ # Usar valor por defecto si no se especifica tipo
+ text_type = text_type or 'student_essay'
+
+ # Obtener umbrales según el tipo de texto
+ thresholds = TEXT_TYPES[text_type]['thresholds']
+
+ # Crear dos columnas para las métricas y el gráfico
+ metrics_col, graph_col = st.columns([1, 1.5])
+
+ # Columna de métricas
+ with metrics_col:
+ metrics_config = [
+ {
+ 'label': "Vocabulario",
+ 'key': 'vocabulary',
+ 'value': metrics['vocabulary']['normalized_score'],
+ 'help': "Riqueza y variedad del vocabulario",
+ 'thresholds': thresholds['vocabulary']
+ },
+ {
+ 'label': "Estructura",
+ 'key': 'structure',
+ 'value': metrics['structure']['normalized_score'],
+ 'help': "Organización y complejidad de oraciones",
+ 'thresholds': thresholds['structure']
+ },
+ {
+ 'label': "Cohesión",
+ 'key': 'cohesion',
+ 'value': metrics['cohesion']['normalized_score'],
+ 'help': "Conexión y fluidez entre ideas",
+ 'thresholds': thresholds['cohesion']
+ },
+ {
+ 'label': "Claridad",
+ 'key': 'clarity',
+ 'value': metrics['clarity']['normalized_score'],
+ 'help': "Facilidad de comprensión del texto",
+ 'thresholds': thresholds['clarity']
+ }
+ ]
+
+ # Mostrar métricas
+ for metric in metrics_config:
+ value = metric['value']
+ if value < metric['thresholds']['min']:
+ status = "⚠️ Por mejorar"
+ color = "inverse"
+ elif value < metric['thresholds']['target']:
+ status = "📈 Aceptable"
+ color = "off"
+ else:
+ status = "✅ Óptimo"
+ color = "normal"
+
+ st.metric(
+ metric['label'],
+ f"{value:.2f}",
+ f"{status} (Meta: {metric['thresholds']['target']:.2f})",
+ delta_color=color,
+ help=metric['help']
+ )
+ st.markdown("", unsafe_allow_html=True)
+
+ # Gráfico radar en la columna derecha
+ with graph_col:
+ display_radar_chart(metrics_config, thresholds)
+
+ recommendations = generate_recommendations(
+ metrics=metrics,
+ text_type=text_type,
+ lang_code=st.session_state.lang_code
+ )
+
+ # Separador visual
+ st.markdown("---")
+
+ # Título para la sección de recomendaciones
+ st.subheader("Recomendaciones para mejorar tu escritura")
+
+ # Mostrar las recomendaciones
+ display_recommendations(recommendations, get_translations(st.session_state.lang_code))
+
+ except Exception as e:
+ logger.error(f"Error mostrando resultados: {str(e)}")
+ st.error("Error al mostrar los resultados")
+
+
+######################################
+######################################
+def display_radar_chart(metrics_config, thresholds):
+ """
+ Muestra el gráfico radar con los resultados.
+ """
+ try:
+ # Preparar datos para el gráfico
+ categories = [m['label'] for m in metrics_config]
+ values_user = [m['value'] for m in metrics_config]
+ min_values = [m['thresholds']['min'] for m in metrics_config]
+ target_values = [m['thresholds']['target'] for m in metrics_config]
+
+ # Crear y configurar gráfico
+ fig = plt.figure(figsize=(8, 8))
+ ax = fig.add_subplot(111, projection='polar')
+
+ # Configurar radar
+ angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))]
+ angles += angles[:1]
+ values_user += values_user[:1]
+ min_values += min_values[:1]
+ target_values += target_values[:1]
+
+ # Configurar ejes
+ ax.set_xticks(angles[:-1])
+ ax.set_xticklabels(categories, fontsize=10)
+ circle_ticks = np.arange(0, 1.1, 0.2)
+ ax.set_yticks(circle_ticks)
+ ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
+ ax.set_ylim(0, 1)
+
+ # Dibujar áreas de umbrales
+ ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label='Mínimo', alpha=0.5)
+ ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label='Meta', alpha=0.5)
+ ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1)
+ ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1)
+
+ # Dibujar valores del usuario
+ ax.plot(angles, values_user, '#3498db', linewidth=2, label='Tu escritura')
+ ax.fill(angles, values_user, '#3498db', alpha=0.2)
+
+ # Ajustar leyenda
+ ax.legend(
+ loc='upper right',
+ bbox_to_anchor=(1.3, 1.1), # Cambiado de (0.1, 0.1) a (1.3, 1.1)
+ fontsize=10,
+ frameon=True,
+ facecolor='white',
+ edgecolor='none',
+ shadow=True
+ )
+
+ plt.tight_layout()
+ st.pyplot(fig)
+ plt.close()
+
+ except Exception as e:
+ logger.error(f"Error mostrando gráfico radar: {str(e)}")
+ st.error("Error al mostrar el gráfico")
+
+#####################################################
+def display_recommendations(recommendations, t):
+ """
+ Muestra las recomendaciones con un diseño de tarjetas.
+ """
+ # Definir colores para cada categoría
+ colors = {
+ 'vocabulary': '#2E86C1', # Azul
+ 'structure': '#28B463', # Verde
+ 'cohesion': '#F39C12', # Naranja
+ 'clarity': '#9B59B6', # Púrpura
+ 'priority': '#E74C3C' # Rojo para la categoría prioritaria
+ }
+
+ # Iconos para cada categoría
+ icons = {
+ 'vocabulary': '📚',
+ 'structure': '🏗️',
+ 'cohesion': '🔄',
+ 'clarity': '💡',
+ 'priority': '⭐'
+ }
+
+ # Obtener traducciones para cada dimensión
+ dimension_names = {
+ 'vocabulary': t.get('SITUATION_ANALYSIS', {}).get('vocabulary', "Vocabulario"),
+ 'structure': t.get('SITUATION_ANALYSIS', {}).get('structure', "Estructura"),
+ 'cohesion': t.get('SITUATION_ANALYSIS', {}).get('cohesion', "Cohesión"),
+ 'clarity': t.get('SITUATION_ANALYSIS', {}).get('clarity', "Claridad"),
+ 'priority': t.get('SITUATION_ANALYSIS', {}).get('priority', "Prioridad")
+ }
+
+ # Título de la sección prioritaria
+ priority_focus = t.get('SITUATION_ANALYSIS', {}).get('priority_focus', 'Área prioritaria para mejorar')
+ st.markdown(f"### {icons['priority']} {priority_focus}")
+
+ # Determinar área prioritaria (la que tiene menor puntuación)
+ priority_area = recommendations.get('priority', 'vocabulary')
+ priority_title = dimension_names.get(priority_area, "Área prioritaria")
+
+ # Determinar el contenido para mostrar
+ if isinstance(recommendations[priority_area], dict) and 'title' in recommendations[priority_area]:
+ priority_title = recommendations[priority_area]['title']
+ priority_content = recommendations[priority_area]['content']
+ else:
+ priority_content = recommendations[priority_area]
+
+ # Mostrar la recomendación prioritaria con un estilo destacado
+ with st.container():
+ st.markdown(
+ f"""
+
+
{priority_title}
+
{priority_content}
+
+ """,
+ unsafe_allow_html=True
+ )
+
+ # Crear dos columnas para las tarjetas de recomendaciones restantes
+ col1, col2 = st.columns(2)
+
+ # Distribuir las recomendaciones en las columnas
+ categories = ['vocabulary', 'structure', 'cohesion', 'clarity']
+ for i, category in enumerate(categories):
+ # Saltar si esta categoría ya es la prioritaria
+ if category == priority_area:
+ continue
+
+ # Determinar título y contenido
+ if isinstance(recommendations[category], dict) and 'title' in recommendations[category]:
+ category_title = recommendations[category]['title']
+ category_content = recommendations[category]['content']
+ else:
+ category_title = dimension_names.get(category, category)
+ category_content = recommendations[category]
+
+ # Alternar entre columnas
+ with col1 if i % 2 == 0 else col2:
+ # Crear tarjeta para cada recomendación
+ st.markdown(
+ f"""
+
+
{icons[category]} {category_title}
+
{category_content}
+
+ """,
+ unsafe_allow_html=True
+ )
\ No newline at end of file
diff --git a/src/modules/studentact/__pycache__/student_activities.cpython-311.pyc b/src/modules/studentact/__pycache__/student_activities.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6e2b820fda86da0621440ebd0d0aabd60e9e259d
Binary files /dev/null and b/src/modules/studentact/__pycache__/student_activities.cpython-311.pyc differ
diff --git a/src/modules/studentact/__pycache__/student_activities_v2.cpython-311.pyc b/src/modules/studentact/__pycache__/student_activities_v2.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6b2ea707d57df5d3e7a4171dd1065ddf0c25bdd9
Binary files /dev/null and b/src/modules/studentact/__pycache__/student_activities_v2.cpython-311.pyc differ
diff --git a/src/modules/studentact/claude_recommendations.py b/src/modules/studentact/claude_recommendations.py
new file mode 100644
index 0000000000000000000000000000000000000000..0663ae48abb5564fb06f9c8f0725c0bf5e36798e
--- /dev/null
+++ b/src/modules/studentact/claude_recommendations.py
@@ -0,0 +1,347 @@
+# modules/studentact/claude_recommendations.py
+import os
+import anthropic
+import streamlit as st
+import logging
+import time
+import json
+from datetime import datetime, timezone
+
+# Local imports
+from ..utils.widget_utils import generate_unique_key
+from ..database.current_situation_mongo_db import store_current_situation_result
+
+logger = logging.getLogger(__name__)
+
+# Define text types
+TEXT_TYPES = {
+ 'es': {
+ 'academic_article': 'artículo académico',
+ 'university_work': 'trabajo universitario',
+ 'general_communication': 'comunicación general'
+ },
+ 'en': {
+ 'academic_article': 'academic article',
+ 'university_work': 'university work',
+ 'general_communication': 'general communication'
+ },
+ 'fr': {
+ 'academic_article': 'article académique',
+ 'university_work': 'travail universitaire',
+ 'general_communication': 'communication générale'
+ },
+ 'pt': {
+ 'academic_article': 'artigo acadêmico',
+ 'university_work': 'trabalho universitário',
+ 'general_communication': 'comunicação geral'
+ }
+}
+
+# Cache for recommendations to avoid redundant API calls
+recommendation_cache = {}
+
+def get_recommendation_cache_key(text, metrics, text_type, lang_code):
+ """
+ Generate a cache key for recommendations.
+ """
+ # Create a simple hash based on text content and metrics
+ text_hash = hash(text[:1000]) # Only use first 1000 chars for hashing
+ metrics_hash = hash(json.dumps(metrics, sort_keys=True))
+ return f"{text_hash}_{metrics_hash}_{text_type}_{lang_code}"
+
+def format_metrics_for_claude(metrics, lang_code, text_type):
+ """
+ Format metrics in a way that's readable for Claude
+ """
+ formatted_metrics = {}
+ for key, value in metrics.items():
+ if isinstance(value, (int, float)):
+ formatted_metrics[key] = round(value, 2)
+ else:
+ formatted_metrics[key] = value
+
+ # Add context about what type of text this is
+ text_type_label = TEXT_TYPES.get(lang_code, {}).get(text_type, text_type)
+ formatted_metrics['text_type'] = text_type_label
+
+ return formatted_metrics
+
+def generate_claude_recommendations(text, metrics, text_type, lang_code):
+ """
+ Generate personalized recommendations using Claude API.
+ """
+ try:
+ api_key = os.environ.get("ANTHROPIC_API_KEY")
+ if not api_key:
+ logger.error("Claude API key not found in environment variables")
+ return get_fallback_recommendations(lang_code)
+
+ # Check cache first
+ cache_key = get_recommendation_cache_key(text, metrics, text_type, lang_code)
+ if cache_key in recommendation_cache:
+ logger.info("Using cached recommendations")
+ return recommendation_cache[cache_key]
+
+ # Format metrics for Claude
+ formatted_metrics = format_metrics_for_claude(metrics, lang_code, text_type)
+
+ # Determine language for prompt
+ if lang_code == 'es':
+ system_prompt = """Eres un asistente especializado en análisis de textos académicos y comunicación escrita.
+ Tu tarea es analizar el texto del usuario y proporcionar recomendaciones personalizadas.
+ Usa un tono constructivo y específico. Sé claro y directo con tus sugerencias.
+ """
+ user_prompt = f"""Por favor, analiza este texto de tipo '{formatted_metrics['text_type']}'
+ y proporciona recomendaciones personalizadas para mejorarlo.
+
+ MÉTRICAS DE ANÁLISIS:
+ {json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
+
+ TEXTO A ANALIZAR:
+ {text[:2000]} # Limitamos el texto para evitar exceder tokens
+
+ Proporciona tu análisis con el siguiente formato:
+ 1. Un resumen breve (2-3 frases) del análisis general
+ 2. 3-4 recomendaciones específicas y accionables (cada una de 1-2 frases)
+ 3. Un ejemplo concreto de mejora tomado del propio texto del usuario
+ 4. Una sugerencia sobre qué herramienta de AIdeaText usar (Análisis Morfosintáctico, Análisis Semántico o Análisis del Discurso)
+
+ Tu respuesta debe ser concisa y no exceder los 300 palabras."""
+
+ elif lang_code == 'fr':
+ system_prompt = """Vous êtes un assistant spécialisé dans l'analyse de textes académiques et de communication écrite.
+ Votre tâche est d'analyser le texte de l'utilisateur et de fournir des recommandations personnalisées.
+ Utilisez un ton constructif et spécifique. Soyez clair et direct dans vos suggestions.
+ """
+ user_prompt = f"""Veuillez analyser ce texte de type '{formatted_metrics['text_type']}'
+ et fournir des recommandations personnalisées pour l'améliorer.
+
+ MÉTRIQUES D'ANALYSE:
+ {json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
+
+ TEXTE À ANALYSER:
+ {text[:2000]}
+
+ Fournissez votre analyse avec le format suivant:
+ 1. Un résumé bref (2-3 phrases) de l'analyse générale
+ 2. 3-4 recommandations spécifiques et réalisables (chacune de 1-2 phrases)
+ 3. Un exemple concret d'amélioration tiré du texte même de l'utilisateur
+ 4. Une suggestion sur quel outil AIdeaText utiliser (Analyse Morphosyntaxique, Analyse Sémantique ou Analyse du Discours)
+
+ Votre réponse doit être concise et ne pas dépasser 300 mots."""
+
+ elif lang_code == 'pt':
+ system_prompt = """Você é um assistente especializado na análise de textos acadêmicos e comunicação escrita.
+ Sua tarefa é analisar o texto do usuário e fornecer recomendações personalizadas.
+ Use um tom construtivo e específico. Seja claro e direto com suas sugestões.
+ """
+ user_prompt = f"""Por favor, analise este texto do tipo '{formatted_metrics['text_type']}'
+ e forneça recomendações personalizadas para melhorá-lo.
+
+ MÉTRICAS DE ANÁLISE:
+ {json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
+
+ TEXTO PARA ANALISAR:
+ {text[:2000]}
+
+ Forneça sua análise com o seguinte formato:
+ 1. Um breve resumo (2-3 frases) da análise geral
+ 2. 3-4 recomendações específicas e acionáveis (cada uma com 1-2 frases)
+ 3. Um exemplo concreto de melhoria retirado do próprio texto do usuário
+ 4. Uma sugestão sobre qual ferramenta do AIdeaText usar (Análise Morfossintática, Análise Semântica ou Análise do Discurso)
+
+ Sua resposta deve ser concisa e não exceder 300 palavras."""
+
+ else:
+ # Default to English
+ system_prompt = """You are an assistant specialized in analyzing academic texts and written communication.
+ Your task is to analyze the user's text and provide personalized recommendations.
+ Use a constructive and specific tone. Be clear and direct with your suggestions.
+ """
+ user_prompt = f"""Please analyze this text of type '{formatted_metrics['text_type']}'
+ and provide personalized recommendations to improve it.
+
+ ANALYSIS METRICS:
+ {json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
+
+ TEXT TO ANALYZE:
+ {text[:2000]} # Limiting text to avoid exceeding tokens
+
+ Provide your analysis with the following format:
+ 1. A brief summary (2-3 sentences) of the general analysis
+ 2. 3-4 specific and actionable recommendations (each 1-2 sentences)
+ 3. A concrete example of improvement taken from the user's own text
+ 4. A suggestion about which AIdeaText tool to use (Morphosyntactic Analysis, Semantic Analysis or Discourse Analysis)
+
+ Your response should be concise and not exceed 300 words."""
+
+ # Initialize Claude client
+ client = anthropic.Anthropic(api_key=api_key)
+
+ # Call Claude API
+ start_time = time.time()
+ response = client.messages.create(
+ model="claude-3-5-sonnet-20241022",
+ max_tokens=1024,
+ temperature=0.7,
+ system=system_prompt,
+ messages=[
+ {"role": "user", "content": user_prompt}
+ ]
+ )
+ logger.info(f"Claude API call completed in {time.time() - start_time:.2f} seconds")
+
+ # Extract recommendations
+ recommendations = response.content[0].text
+
+ # Cache the result
+ recommendation_cache[cache_key] = recommendations
+
+ return recommendations
+ except Exception as e:
+ logger.error(f"Error generating recommendations with Claude: {str(e)}")
+ return get_fallback_recommendations(lang_code)
+
+##################################################################################
+##################################################################################
+def get_fallback_recommendations(lang_code):
+ """
+ Return fallback recommendations if Claude API fails
+ """
+ if lang_code == 'es':
+ return """
+ **Análisis General**
+ Tu texto presenta una estructura básica adecuada, pero hay áreas que pueden mejorarse para mayor claridad y cohesión.
+ **Recomendaciones**:
+ - Intenta variar tu vocabulario para evitar repeticiones innecesarias
+ - Considera revisar la longitud de tus oraciones para mantener un mejor ritmo
+ - Asegúrate de establecer conexiones claras entre las ideas principales
+ - Revisa la consistencia en el uso de tiempos verbales
+ **Herramienta recomendada**:
+ Te sugerimos utilizar el Análisis Morfosintáctico para identificar patrones en tu estructura de oraciones.
+ """
+
+ elif lang_code == 'fr':
+ return """
+ **Analyse Générale**
+ Votre texte présente une structure de base adéquate, mais certains aspects pourraient être améliorés pour plus de clarté et de cohésion.
+
+ **Recommandations**:
+ - Essayez de varier votre vocabulaire pour éviter les répétitions inutiles
+ - Envisagez de revoir la longueur de vos phrases pour maintenir un meilleur rythme
+ - Assurez-vous d'établir des liens clairs entre les idées principales
+ - Vérifiez la cohérence dans l'utilisation des temps verbaux
+
+ **Outil recommandé**:
+ Nous vous suggérons d'utiliser l'Analyse Morphosyntaxique pour identifier les modèles dans la structure de vos phrases.
+ """
+
+ elif lang_code == 'pt':
+ return """
+ **Análise Geral**
+ Seu texto apresenta uma estrutura básica adequada, mas há áreas que podem ser melhoradas para maior clareza e coesão.
+
+ **Recomendações**:
+ - Tente variar seu vocabulário para evitar repetições desnecessárias
+ - Considere revisar o comprimento de suas frases para manter um melhor ritmo
+ - Certifique-se de estabelecer conexões claras entre as ideias principais
+ - Revise a consistência no uso dos tempos verbais
+
+ **Ferramenta recomendada**:
+ Sugerimos utilizar a Análise Morfossintática para identificar padrões na sua estrutura de frases.
+ """
+
+ else:
+ return """
+ **General Analysis**
+ Your text presents an adequate basic structure, but there are areas that can be improved for better clarity and cohesion.
+
+ **Recommendations**:
+ - Try to vary your vocabulary to avoid unnecessary repetition
+ - Consider reviewing the length of your sentences to maintain a better rhythm
+ - Make sure to establish clear connections between main ideas
+ - Check consistency in the use of verb tenses
+
+ **Recommended tool**:
+ We suggest using Morphosyntactic Analysis to identify patterns in your sentence structure.
+ """
+
+
+#######################################
+#######################################
+def store_recommendations(username, text, metrics, text_type, recommendations):
+ """
+ Store the recommendations in the database
+ """
+ try:
+ # Importar la función de almacenamiento de recomendaciones
+ from ..database.claude_recommendations_mongo_db import store_claude_recommendation
+
+ # Guardar usando la nueva función especializada
+ result = store_claude_recommendation(
+ username=username,
+ text=text,
+ metrics=metrics,
+ text_type=text_type,
+ recommendations=recommendations
+ )
+
+ logger.info(f"Recommendations stored successfully: {result}")
+ return result
+ except Exception as e:
+ logger.error(f"Error storing recommendations: {str(e)}")
+ return False
+
+
+##########################################
+##########################################
+def display_personalized_recommendations(text, metrics, text_type, lang_code, t):
+ """
+ Display personalized recommendations based on text analysis
+ """
+ try:
+ # Generate recommendations
+ recommendations = generate_claude_recommendations(text, metrics, text_type, lang_code)
+
+ # Format and display recommendations in a nice container
+ st.markdown("### 📝 " + t.get('recommendations_title', 'Personalized Recommendations'))
+
+ with st.container():
+ st.markdown(f"""
+
+ {recommendations}
+
+ """, unsafe_allow_html=True)
+
+ # Add prompt to use assistant
+ st.info("💡 **" + t.get('assistant_prompt', 'For further improvement:') + "** " +
+ t.get('assistant_message', 'Open the virtual assistant (powered by Claude AI) in the upper left corner by clicking the arrow next to the logo.'))
+
+ # Add save button
+ col1, col2, col3 = st.columns([1,1,1])
+ with col2:
+ if st.button(
+ t.get('save_button', 'Save Analysis'),
+ key=generate_unique_key("claude_recommendations", "save"),
+ type="primary",
+ use_container_width=True
+ ):
+ if 'username' in st.session_state:
+ success = store_recommendations(
+ st.session_state.username,
+ text,
+ metrics,
+ text_type,
+ recommendations
+ )
+ if success:
+ st.success(t.get('save_success', 'Analysis saved successfully'))
+ else:
+ st.error(t.get('save_error', 'Error saving analysis'))
+ else:
+ st.error(t.get('login_required', 'Please log in to save analysis'))
+
+ except Exception as e:
+ logger.error(f"Error displaying recommendations: {str(e)}")
+ st.error(t.get('recommendations_error', 'Error generating recommendations. Please try again later.'))
\ No newline at end of file
diff --git a/src/modules/studentact/current_situation_analysis-FAIL.py b/src/modules/studentact/current_situation_analysis-FAIL.py
new file mode 100644
index 0000000000000000000000000000000000000000..873a8de350242c563ff7d0257be106e305927e4e
--- /dev/null
+++ b/src/modules/studentact/current_situation_analysis-FAIL.py
@@ -0,0 +1,810 @@
+#v3/modules/studentact/current_situation_analysis.py
+
+import streamlit as st
+import matplotlib.pyplot as plt
+import networkx as nx
+import seaborn as sns
+from collections import Counter
+from itertools import combinations
+import numpy as np
+import matplotlib.patches as patches
+import logging
+
+# 2. Configuración básica del logging
+logging.basicConfig(
+ level=logging.INFO,
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
+ handlers=[
+ logging.StreamHandler(),
+ logging.FileHandler('app.log')
+ ]
+)
+
+# 3. Obtener el logger específico para este módulo
+logger = logging.getLogger(__name__)
+
+#########################################################################
+
+def correlate_metrics(scores):
+ """
+ Ajusta los scores para mantener correlaciones lógicas entre métricas.
+
+ Args:
+ scores: dict con scores iniciales de vocabulario, estructura, cohesión y claridad
+
+ Returns:
+ dict con scores ajustados
+ """
+ try:
+ # 1. Correlación estructura-cohesión
+ # La cohesión no puede ser menor que estructura * 0.7
+ min_cohesion = scores['structure']['normalized_score'] * 0.7
+ if scores['cohesion']['normalized_score'] < min_cohesion:
+ scores['cohesion']['normalized_score'] = min_cohesion
+
+ # 2. Correlación vocabulario-cohesión
+ # La cohesión léxica depende del vocabulario
+ vocab_influence = scores['vocabulary']['normalized_score'] * 0.6
+ scores['cohesion']['normalized_score'] = max(
+ scores['cohesion']['normalized_score'],
+ vocab_influence
+ )
+
+ # 3. Correlación cohesión-claridad
+ # La claridad no puede superar cohesión * 1.2
+ max_clarity = scores['cohesion']['normalized_score'] * 1.2
+ if scores['clarity']['normalized_score'] > max_clarity:
+ scores['clarity']['normalized_score'] = max_clarity
+
+ # 4. Correlación estructura-claridad
+ # La claridad no puede superar estructura * 1.1
+ struct_max_clarity = scores['structure']['normalized_score'] * 1.1
+ scores['clarity']['normalized_score'] = min(
+ scores['clarity']['normalized_score'],
+ struct_max_clarity
+ )
+
+ # Normalizar todos los scores entre 0 y 1
+ for metric in scores:
+ scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score']))
+
+ return scores
+
+ except Exception as e:
+ logger.error(f"Error en correlate_metrics: {str(e)}")
+ return scores
+
+##########################################################################
+
+def analyze_text_dimensions(doc):
+ """
+ Analiza las dimensiones principales del texto manteniendo correlaciones lógicas.
+ """
+ try:
+ # Obtener scores iniciales
+ vocab_score, vocab_details = analyze_vocabulary_diversity(doc)
+ struct_score = analyze_structure(doc)
+ cohesion_score = analyze_cohesion(doc)
+ clarity_score, clarity_details = analyze_clarity(doc)
+
+ # Crear diccionario de scores inicial
+ scores = {
+ 'vocabulary': {
+ 'normalized_score': vocab_score,
+ 'details': vocab_details
+ },
+ 'structure': {
+ 'normalized_score': struct_score,
+ 'details': None
+ },
+ 'cohesion': {
+ 'normalized_score': cohesion_score,
+ 'details': None
+ },
+ 'clarity': {
+ 'normalized_score': clarity_score,
+ 'details': clarity_details
+ }
+ }
+
+ # Ajustar correlaciones entre métricas
+ adjusted_scores = correlate_metrics(scores)
+
+ # Logging para diagnóstico
+ logger.info(f"""
+ Scores originales vs ajustados:
+ Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f}
+ Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f}
+ Cohesión: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f}
+ Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f}
+ """)
+
+ return adjusted_scores
+
+ except Exception as e:
+ logger.error(f"Error en analyze_text_dimensions: {str(e)}")
+ return {
+ 'vocabulary': {'normalized_score': 0.0, 'details': {}},
+ 'structure': {'normalized_score': 0.0, 'details': {}},
+ 'cohesion': {'normalized_score': 0.0, 'details': {}},
+ 'clarity': {'normalized_score': 0.0, 'details': {}}
+ }
+
+
+
+#############################################################################################
+
+def analyze_clarity(doc):
+ """
+ Analiza la claridad del texto considerando múltiples factores.
+ """
+ try:
+ sentences = list(doc.sents)
+ if not sentences:
+ return 0.0, {}
+
+ # 1. Longitud de oraciones
+ sentence_lengths = [len(sent) for sent in sentences]
+ avg_length = sum(sentence_lengths) / len(sentences)
+
+ # Normalizar usando los umbrales definidos para clarity
+ length_score = normalize_score(
+ value=avg_length,
+ metric_type='clarity',
+ optimal_length=20, # Una oración ideal tiene ~20 palabras
+ min_threshold=0.60, # Consistente con METRIC_THRESHOLDS
+ target_threshold=0.75 # Consistente con METRIC_THRESHOLDS
+ )
+
+ # 2. Análisis de conectores
+ connector_count = 0
+ connector_weights = {
+ 'CCONJ': 1.0, # Coordinantes
+ 'SCONJ': 1.2, # Subordinantes
+ 'ADV': 0.8 # Adverbios conectivos
+ }
+
+ for token in doc:
+ if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']:
+ connector_count += connector_weights[token.pos_]
+
+ # Normalizar conectores por oración
+ connectors_per_sentence = connector_count / len(sentences) if sentences else 0
+ connector_score = normalize_score(
+ value=connectors_per_sentence,
+ metric_type='clarity',
+ optimal_connections=1.5, # ~1.5 conectores por oración es óptimo
+ min_threshold=0.60,
+ target_threshold=0.75
+ )
+
+ # 3. Complejidad estructural
+ clause_count = 0
+ for sent in sentences:
+ verbs = [token for token in sent if token.pos_ == 'VERB']
+ clause_count += len(verbs)
+
+ complexity_raw = clause_count / len(sentences) if sentences else 0
+ complexity_score = normalize_score(
+ value=complexity_raw,
+ metric_type='clarity',
+ optimal_depth=2.0, # ~2 cláusulas por oración es óptimo
+ min_threshold=0.60,
+ target_threshold=0.75
+ )
+
+ # 4. Densidad léxica
+ content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
+ total_words = len([token for token in doc if token.is_alpha])
+ density = content_words / total_words if total_words > 0 else 0
+
+ density_score = normalize_score(
+ value=density,
+ metric_type='clarity',
+ optimal_connections=0.6, # 60% de palabras de contenido es óptimo
+ min_threshold=0.60,
+ target_threshold=0.75
+ )
+
+ # Score final ponderado
+ weights = {
+ 'length': 0.3,
+ 'connectors': 0.3,
+ 'complexity': 0.2,
+ 'density': 0.2
+ }
+
+ clarity_score = (
+ weights['length'] * length_score +
+ weights['connectors'] * connector_score +
+ weights['complexity'] * complexity_score +
+ weights['density'] * density_score
+ )
+
+ details = {
+ 'length_score': length_score,
+ 'connector_score': connector_score,
+ 'complexity_score': complexity_score,
+ 'density_score': density_score,
+ 'avg_sentence_length': avg_length,
+ 'connectors_per_sentence': connectors_per_sentence,
+ 'density': density
+ }
+
+ # Agregar logging para diagnóstico
+ logger.info(f"""
+ Scores de Claridad:
+ - Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras)
+ - Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oración)
+ - Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cláusulas)
+ - Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido)
+ - Score Final: {clarity_score:.2f}
+ """)
+
+ return clarity_score, details
+
+ except Exception as e:
+ logger.error(f"Error en analyze_clarity: {str(e)}")
+ return 0.0, {}
+
+
+def analyze_vocabulary_diversity(doc):
+ """Análisis mejorado de la diversidad y calidad del vocabulario"""
+ try:
+ # 1. Análisis básico de diversidad
+ unique_lemmas = {token.lemma_ for token in doc if token.is_alpha}
+ total_words = len([token for token in doc if token.is_alpha])
+ basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0
+
+ # 2. Análisis de registro
+ academic_words = 0
+ narrative_words = 0
+ technical_terms = 0
+
+ # Clasificar palabras por registro
+ for token in doc:
+ if token.is_alpha:
+ # Detectar términos académicos/técnicos
+ if token.pos_ in ['NOUN', 'VERB', 'ADJ']:
+ if any(parent.pos_ == 'NOUN' for parent in token.ancestors):
+ technical_terms += 1
+ # Detectar palabras narrativas
+ if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']:
+ narrative_words += 1
+
+ # 3. Análisis de complejidad sintáctica
+ avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents))
+
+ # 4. Calcular score ponderado
+ weights = {
+ 'diversity': 0.3,
+ 'technical': 0.3,
+ 'narrative': 0.2,
+ 'complexity': 0.2
+ }
+
+ scores = {
+ 'diversity': basic_diversity,
+ 'technical': technical_terms / total_words if total_words > 0 else 0,
+ 'narrative': narrative_words / total_words if total_words > 0 else 0,
+ 'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras
+ }
+
+ # Score final ponderado
+ final_score = sum(weights[key] * scores[key] for key in weights)
+
+ # Información adicional para diagnóstico
+ details = {
+ 'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic',
+ 'scores': scores
+ }
+
+ return final_score, details
+
+ except Exception as e:
+ logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}")
+ return 0.0, {}
+
+def analyze_cohesion(doc):
+ """Analiza la cohesión textual"""
+ try:
+ sentences = list(doc.sents)
+ if len(sentences) < 2:
+ logger.warning("Texto demasiado corto para análisis de cohesión")
+ return 0.0
+
+ # 1. Análisis de conexiones léxicas
+ lexical_connections = 0
+ total_possible_connections = 0
+
+ for i in range(len(sentences)-1):
+ # Obtener lemmas significativos (no stopwords)
+ sent1_words = {token.lemma_ for token in sentences[i]
+ if token.is_alpha and not token.is_stop}
+ sent2_words = {token.lemma_ for token in sentences[i+1]
+ if token.is_alpha and not token.is_stop}
+
+ if sent1_words and sent2_words: # Verificar que ambos conjuntos no estén vacíos
+ intersection = len(sent1_words.intersection(sent2_words))
+ total_possible = min(len(sent1_words), len(sent2_words))
+
+ if total_possible > 0:
+ lexical_score = intersection / total_possible
+ lexical_connections += lexical_score
+ total_possible_connections += 1
+
+ # 2. Análisis de conectores
+ connector_count = 0
+ connector_types = {
+ 'CCONJ': 1.0, # Coordinantes
+ 'SCONJ': 1.2, # Subordinantes
+ 'ADV': 0.8 # Adverbios conectivos
+ }
+
+ for token in doc:
+ if (token.pos_ in connector_types and
+ token.dep_ in ['cc', 'mark', 'advmod'] and
+ not token.is_stop):
+ connector_count += connector_types[token.pos_]
+
+ # 3. Cálculo de scores normalizados
+ if total_possible_connections > 0:
+ lexical_cohesion = lexical_connections / total_possible_connections
+ else:
+ lexical_cohesion = 0
+
+ if len(sentences) > 1:
+ connector_cohesion = min(1.0, connector_count / (len(sentences) - 1))
+ else:
+ connector_cohesion = 0
+
+ # 4. Score final ponderado
+ weights = {
+ 'lexical': 0.7,
+ 'connectors': 0.3
+ }
+
+ cohesion_score = (
+ weights['lexical'] * lexical_cohesion +
+ weights['connectors'] * connector_cohesion
+ )
+
+ # 5. Logging para diagnóstico
+ logger.info(f"""
+ Análisis de Cohesión:
+ - Conexiones léxicas encontradas: {lexical_connections}
+ - Conexiones posibles: {total_possible_connections}
+ - Lexical cohesion score: {lexical_cohesion}
+ - Conectores encontrados: {connector_count}
+ - Connector cohesion score: {connector_cohesion}
+ - Score final: {cohesion_score}
+ """)
+
+ return cohesion_score
+
+ except Exception as e:
+ logger.error(f"Error en analyze_cohesion: {str(e)}")
+ return 0.0
+
+def analyze_structure(doc):
+ try:
+ if len(doc) == 0:
+ return 0.0
+
+ structure_scores = []
+ for token in doc:
+ if token.dep_ == 'ROOT':
+ result = get_dependency_depths(token)
+ structure_scores.append(result['final_score'])
+
+ if not structure_scores:
+ return 0.0
+
+ return min(1.0, sum(structure_scores) / len(structure_scores))
+
+ except Exception as e:
+ logger.error(f"Error en analyze_structure: {str(e)}")
+ return 0.0
+
+# Funciones auxiliares de análisis
+
+def get_dependency_depths(token, depth=0, analyzed_tokens=None):
+ """
+ Analiza la profundidad y calidad de las relaciones de dependencia.
+
+ Args:
+ token: Token a analizar
+ depth: Profundidad actual en el árbol
+ analyzed_tokens: Set para evitar ciclos en el análisis
+
+ Returns:
+ dict: Información detallada sobre las dependencias
+ - depths: Lista de profundidades
+ - relations: Diccionario con tipos de relaciones encontradas
+ - complexity_score: Puntuación de complejidad
+ """
+ if analyzed_tokens is None:
+ analyzed_tokens = set()
+
+ # Evitar ciclos
+ if token.i in analyzed_tokens:
+ return {
+ 'depths': [],
+ 'relations': {},
+ 'complexity_score': 0
+ }
+
+ analyzed_tokens.add(token.i)
+
+ # Pesos para diferentes tipos de dependencias
+ dependency_weights = {
+ # Dependencias principales
+ 'nsubj': 1.2, # Sujeto nominal
+ 'obj': 1.1, # Objeto directo
+ 'iobj': 1.1, # Objeto indirecto
+ 'ROOT': 1.3, # Raíz
+
+ # Modificadores
+ 'amod': 0.8, # Modificador adjetival
+ 'advmod': 0.8, # Modificador adverbial
+ 'nmod': 0.9, # Modificador nominal
+
+ # Estructuras complejas
+ 'csubj': 1.4, # Cláusula como sujeto
+ 'ccomp': 1.3, # Complemento clausal
+ 'xcomp': 1.2, # Complemento clausal abierto
+ 'advcl': 1.2, # Cláusula adverbial
+
+ # Coordinación y subordinación
+ 'conj': 1.1, # Conjunción
+ 'cc': 0.7, # Coordinación
+ 'mark': 0.8, # Marcador
+
+ # Otros
+ 'det': 0.5, # Determinante
+ 'case': 0.5, # Caso
+ 'punct': 0.1 # Puntuación
+ }
+
+ # Inicializar resultados
+ current_result = {
+ 'depths': [depth],
+ 'relations': {token.dep_: 1},
+ 'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1)
+ }
+
+ # Analizar hijos recursivamente
+ for child in token.children:
+ child_result = get_dependency_depths(child, depth + 1, analyzed_tokens)
+
+ # Combinar profundidades
+ current_result['depths'].extend(child_result['depths'])
+
+ # Combinar relaciones
+ for rel, count in child_result['relations'].items():
+ current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count
+
+ # Acumular score de complejidad
+ current_result['complexity_score'] += child_result['complexity_score']
+
+ # Calcular métricas adicionales
+ current_result['max_depth'] = max(current_result['depths'])
+ current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths'])
+ current_result['relation_diversity'] = len(current_result['relations'])
+
+ # Calcular score ponderado por tipo de estructura
+ structure_bonus = 0
+
+ # Bonus por estructuras complejas
+ if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']:
+ structure_bonus += 0.3
+
+ # Bonus por coordinación balanceada
+ if 'conj' in current_result['relations'] and 'cc' in current_result['relations']:
+ structure_bonus += 0.2
+
+ # Bonus por modificación rica
+ if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2:
+ structure_bonus += 0.2
+
+ current_result['final_score'] = (
+ current_result['complexity_score'] * (1 + structure_bonus)
+ )
+
+ return current_result
+
+def normalize_score(value, metric_type,
+ min_threshold=0.0, target_threshold=1.0,
+ range_factor=2.0, optimal_length=None,
+ optimal_connections=None, optimal_depth=None):
+ """
+ Normaliza un valor considerando umbrales específicos por tipo de métrica.
+
+ Args:
+ value: Valor a normalizar
+ metric_type: Tipo de métrica ('vocabulary', 'structure', 'cohesion', 'clarity')
+ min_threshold: Valor mínimo aceptable
+ target_threshold: Valor objetivo
+ range_factor: Factor para ajustar el rango
+ optimal_length: Longitud óptima (opcional)
+ optimal_connections: Número óptimo de conexiones (opcional)
+ optimal_depth: Profundidad óptima de estructura (opcional)
+
+ Returns:
+ float: Valor normalizado entre 0 y 1
+ """
+ try:
+ # Definir umbrales por tipo de métrica
+ METRIC_THRESHOLDS = {
+ 'vocabulary': {
+ 'min': 0.60,
+ 'target': 0.75,
+ 'range_factor': 1.5
+ },
+ 'structure': {
+ 'min': 0.65,
+ 'target': 0.80,
+ 'range_factor': 1.8
+ },
+ 'cohesion': {
+ 'min': 0.55,
+ 'target': 0.70,
+ 'range_factor': 1.6
+ },
+ 'clarity': {
+ 'min': 0.60,
+ 'target': 0.75,
+ 'range_factor': 1.7
+ }
+ }
+
+ # Validar valores negativos o cero
+ if value < 0:
+ logger.warning(f"Valor negativo recibido: {value}")
+ return 0.0
+
+ # Manejar caso donde el valor es cero
+ if value == 0:
+ logger.warning("Valor cero recibido")
+ return 0.0
+
+ # Obtener umbrales específicos para el tipo de métrica
+ thresholds = METRIC_THRESHOLDS.get(metric_type, {
+ 'min': min_threshold,
+ 'target': target_threshold,
+ 'range_factor': range_factor
+ })
+
+ # Identificar el valor de referencia a usar
+ if optimal_depth is not None:
+ reference = optimal_depth
+ elif optimal_connections is not None:
+ reference = optimal_connections
+ elif optimal_length is not None:
+ reference = optimal_length
+ else:
+ reference = thresholds['target']
+
+ # Validar valor de referencia
+ if reference <= 0:
+ logger.warning(f"Valor de referencia inválido: {reference}")
+ return 0.0
+
+ # Calcular score basado en umbrales
+ if value < thresholds['min']:
+ # Valor por debajo del mínimo
+ score = (value / thresholds['min']) * 0.5 # Máximo 0.5 para valores bajo el mínimo
+ elif value < thresholds['target']:
+ # Valor entre mínimo y objetivo
+ range_size = thresholds['target'] - thresholds['min']
+ progress = (value - thresholds['min']) / range_size
+ score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0
+ else:
+ # Valor alcanza o supera el objetivo
+ score = 1.0
+
+ # Penalizar valores muy por encima del objetivo
+ if value > (thresholds['target'] * thresholds['range_factor']):
+ excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor'])
+ score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos
+
+ # Asegurar que el resultado esté entre 0 y 1
+ return max(0.0, min(1.0, score))
+
+ except Exception as e:
+ logger.error(f"Error en normalize_score: {str(e)}")
+ return 0.0
+
+
+# Funciones de generación de gráficos
+def generate_sentence_graphs(doc):
+ """Genera visualizaciones de estructura de oraciones"""
+ fig, ax = plt.subplots(figsize=(10, 6))
+ # Implementar visualización
+ plt.close()
+ return fig
+
+def generate_word_connections(doc):
+ """Genera red de conexiones de palabras"""
+ fig, ax = plt.subplots(figsize=(10, 6))
+ # Implementar visualización
+ plt.close()
+ return fig
+
+def generate_connection_paths(doc):
+ """Genera patrones de conexión"""
+ fig, ax = plt.subplots(figsize=(10, 6))
+ # Implementar visualización
+ plt.close()
+ return fig
+
+def create_vocabulary_network(doc):
+ """
+ Genera el grafo de red de vocabulario.
+ """
+ G = nx.Graph()
+
+ # Crear nodos para palabras significativas
+ words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop]
+ word_freq = Counter(words)
+
+ # Añadir nodos con tamaño basado en frecuencia
+ for word, freq in word_freq.items():
+ G.add_node(word, size=freq)
+
+ # Crear conexiones basadas en co-ocurrencia
+ window_size = 5
+ for i in range(len(words) - window_size):
+ window = words[i:i+window_size]
+ for w1, w2 in combinations(set(window), 2):
+ if G.has_edge(w1, w2):
+ G[w1][w2]['weight'] += 1
+ else:
+ G.add_edge(w1, w2, weight=1)
+
+ # Crear visualización
+ fig, ax = plt.subplots(figsize=(12, 8))
+ pos = nx.spring_layout(G)
+
+ # Dibujar nodos
+ nx.draw_networkx_nodes(G, pos,
+ node_size=[G.nodes[node]['size']*100 for node in G.nodes],
+ node_color='lightblue',
+ alpha=0.7)
+
+ # Dibujar conexiones
+ nx.draw_networkx_edges(G, pos,
+ width=[G[u][v]['weight']*0.5 for u,v in G.edges],
+ alpha=0.5)
+
+ # Añadir etiquetas
+ nx.draw_networkx_labels(G, pos)
+
+ plt.title("Red de Vocabulario")
+ plt.axis('off')
+ return fig
+
+def create_syntax_complexity_graph(doc):
+ """
+ Genera el diagrama de arco de complejidad sintáctica.
+ Muestra la estructura de dependencias con colores basados en la complejidad.
+ """
+ try:
+ # Preparar datos para la visualización
+ sentences = list(doc.sents)
+ if not sentences:
+ return None
+
+ # Crear figura para el gráfico
+ fig, ax = plt.subplots(figsize=(12, len(sentences) * 2))
+
+ # Colores para diferentes niveles de profundidad
+ depth_colors = plt.cm.viridis(np.linspace(0, 1, 6))
+
+ y_offset = 0
+ max_x = 0
+
+ for sent in sentences:
+ words = [token.text for token in sent]
+ x_positions = range(len(words))
+ max_x = max(max_x, len(words))
+
+ # Dibujar palabras
+ plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2)
+ plt.scatter(x_positions, [y_offset] * len(words), alpha=0)
+
+ # Añadir texto
+ for i, word in enumerate(words):
+ plt.annotate(word, (i, y_offset), xytext=(0, -10),
+ textcoords='offset points', ha='center')
+
+ # Dibujar arcos de dependencia
+ for token in sent:
+ if token.dep_ != "ROOT":
+ # Calcular profundidad de dependencia
+ depth = 0
+ current = token
+ while current.head != current:
+ depth += 1
+ current = current.head
+
+ # Determinar posiciones para el arco
+ start = token.i - sent[0].i
+ end = token.head.i - sent[0].i
+
+ # Altura del arco basada en la distancia entre palabras
+ height = 0.5 * abs(end - start)
+
+ # Color basado en la profundidad
+ color = depth_colors[min(depth, len(depth_colors)-1)]
+
+ # Crear arco
+ arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset),
+ width=abs(end - start),
+ height=height,
+ angle=0,
+ theta1=0,
+ theta2=180,
+ color=color,
+ alpha=0.6)
+ ax.add_patch(arc)
+
+ y_offset -= 2
+
+ # Configurar el gráfico
+ plt.xlim(-1, max_x)
+ plt.ylim(y_offset - 1, 1)
+ plt.axis('off')
+ plt.title("Complejidad Sintáctica")
+
+ return fig
+
+ except Exception as e:
+ logger.error(f"Error en create_syntax_complexity_graph: {str(e)}")
+ return None
+
+
+def create_cohesion_heatmap(doc):
+ """Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones."""
+ try:
+ sentences = list(doc.sents)
+ n_sentences = len(sentences)
+
+ if n_sentences < 2:
+ return None
+
+ similarity_matrix = np.zeros((n_sentences, n_sentences))
+
+ for i in range(n_sentences):
+ for j in range(n_sentences):
+ sent1_lemmas = {token.lemma_ for token in sentences[i]
+ if token.is_alpha and not token.is_stop}
+ sent2_lemmas = {token.lemma_ for token in sentences[j]
+ if token.is_alpha and not token.is_stop}
+
+ if sent1_lemmas and sent2_lemmas:
+ intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aquí
+ union = len(sent1_lemmas | sent2_lemmas) # Y aquí
+ similarity_matrix[i, j] = intersection / union if union > 0 else 0
+
+ # Crear visualización
+ fig, ax = plt.subplots(figsize=(10, 8))
+
+ sns.heatmap(similarity_matrix,
+ cmap='YlOrRd',
+ square=True,
+ xticklabels=False,
+ yticklabels=False,
+ cbar_kws={'label': 'Cohesión'},
+ ax=ax)
+
+ plt.title("Mapa de Cohesión Textual")
+ plt.xlabel("Oraciones")
+ plt.ylabel("Oraciones")
+
+ plt.tight_layout()
+ return fig
+
+ except Exception as e:
+ logger.error(f"Error en create_cohesion_heatmap: {str(e)}")
+ return None
diff --git a/src/modules/studentact/current_situation_analysis.py b/src/modules/studentact/current_situation_analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..bed8c89f985243da6b00f2a1f8319448a0017f16
--- /dev/null
+++ b/src/modules/studentact/current_situation_analysis.py
@@ -0,0 +1,1009 @@
+#v3/modules/studentact/current_situation_analysis.py
+
+import streamlit as st
+import matplotlib.pyplot as plt
+import networkx as nx
+import seaborn as sns
+from collections import Counter
+from itertools import combinations
+import numpy as np
+import matplotlib.patches as patches
+import logging
+
+
+# 2. Configuración básica del logging
+logging.basicConfig(
+ level=logging.INFO,
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
+ handlers=[
+ logging.StreamHandler(),
+ logging.FileHandler('app.log')
+ ]
+)
+
+# 3. Obtener el logger específico para este módulo
+logger = logging.getLogger(__name__)
+
+#########################################################################
+
+def correlate_metrics(scores):
+ """
+ Ajusta los scores para mantener correlaciones lógicas entre métricas.
+
+ Args:
+ scores: dict con scores iniciales de vocabulario, estructura, cohesión y claridad
+
+ Returns:
+ dict con scores ajustados
+ """
+ try:
+ # 1. Correlación estructura-cohesión
+ # La cohesión no puede ser menor que estructura * 0.7
+ min_cohesion = scores['structure']['normalized_score'] * 0.7
+ if scores['cohesion']['normalized_score'] < min_cohesion:
+ scores['cohesion']['normalized_score'] = min_cohesion
+
+ # 2. Correlación vocabulario-cohesión
+ # La cohesión léxica depende del vocabulario
+ vocab_influence = scores['vocabulary']['normalized_score'] * 0.6
+ scores['cohesion']['normalized_score'] = max(
+ scores['cohesion']['normalized_score'],
+ vocab_influence
+ )
+
+ # 3. Correlación cohesión-claridad
+ # La claridad no puede superar cohesión * 1.2
+ max_clarity = scores['cohesion']['normalized_score'] * 1.2
+ if scores['clarity']['normalized_score'] > max_clarity:
+ scores['clarity']['normalized_score'] = max_clarity
+
+ # 4. Correlación estructura-claridad
+ # La claridad no puede superar estructura * 1.1
+ struct_max_clarity = scores['structure']['normalized_score'] * 1.1
+ scores['clarity']['normalized_score'] = min(
+ scores['clarity']['normalized_score'],
+ struct_max_clarity
+ )
+
+ # Normalizar todos los scores entre 0 y 1
+ for metric in scores:
+ scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score']))
+
+ return scores
+
+ except Exception as e:
+ logger.error(f"Error en correlate_metrics: {str(e)}")
+ return scores
+
+##########################################################################
+
+def analyze_text_dimensions(doc):
+ """
+ Analiza las dimensiones principales del texto manteniendo correlaciones lógicas.
+ """
+ try:
+ # Obtener scores iniciales
+ vocab_score, vocab_details = analyze_vocabulary_diversity(doc)
+ struct_score = analyze_structure(doc)
+ cohesion_score = analyze_cohesion(doc)
+ clarity_score, clarity_details = analyze_clarity(doc)
+
+ # Crear diccionario de scores inicial
+ scores = {
+ 'vocabulary': {
+ 'normalized_score': vocab_score,
+ 'details': vocab_details
+ },
+ 'structure': {
+ 'normalized_score': struct_score,
+ 'details': None
+ },
+ 'cohesion': {
+ 'normalized_score': cohesion_score,
+ 'details': None
+ },
+ 'clarity': {
+ 'normalized_score': clarity_score,
+ 'details': clarity_details
+ }
+ }
+
+ # Ajustar correlaciones entre métricas
+ adjusted_scores = correlate_metrics(scores)
+
+ # Logging para diagnóstico
+ logger.info(f"""
+ Scores originales vs ajustados:
+ Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f}
+ Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f}
+ Cohesión: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f}
+ Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f}
+ """)
+
+ return adjusted_scores
+
+ except Exception as e:
+ logger.error(f"Error en analyze_text_dimensions: {str(e)}")
+ return {
+ 'vocabulary': {'normalized_score': 0.0, 'details': {}},
+ 'structure': {'normalized_score': 0.0, 'details': {}},
+ 'cohesion': {'normalized_score': 0.0, 'details': {}},
+ 'clarity': {'normalized_score': 0.0, 'details': {}}
+ }
+
+
+
+#############################################################################################
+
+def analyze_clarity(doc):
+ """
+ Analiza la claridad del texto considerando múltiples factores.
+ """
+ try:
+ sentences = list(doc.sents)
+ if not sentences:
+ return 0.0, {}
+
+ # 1. Longitud de oraciones
+ sentence_lengths = [len(sent) for sent in sentences]
+ avg_length = sum(sentence_lengths) / len(sentences)
+
+ # Normalizar usando los umbrales definidos para clarity
+ length_score = normalize_score(
+ value=avg_length,
+ metric_type='clarity',
+ optimal_length=20, # Una oración ideal tiene ~20 palabras
+ min_threshold=0.60, # Consistente con METRIC_THRESHOLDS
+ target_threshold=0.75 # Consistente con METRIC_THRESHOLDS
+ )
+
+ # 2. Análisis de conectores
+ connector_count = 0
+ connector_weights = {
+ 'CCONJ': 1.0, # Coordinantes
+ 'SCONJ': 1.2, # Subordinantes
+ 'ADV': 0.8 # Adverbios conectivos
+ }
+
+ for token in doc:
+ if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']:
+ connector_count += connector_weights[token.pos_]
+
+ # Normalizar conectores por oración
+ connectors_per_sentence = connector_count / len(sentences) if sentences else 0
+ connector_score = normalize_score(
+ value=connectors_per_sentence,
+ metric_type='clarity',
+ optimal_connections=1.5, # ~1.5 conectores por oración es óptimo
+ min_threshold=0.60,
+ target_threshold=0.75
+ )
+
+ # 3. Complejidad estructural
+ clause_count = 0
+ for sent in sentences:
+ verbs = [token for token in sent if token.pos_ == 'VERB']
+ clause_count += len(verbs)
+
+ complexity_raw = clause_count / len(sentences) if sentences else 0
+ complexity_score = normalize_score(
+ value=complexity_raw,
+ metric_type='clarity',
+ optimal_depth=2.0, # ~2 cláusulas por oración es óptimo
+ min_threshold=0.60,
+ target_threshold=0.75
+ )
+
+ # 4. Densidad léxica
+ content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
+ total_words = len([token for token in doc if token.is_alpha])
+ density = content_words / total_words if total_words > 0 else 0
+
+ density_score = normalize_score(
+ value=density,
+ metric_type='clarity',
+ optimal_connections=0.6, # 60% de palabras de contenido es óptimo
+ min_threshold=0.60,
+ target_threshold=0.75
+ )
+
+ # Score final ponderado
+ weights = {
+ 'length': 0.3,
+ 'connectors': 0.3,
+ 'complexity': 0.2,
+ 'density': 0.2
+ }
+
+ clarity_score = (
+ weights['length'] * length_score +
+ weights['connectors'] * connector_score +
+ weights['complexity'] * complexity_score +
+ weights['density'] * density_score
+ )
+
+ details = {
+ 'length_score': length_score,
+ 'connector_score': connector_score,
+ 'complexity_score': complexity_score,
+ 'density_score': density_score,
+ 'avg_sentence_length': avg_length,
+ 'connectors_per_sentence': connectors_per_sentence,
+ 'density': density
+ }
+
+ # Agregar logging para diagnóstico
+ logger.info(f"""
+ Scores de Claridad:
+ - Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras)
+ - Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oración)
+ - Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cláusulas)
+ - Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido)
+ - Score Final: {clarity_score:.2f}
+ """)
+
+ return clarity_score, details
+
+ except Exception as e:
+ logger.error(f"Error en analyze_clarity: {str(e)}")
+ return 0.0, {}
+
+#########################################################################
+def analyze_vocabulary_diversity(doc):
+ """Análisis mejorado de la diversidad y calidad del vocabulario"""
+ try:
+ # 1. Análisis básico de diversidad
+ unique_lemmas = {token.lemma_ for token in doc if token.is_alpha}
+ total_words = len([token for token in doc if token.is_alpha])
+ basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0
+
+ # 2. Análisis de registro
+ academic_words = 0
+ narrative_words = 0
+ technical_terms = 0
+
+ # Clasificar palabras por registro
+ for token in doc:
+ if token.is_alpha:
+ # Detectar términos académicos/técnicos
+ if token.pos_ in ['NOUN', 'VERB', 'ADJ']:
+ if any(parent.pos_ == 'NOUN' for parent in token.ancestors):
+ technical_terms += 1
+ # Detectar palabras narrativas
+ if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']:
+ narrative_words += 1
+
+ # 3. Análisis de complejidad sintáctica
+ avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents))
+
+ # 4. Calcular score ponderado
+ weights = {
+ 'diversity': 0.3,
+ 'technical': 0.3,
+ 'narrative': 0.2,
+ 'complexity': 0.2
+ }
+
+ scores = {
+ 'diversity': basic_diversity,
+ 'technical': technical_terms / total_words if total_words > 0 else 0,
+ 'narrative': narrative_words / total_words if total_words > 0 else 0,
+ 'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras
+ }
+
+ # Score final ponderado
+ final_score = sum(weights[key] * scores[key] for key in weights)
+
+ # Información adicional para diagnóstico
+ details = {
+ 'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic',
+ 'scores': scores
+ }
+
+ return final_score, details
+
+ except Exception as e:
+ logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}")
+ return 0.0, {}
+
+#########################################################################
+def analyze_cohesion(doc):
+ """Analiza la cohesión textual"""
+ try:
+ sentences = list(doc.sents)
+ if len(sentences) < 2:
+ logger.warning("Texto demasiado corto para análisis de cohesión")
+ return 0.0
+
+ # 1. Análisis de conexiones léxicas
+ lexical_connections = 0
+ total_possible_connections = 0
+
+ for i in range(len(sentences)-1):
+ # Obtener lemmas significativos (no stopwords)
+ sent1_words = {token.lemma_ for token in sentences[i]
+ if token.is_alpha and not token.is_stop}
+ sent2_words = {token.lemma_ for token in sentences[i+1]
+ if token.is_alpha and not token.is_stop}
+
+ if sent1_words and sent2_words: # Verificar que ambos conjuntos no estén vacíos
+ intersection = len(sent1_words.intersection(sent2_words))
+ total_possible = min(len(sent1_words), len(sent2_words))
+
+ if total_possible > 0:
+ lexical_score = intersection / total_possible
+ lexical_connections += lexical_score
+ total_possible_connections += 1
+
+ # 2. Análisis de conectores
+ connector_count = 0
+ connector_types = {
+ 'CCONJ': 1.0, # Coordinantes
+ 'SCONJ': 1.2, # Subordinantes
+ 'ADV': 0.8 # Adverbios conectivos
+ }
+
+ for token in doc:
+ if (token.pos_ in connector_types and
+ token.dep_ in ['cc', 'mark', 'advmod'] and
+ not token.is_stop):
+ connector_count += connector_types[token.pos_]
+
+ # 3. Cálculo de scores normalizados
+ if total_possible_connections > 0:
+ lexical_cohesion = lexical_connections / total_possible_connections
+ else:
+ lexical_cohesion = 0
+
+ if len(sentences) > 1:
+ connector_cohesion = min(1.0, connector_count / (len(sentences) - 1))
+ else:
+ connector_cohesion = 0
+
+ # 4. Score final ponderado
+ weights = {
+ 'lexical': 0.7,
+ 'connectors': 0.3
+ }
+
+ cohesion_score = (
+ weights['lexical'] * lexical_cohesion +
+ weights['connectors'] * connector_cohesion
+ )
+
+ # 5. Logging para diagnóstico
+ logger.info(f"""
+ Análisis de Cohesión:
+ - Conexiones léxicas encontradas: {lexical_connections}
+ - Conexiones posibles: {total_possible_connections}
+ - Lexical cohesion score: {lexical_cohesion}
+ - Conectores encontrados: {connector_count}
+ - Connector cohesion score: {connector_cohesion}
+ - Score final: {cohesion_score}
+ """)
+
+ return cohesion_score
+
+ except Exception as e:
+ logger.error(f"Error en analyze_cohesion: {str(e)}")
+ return 0.0
+
+#########################################################################
+def analyze_structure(doc):
+ try:
+ if len(doc) == 0:
+ return 0.0
+
+ structure_scores = []
+ for token in doc:
+ if token.dep_ == 'ROOT':
+ result = get_dependency_depths(token)
+ structure_scores.append(result['final_score'])
+
+ if not structure_scores:
+ return 0.0
+
+ return min(1.0, sum(structure_scores) / len(structure_scores))
+
+ except Exception as e:
+ logger.error(f"Error en analyze_structure: {str(e)}")
+ return 0.0
+
+#########################################################################
+# Funciones auxiliares de análisis
+def get_dependency_depths(token, depth=0, analyzed_tokens=None):
+ """
+ Analiza la profundidad y calidad de las relaciones de dependencia.
+
+ Args:
+ token: Token a analizar
+ depth: Profundidad actual en el árbol
+ analyzed_tokens: Set para evitar ciclos en el análisis
+
+ Returns:
+ dict: Información detallada sobre las dependencias
+ - depths: Lista de profundidades
+ - relations: Diccionario con tipos de relaciones encontradas
+ - complexity_score: Puntuación de complejidad
+ """
+ if analyzed_tokens is None:
+ analyzed_tokens = set()
+
+ # Evitar ciclos
+ if token.i in analyzed_tokens:
+ return {
+ 'depths': [],
+ 'relations': {},
+ 'complexity_score': 0
+ }
+
+ analyzed_tokens.add(token.i)
+
+ # Pesos para diferentes tipos de dependencias
+ dependency_weights = {
+ # Dependencias principales
+ 'nsubj': 1.2, # Sujeto nominal
+ 'obj': 1.1, # Objeto directo
+ 'iobj': 1.1, # Objeto indirecto
+ 'ROOT': 1.3, # Raíz
+
+ # Modificadores
+ 'amod': 0.8, # Modificador adjetival
+ 'advmod': 0.8, # Modificador adverbial
+ 'nmod': 0.9, # Modificador nominal
+
+ # Estructuras complejas
+ 'csubj': 1.4, # Cláusula como sujeto
+ 'ccomp': 1.3, # Complemento clausal
+ 'xcomp': 1.2, # Complemento clausal abierto
+ 'advcl': 1.2, # Cláusula adverbial
+
+ # Coordinación y subordinación
+ 'conj': 1.1, # Conjunción
+ 'cc': 0.7, # Coordinación
+ 'mark': 0.8, # Marcador
+
+ # Otros
+ 'det': 0.5, # Determinante
+ 'case': 0.5, # Caso
+ 'punct': 0.1 # Puntuación
+ }
+
+ # Inicializar resultados
+ current_result = {
+ 'depths': [depth],
+ 'relations': {token.dep_: 1},
+ 'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1)
+ }
+
+ # Analizar hijos recursivamente
+ for child in token.children:
+ child_result = get_dependency_depths(child, depth + 1, analyzed_tokens)
+
+ # Combinar profundidades
+ current_result['depths'].extend(child_result['depths'])
+
+ # Combinar relaciones
+ for rel, count in child_result['relations'].items():
+ current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count
+
+ # Acumular score de complejidad
+ current_result['complexity_score'] += child_result['complexity_score']
+
+ # Calcular métricas adicionales
+ current_result['max_depth'] = max(current_result['depths'])
+ current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths'])
+ current_result['relation_diversity'] = len(current_result['relations'])
+
+ # Calcular score ponderado por tipo de estructura
+ structure_bonus = 0
+
+ # Bonus por estructuras complejas
+ if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']:
+ structure_bonus += 0.3
+
+ # Bonus por coordinación balanceada
+ if 'conj' in current_result['relations'] and 'cc' in current_result['relations']:
+ structure_bonus += 0.2
+
+ # Bonus por modificación rica
+ if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2:
+ structure_bonus += 0.2
+
+ current_result['final_score'] = (
+ current_result['complexity_score'] * (1 + structure_bonus)
+ )
+
+ return current_result
+
+#########################################################################
+def normalize_score(value, metric_type,
+ min_threshold=0.0, target_threshold=1.0,
+ range_factor=2.0, optimal_length=None,
+ optimal_connections=None, optimal_depth=None):
+ """
+ Normaliza un valor considerando umbrales específicos por tipo de métrica.
+
+ Args:
+ value: Valor a normalizar
+ metric_type: Tipo de métrica ('vocabulary', 'structure', 'cohesion', 'clarity')
+ min_threshold: Valor mínimo aceptable
+ target_threshold: Valor objetivo
+ range_factor: Factor para ajustar el rango
+ optimal_length: Longitud óptima (opcional)
+ optimal_connections: Número óptimo de conexiones (opcional)
+ optimal_depth: Profundidad óptima de estructura (opcional)
+
+ Returns:
+ float: Valor normalizado entre 0 y 1
+ """
+ try:
+ # Definir umbrales por tipo de métrica
+ METRIC_THRESHOLDS = {
+ 'vocabulary': {
+ 'min': 0.60,
+ 'target': 0.75,
+ 'range_factor': 1.5
+ },
+ 'structure': {
+ 'min': 0.65,
+ 'target': 0.80,
+ 'range_factor': 1.8
+ },
+ 'cohesion': {
+ 'min': 0.55,
+ 'target': 0.70,
+ 'range_factor': 1.6
+ },
+ 'clarity': {
+ 'min': 0.60,
+ 'target': 0.75,
+ 'range_factor': 1.7
+ }
+ }
+
+ # Validar valores negativos o cero
+ if value < 0:
+ logger.warning(f"Valor negativo recibido: {value}")
+ return 0.0
+
+ # Manejar caso donde el valor es cero
+ if value == 0:
+ logger.warning("Valor cero recibido")
+ return 0.0
+
+ # Obtener umbrales específicos para el tipo de métrica
+ thresholds = METRIC_THRESHOLDS.get(metric_type, {
+ 'min': min_threshold,
+ 'target': target_threshold,
+ 'range_factor': range_factor
+ })
+
+ # Identificar el valor de referencia a usar
+ if optimal_depth is not None:
+ reference = optimal_depth
+ elif optimal_connections is not None:
+ reference = optimal_connections
+ elif optimal_length is not None:
+ reference = optimal_length
+ else:
+ reference = thresholds['target']
+
+ # Validar valor de referencia
+ if reference <= 0:
+ logger.warning(f"Valor de referencia inválido: {reference}")
+ return 0.0
+
+ # Calcular score basado en umbrales
+ if value < thresholds['min']:
+ # Valor por debajo del mínimo
+ score = (value / thresholds['min']) * 0.5 # Máximo 0.5 para valores bajo el mínimo
+ elif value < thresholds['target']:
+ # Valor entre mínimo y objetivo
+ range_size = thresholds['target'] - thresholds['min']
+ progress = (value - thresholds['min']) / range_size
+ score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0
+ else:
+ # Valor alcanza o supera el objetivo
+ score = 1.0
+
+ # Penalizar valores muy por encima del objetivo
+ if value > (thresholds['target'] * thresholds['range_factor']):
+ excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor'])
+ score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos
+
+ # Asegurar que el resultado esté entre 0 y 1
+ return max(0.0, min(1.0, score))
+
+ except Exception as e:
+ logger.error(f"Error en normalize_score: {str(e)}")
+ return 0.0
+
+#########################################################################
+#########################################################################
+
+def generate_recommendations(metrics, text_type, lang_code='es'):
+ """
+ Genera recomendaciones personalizadas basadas en las métricas del texto y el tipo de texto.
+
+ Args:
+ metrics: Diccionario con las métricas analizadas
+ text_type: Tipo de texto ('academic_article', 'student_essay', 'general_communication')
+ lang_code: Código del idioma para las recomendaciones (es, en, uk)
+
+ Returns:
+ dict: Recomendaciones organizadas por categoría en el idioma correspondiente
+ """
+ try:
+ # Añadir debug log para verificar el código de idioma recibido
+ logger.info(f"generate_recommendations llamado con idioma: {lang_code}")
+
+ # Comprobar que importamos RECOMMENDATIONS correctamente
+ logger.info(f"Idiomas disponibles en RECOMMENDATIONS: {list(RECOMMENDATIONS.keys())}")
+
+ # Obtener umbrales según el tipo de texto
+ thresholds = TEXT_TYPES[text_type]['thresholds']
+
+ # Verificar que el idioma esté soportado, usar español como respaldo
+ if lang_code not in RECOMMENDATIONS:
+ logger.warning(f"Idioma {lang_code} no soportado para recomendaciones, usando español")
+ lang_code = 'es'
+
+ # Obtener traducciones para el idioma seleccionado
+ translations = RECOMMENDATIONS[lang_code]
+
+ # Inicializar diccionario de recomendaciones
+ recommendations = {
+ 'vocabulary': [],
+ 'structure': [],
+ 'cohesion': [],
+ 'clarity': [],
+ 'specific': [],
+ 'priority': {
+ 'area': 'general',
+ 'tips': []
+ },
+ 'text_type_name': translations['text_types'][text_type],
+ 'dimension_names': translations['dimension_names'],
+ 'ui_text': {
+ 'priority_intro': translations['priority_intro'],
+ 'detailed_recommendations': translations['detailed_recommendations'],
+ 'save_button': translations['save_button'],
+ 'save_success': translations['save_success'],
+ 'save_error': translations['save_error'],
+ 'area_priority': translations['area_priority']
+ }
+ }
+
+ # Determinar nivel para cada dimensión y asignar recomendaciones
+ dimensions = ['vocabulary', 'structure', 'cohesion', 'clarity']
+ scores = {}
+
+ for dim in dimensions:
+ score = metrics[dim]['normalized_score']
+ scores[dim] = score
+
+ # Determinar nivel (bajo, medio, alto)
+ if score < thresholds[dim]['min']:
+ level = 'low'
+ elif score < thresholds[dim]['target']:
+ level = 'medium'
+ else:
+ level = 'high'
+
+ # Asignar recomendaciones para ese nivel
+ recommendations[dim] = translations[dim][level]
+
+ # Asignar recomendaciones específicas por tipo de texto
+ recommendations['specific'] = translations[text_type]
+
+ # Determinar área prioritaria (la que tiene menor puntuación)
+ priority_dimension = min(scores, key=scores.get)
+ recommendations['priority']['area'] = priority_dimension
+ recommendations['priority']['tips'] = recommendations[priority_dimension]
+
+ logger.info(f"Generadas recomendaciones en {lang_code} para texto tipo {text_type}")
+ return recommendations
+
+ except Exception as e:
+ logger.error(f"Error en generate_recommendations: {str(e)}")
+
+ # Utilizar un enfoque basado en el idioma actual en lugar de casos codificados
+ # Esto permite manejar ucraniano y cualquier otro idioma futuro
+ fallback_translations = {
+ 'en': {
+ 'basic_recommendations': {
+ 'vocabulary': ["Try enriching your vocabulary"],
+ 'structure': ["Work on the structure of your sentences"],
+ 'cohesion': ["Improve the connection between your ideas"],
+ 'clarity': ["Try to express your ideas more clearly"],
+ 'specific': ["Adapt your text according to its purpose"],
+ },
+ 'dimension_names': {
+ 'vocabulary': 'Vocabulary',
+ 'structure': 'Structure',
+ 'cohesion': 'Cohesion',
+ 'clarity': 'Clarity',
+ 'general': 'General'
+ },
+ 'ui_text': {
+ 'priority_intro': "This is where you should focus your efforts.",
+ 'detailed_recommendations': "Detailed recommendations",
+ 'save_button': "Save analysis",
+ 'save_success': "Analysis saved successfully",
+ 'save_error': "Error saving analysis",
+ 'area_priority': "Priority area"
+ }
+ },
+ 'uk': {
+ 'basic_recommendations': {
+ 'vocabulary': ["Розширте свій словниковий запас"],
+ 'structure': ["Покращіть структуру ваших речень"],
+ 'cohesion': ["Покращіть зв'язок між вашими ідеями"],
+ 'clarity': ["Висловлюйте свої ідеї ясніше"],
+ 'specific': ["Адаптуйте свій текст відповідно до його мети"],
+ },
+ 'dimension_names': {
+ 'vocabulary': 'Словниковий запас',
+ 'structure': 'Структура',
+ 'cohesion': 'Зв\'язність',
+ 'clarity': 'Ясність',
+ 'general': 'Загальне'
+ },
+ 'ui_text': {
+ 'priority_intro': "Це область, де ви повинні зосередити свої зусилля.",
+ 'detailed_recommendations': "Детальні рекомендації",
+ 'save_button': "Зберегти аналіз",
+ 'save_success': "Аналіз успішно збережено",
+ 'save_error': "Помилка при збереженні аналізу",
+ 'area_priority': "Пріоритетна область"
+ }
+ },
+ 'es': {
+ 'basic_recommendations': {
+ 'vocabulary': ["Intenta enriquecer tu vocabulario"],
+ 'structure': ["Trabaja en la estructura de tus oraciones"],
+ 'cohesion': ["Mejora la conexión entre tus ideas"],
+ 'clarity': ["Busca expresar tus ideas con mayor claridad"],
+ 'specific': ["Adapta tu texto según su propósito"],
+ },
+ 'dimension_names': {
+ 'vocabulary': 'Vocabulario',
+ 'structure': 'Estructura',
+ 'cohesion': 'Cohesión',
+ 'clarity': 'Claridad',
+ 'general': 'General'
+ },
+ 'ui_text': {
+ 'priority_intro': "Esta es el área donde debes concentrar tus esfuerzos.",
+ 'detailed_recommendations': "Recomendaciones detalladas",
+ 'save_button': "Guardar análisis",
+ 'save_success': "Análisis guardado con éxito",
+ 'save_error': "Error al guardar el análisis",
+ 'area_priority': "Área prioritaria"
+ }
+ }
+ }
+
+ # Usar el idioma actual si está disponible, o inglés, o español como última opción
+ current_lang = fallback_translations.get(lang_code,
+ fallback_translations.get('en',
+ fallback_translations['es']))
+
+ basic_recommendations = current_lang['basic_recommendations']
+
+ return {
+ 'vocabulary': basic_recommendations['vocabulary'],
+ 'structure': basic_recommendations['structure'],
+ 'cohesion': basic_recommendations['cohesion'],
+ 'clarity': basic_recommendations['clarity'],
+ 'specific': basic_recommendations['specific'],
+ 'priority': {
+ 'area': 'general',
+ 'tips': ["Busca retroalimentación específica de un tutor o profesor"]
+ },
+ 'dimension_names': current_lang['dimension_names'],
+ 'ui_text': current_lang['ui_text']
+ }
+
+
+
+
+#########################################################################
+#########################################################################
+# Funciones de generación de gráficos
+def generate_sentence_graphs(doc):
+ """Genera visualizaciones de estructura de oraciones"""
+ fig, ax = plt.subplots(figsize=(10, 6))
+ # Implementar visualización
+ plt.close()
+ return fig
+
+############################################################################
+def generate_word_connections(doc):
+ """Genera red de conexiones de palabras"""
+ fig, ax = plt.subplots(figsize=(10, 6))
+ # Implementar visualización
+ plt.close()
+ return fig
+
+############################################################################
+def generate_connection_paths(doc):
+ """Genera patrones de conexión"""
+ fig, ax = plt.subplots(figsize=(10, 6))
+ # Implementar visualización
+ plt.close()
+ return fig
+
+############################################################################
+def create_vocabulary_network(doc):
+ """
+ Genera el grafo de red de vocabulario.
+ """
+ G = nx.Graph()
+
+ # Crear nodos para palabras significativas
+ words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop]
+ word_freq = Counter(words)
+
+ # Añadir nodos con tamaño basado en frecuencia
+ for word, freq in word_freq.items():
+ G.add_node(word, size=freq)
+
+ # Crear conexiones basadas en co-ocurrencia
+ window_size = 5
+ for i in range(len(words) - window_size):
+ window = words[i:i+window_size]
+ for w1, w2 in combinations(set(window), 2):
+ if G.has_edge(w1, w2):
+ G[w1][w2]['weight'] += 1
+ else:
+ G.add_edge(w1, w2, weight=1)
+
+ # Crear visualización
+ fig, ax = plt.subplots(figsize=(12, 8))
+ pos = nx.spring_layout(G)
+
+ # Dibujar nodos
+ nx.draw_networkx_nodes(G, pos,
+ node_size=[G.nodes[node]['size']*100 for node in G.nodes],
+ node_color='lightblue',
+ alpha=0.7)
+
+ # Dibujar conexiones
+ nx.draw_networkx_edges(G, pos,
+ width=[G[u][v]['weight']*0.5 for u,v in G.edges],
+ alpha=0.5)
+
+ # Añadir etiquetas
+ nx.draw_networkx_labels(G, pos)
+
+ plt.title("Red de Vocabulario")
+ plt.axis('off')
+ return fig
+
+############################################################################
+def create_syntax_complexity_graph(doc):
+ """
+ Genera el diagrama de arco de complejidad sintáctica.
+ Muestra la estructura de dependencias con colores basados en la complejidad.
+ """
+ try:
+ # Preparar datos para la visualización
+ sentences = list(doc.sents)
+ if not sentences:
+ return None
+
+ # Crear figura para el gráfico
+ fig, ax = plt.subplots(figsize=(12, len(sentences) * 2))
+
+ # Colores para diferentes niveles de profundidad
+ depth_colors = plt.cm.viridis(np.linspace(0, 1, 6))
+
+ y_offset = 0
+ max_x = 0
+
+ for sent in sentences:
+ words = [token.text for token in sent]
+ x_positions = range(len(words))
+ max_x = max(max_x, len(words))
+
+ # Dibujar palabras
+ plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2)
+ plt.scatter(x_positions, [y_offset] * len(words), alpha=0)
+
+ # Añadir texto
+ for i, word in enumerate(words):
+ plt.annotate(word, (i, y_offset), xytext=(0, -10),
+ textcoords='offset points', ha='center')
+
+ # Dibujar arcos de dependencia
+ for token in sent:
+ if token.dep_ != "ROOT":
+ # Calcular profundidad de dependencia
+ depth = 0
+ current = token
+ while current.head != current:
+ depth += 1
+ current = current.head
+
+ # Determinar posiciones para el arco
+ start = token.i - sent[0].i
+ end = token.head.i - sent[0].i
+
+ # Altura del arco basada en la distancia entre palabras
+ height = 0.5 * abs(end - start)
+
+ # Color basado en la profundidad
+ color = depth_colors[min(depth, len(depth_colors)-1)]
+
+ # Crear arco
+ arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset),
+ width=abs(end - start),
+ height=height,
+ angle=0,
+ theta1=0,
+ theta2=180,
+ color=color,
+ alpha=0.6)
+ ax.add_patch(arc)
+
+ y_offset -= 2
+
+ # Configurar el gráfico
+ plt.xlim(-1, max_x)
+ plt.ylim(y_offset - 1, 1)
+ plt.axis('off')
+ plt.title("Complejidad Sintáctica")
+
+ return fig
+
+ except Exception as e:
+ logger.error(f"Error en create_syntax_complexity_graph: {str(e)}")
+ return None
+
+############################################################################
+def create_cohesion_heatmap(doc):
+ """Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones."""
+ try:
+ sentences = list(doc.sents)
+ n_sentences = len(sentences)
+
+ if n_sentences < 2:
+ return None
+
+ similarity_matrix = np.zeros((n_sentences, n_sentences))
+
+ for i in range(n_sentences):
+ for j in range(n_sentences):
+ sent1_lemmas = {token.lemma_ for token in sentences[i]
+ if token.is_alpha and not token.is_stop}
+ sent2_lemmas = {token.lemma_ for token in sentences[j]
+ if token.is_alpha and not token.is_stop}
+
+ if sent1_lemmas and sent2_lemmas:
+ intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aquí
+ union = len(sent1_lemmas | sent2_lemmas) # Y aquí
+ similarity_matrix[i, j] = intersection / union if union > 0 else 0
+
+ # Crear visualización
+ fig, ax = plt.subplots(figsize=(10, 8))
+
+ sns.heatmap(similarity_matrix,
+ cmap='YlOrRd',
+ square=True,
+ xticklabels=False,
+ yticklabels=False,
+ cbar_kws={'label': 'Cohesión'},
+ ax=ax)
+
+ plt.title("Mapa de Cohesión Textual")
+ plt.xlabel("Oraciones")
+ plt.ylabel("Oraciones")
+
+ plt.tight_layout()
+ return fig
+
+ except Exception as e:
+ logger.error(f"Error en create_cohesion_heatmap: {str(e)}")
+ return None
diff --git a/src/modules/studentact/current_situation_interface--FAIL.py b/src/modules/studentact/current_situation_interface--FAIL.py
new file mode 100644
index 0000000000000000000000000000000000000000..cae6e5be1412c8006108b6c8c77719bd5d684e63
--- /dev/null
+++ b/src/modules/studentact/current_situation_interface--FAIL.py
@@ -0,0 +1,608 @@
+# modules/studentact/current_situation_interface.py
+
+import streamlit as st
+import logging
+from ..utils.widget_utils import generate_unique_key
+import matplotlib.pyplot as plt
+import numpy as np
+
+from ..database.current_situation_mongo_db import store_current_situation_result
+
+from ..database.writing_progress_mongo_db import (
+ store_writing_baseline,
+ store_writing_progress,
+ get_writing_baseline,
+ get_writing_progress,
+ get_latest_writing_metrics
+)
+
+from .current_situation_analysis import (
+ analyze_text_dimensions,
+ analyze_clarity,
+ analyze_vocabulary_diversity,
+ analyze_cohesion,
+ analyze_structure,
+ get_dependency_depths,
+ normalize_score,
+ generate_sentence_graphs,
+ generate_word_connections,
+ generate_connection_paths,
+ create_vocabulary_network,
+ create_syntax_complexity_graph,
+ create_cohesion_heatmap
+)
+
+# Configuración del estilo de matplotlib para el gráfico de radar
+plt.rcParams['font.family'] = 'sans-serif'
+plt.rcParams['axes.grid'] = True
+plt.rcParams['axes.spines.top'] = False
+plt.rcParams['axes.spines.right'] = False
+
+logger = logging.getLogger(__name__)
+####################################
+
+TEXT_TYPES = {
+ 'academic_article': {
+ 'name': 'Artículo Académico',
+ 'thresholds': {
+ 'vocabulary': {'min': 0.70, 'target': 0.85},
+ 'structure': {'min': 0.75, 'target': 0.90},
+ 'cohesion': {'min': 0.65, 'target': 0.80},
+ 'clarity': {'min': 0.70, 'target': 0.85}
+ }
+ },
+ 'student_essay': {
+ 'name': 'Trabajo Universitario',
+ 'thresholds': {
+ 'vocabulary': {'min': 0.60, 'target': 0.75},
+ 'structure': {'min': 0.65, 'target': 0.80},
+ 'cohesion': {'min': 0.55, 'target': 0.70},
+ 'clarity': {'min': 0.60, 'target': 0.75}
+ }
+ },
+ 'general_communication': {
+ 'name': 'Comunicación General',
+ 'thresholds': {
+ 'vocabulary': {'min': 0.50, 'target': 0.65},
+ 'structure': {'min': 0.55, 'target': 0.70},
+ 'cohesion': {'min': 0.45, 'target': 0.60},
+ 'clarity': {'min': 0.50, 'target': 0.65}
+ }
+ }
+}
+####################################
+
+ANALYSIS_DIMENSION_MAPPING = {
+ 'morphosyntactic': {
+ 'primary': ['vocabulary', 'clarity'],
+ 'secondary': ['structure'],
+ 'tools': ['arc_diagrams', 'word_repetition']
+ },
+ 'semantic': {
+ 'primary': ['cohesion', 'structure'],
+ 'secondary': ['vocabulary'],
+ 'tools': ['concept_graphs', 'semantic_networks']
+ },
+ 'discourse': {
+ 'primary': ['cohesion', 'structure'],
+ 'secondary': ['clarity'],
+ 'tools': ['comparative_analysis']
+ }
+}
+
+##############################################################################
+# FUNCIÓN PRINCIPAL
+##############################################################################
+def display_current_situation_interface(lang_code, nlp_models, t):
+ """
+ TAB:
+ - Expander con radio para tipo de texto
+ Contenedor-1 con expanders:
+ - Expander "Métricas de la línea base"
+ - Expander "Métricas de la iteración"
+ Contenedor-2 (2 columnas):
+ - Col1: Texto base
+ - Col2: Texto iteración
+ Al final, Recomendaciones en un expander (una sola “fila”).
+ """
+
+ # --- Inicializar session_state ---
+ if 'base_text' not in st.session_state:
+ st.session_state.base_text = ""
+ if 'iter_text' not in st.session_state:
+ st.session_state.iter_text = ""
+ if 'base_metrics' not in st.session_state:
+ st.session_state.base_metrics = {}
+ if 'iter_metrics' not in st.session_state:
+ st.session_state.iter_metrics = {}
+ if 'show_base' not in st.session_state:
+ st.session_state.show_base = False
+ if 'show_iter' not in st.session_state:
+ st.session_state.show_iter = False
+
+ # Creamos un tab
+ tabs = st.tabs(["Análisis de Texto"])
+ with tabs[0]:
+ # [1] Expander con radio para seleccionar tipo de texto
+ with st.expander("Selecciona el tipo de texto", expanded=True):
+ text_type = st.radio(
+ "¿Qué tipo de texto quieres analizar?",
+ options=list(TEXT_TYPES.keys()),
+ format_func=lambda x: TEXT_TYPES[x]['name'],
+ index=0
+ )
+ st.session_state.current_text_type = text_type
+
+ st.markdown("---")
+
+ # ---------------------------------------------------------------------
+ # CONTENEDOR-1: Expanders para métricas base e iteración
+ # ---------------------------------------------------------------------
+ with st.container():
+ # --- Expander para la línea base ---
+ with st.expander("Métricas de la línea base", expanded=False):
+ if st.session_state.show_base and st.session_state.base_metrics:
+ # Mostramos los valores reales
+ display_metrics_in_one_row(st.session_state.base_metrics, text_type)
+ else:
+ # Mostramos la maqueta vacía
+ display_empty_metrics_row()
+
+ # --- Expander para la iteración ---
+ with st.expander("Métricas de la iteración", expanded=False):
+ if st.session_state.show_iter and st.session_state.iter_metrics:
+ display_metrics_in_one_row(st.session_state.iter_metrics, text_type)
+ else:
+ display_empty_metrics_row()
+
+ st.markdown("---")
+
+ # ---------------------------------------------------------------------
+ # CONTENEDOR-2: 2 columnas (texto base | texto iteración)
+ # ---------------------------------------------------------------------
+ with st.container():
+ col_left, col_right = st.columns(2)
+
+ # Columna izquierda: Texto base
+ with col_left:
+ st.markdown("**Texto base**")
+ text_base = st.text_area(
+ label="",
+ value=st.session_state.base_text,
+ key="text_base_area",
+ placeholder="Pega aquí tu texto base",
+ )
+ if st.button("Analizar Base"):
+ with st.spinner("Analizando texto base..."):
+ doc = nlp_models[lang_code](text_base)
+ metrics = analyze_text_dimensions(doc)
+
+ st.session_state.base_text = text_base
+ st.session_state.base_metrics = metrics
+ st.session_state.show_base = True
+ # Al analizar base, reiniciamos la iteración
+ st.session_state.show_iter = False
+
+ # Columna derecha: Texto iteración
+ with col_right:
+ st.markdown("**Texto de iteración**")
+ text_iter = st.text_area(
+ label="",
+ value=st.session_state.iter_text,
+ key="text_iter_area",
+ placeholder="Edita y mejora tu texto...",
+ disabled=not st.session_state.show_base
+ )
+ if st.button("Analizar Iteración", disabled=not st.session_state.show_base):
+ with st.spinner("Analizando iteración..."):
+ doc = nlp_models[lang_code](text_iter)
+ metrics = analyze_text_dimensions(doc)
+
+ st.session_state.iter_text = text_iter
+ st.session_state.iter_metrics = metrics
+ st.session_state.show_iter = True
+
+ # ---------------------------------------------------------------------
+ # Recomendaciones al final en un expander (una sola “fila”)
+ # ---------------------------------------------------------------------
+ if st.session_state.show_iter:
+ with st.expander("Recomendaciones", expanded=False):
+ reco_list = []
+ for dimension, values in st.session_state.iter_metrics.items():
+ score = values['normalized_score']
+ target = TEXT_TYPES[text_type]['thresholds'][dimension]['target']
+ if score < target:
+ # Aquí, en lugar de get_dimension_suggestions, unificamos con:
+ suggestions = suggest_improvement_tools_list(dimension)
+ reco_list.extend(suggestions)
+
+ if reco_list:
+ # Todas en una sola línea
+ st.write(" | ".join(reco_list))
+ else:
+ st.info("¡No hay recomendaciones! Todas las métricas superan la meta.")
+
+
+
+
+
+
+
+#Funciones de visualización ##################################
+############################################################
+# Funciones de visualización para las métricas
+############################################################
+
+def display_metrics_in_one_row(metrics, text_type):
+ """
+ Muestra las cuatro dimensiones (Vocabulario, Estructura, Cohesión, Claridad)
+ en una sola línea, usando 4 columnas con ancho uniforme.
+ """
+ thresholds = TEXT_TYPES[text_type]['thresholds']
+ dimensions = ["vocabulary", "structure", "cohesion", "clarity"]
+
+ col1, col2, col3, col4 = st.columns([1,1,1,1])
+ cols = [col1, col2, col3, col4]
+
+ for dim, col in zip(dimensions, cols):
+ score = metrics[dim]['normalized_score']
+ target = thresholds[dim]['target']
+ min_val = thresholds[dim]['min']
+
+ if score < min_val:
+ status = "⚠️ Por mejorar"
+ color = "inverse"
+ elif score < target:
+ status = "📈 Aceptable"
+ color = "off"
+ else:
+ status = "✅ Óptimo"
+ color = "normal"
+
+ with col:
+ col.metric(
+ label=dim.capitalize(),
+ value=f"{score:.2f}",
+ delta=f"{status} (Meta: {target:.2f})",
+ delta_color=color,
+ border=True
+ )
+
+
+# -------------------------------------------------------------------------
+# Función que muestra una fila de 4 columnas “vacías”
+# -------------------------------------------------------------------------
+def display_empty_metrics_row():
+ """
+ Muestra una fila de 4 columnas vacías (Vocabulario, Estructura, Cohesión, Claridad).
+ Cada columna se dibuja con st.metric en blanco (“-”).
+ """
+ empty_cols = st.columns([1,1,1,1])
+ labels = ["Vocabulario", "Estructura", "Cohesión", "Claridad"]
+
+ for col, lbl in zip(empty_cols, labels):
+ with col:
+ col.metric(
+ label=lbl,
+ value="-",
+ delta="",
+ border=True
+ )
+
+
+
+####################################################################
+
+def display_metrics_analysis(metrics, text_type=None):
+ """
+ Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
+ """
+ try:
+ # Usar valor por defecto si no se especifica tipo
+ text_type = text_type or 'student_essay'
+
+ # Obtener umbrales según el tipo de texto
+ thresholds = TEXT_TYPES[text_type]['thresholds']
+
+ # Crear dos columnas para las métricas y el gráfico
+ metrics_col, graph_col = st.columns([1, 1.5])
+
+ # Columna de métricas
+ with metrics_col:
+ metrics_config = [
+ {
+ 'label': "Vocabulario",
+ 'key': 'vocabulary',
+ 'value': metrics['vocabulary']['normalized_score'],
+ 'help': "Riqueza y variedad del vocabulario",
+ 'thresholds': thresholds['vocabulary']
+ },
+ {
+ 'label': "Estructura",
+ 'key': 'structure',
+ 'value': metrics['structure']['normalized_score'],
+ 'help': "Organización y complejidad de oraciones",
+ 'thresholds': thresholds['structure']
+ },
+ {
+ 'label': "Cohesión",
+ 'key': 'cohesion',
+ 'value': metrics['cohesion']['normalized_score'],
+ 'help': "Conexión y fluidez entre ideas",
+ 'thresholds': thresholds['cohesion']
+ },
+ {
+ 'label': "Claridad",
+ 'key': 'clarity',
+ 'value': metrics['clarity']['normalized_score'],
+ 'help': "Facilidad de comprensión del texto",
+ 'thresholds': thresholds['clarity']
+ }
+ ]
+
+ # Mostrar métricas
+ for metric in metrics_config:
+ value = metric['value']
+ if value < metric['thresholds']['min']:
+ status = "⚠️ Por mejorar"
+ color = "inverse"
+ elif value < metric['thresholds']['target']:
+ status = "📈 Aceptable"
+ color = "off"
+ else:
+ status = "✅ Óptimo"
+ color = "normal"
+
+ st.metric(
+ metric['label'],
+ f"{value:.2f}",
+ f"{status} (Meta: {metric['thresholds']['target']:.2f})",
+ delta_color=color,
+ help=metric['help']
+ )
+ st.markdown("", unsafe_allow_html=True)
+
+ except Exception as e:
+ logger.error(f"Error mostrando resultados: {str(e)}")
+ st.error("Error al mostrar los resultados")
+
+def display_comparison_results(baseline_metrics, current_metrics):
+ """Muestra comparación entre línea base y métricas actuales"""
+
+ # Crear columnas para métricas y gráfico
+ metrics_col, graph_col = st.columns([1, 1.5])
+
+ with metrics_col:
+ for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']:
+ baseline = baseline_metrics[dimension]['normalized_score']
+ current = current_metrics[dimension]['normalized_score']
+ delta = current - baseline
+
+ st.metric(
+ dimension.title(),
+ f"{current:.2f}",
+ f"{delta:+.2f}",
+ delta_color="normal" if delta >= 0 else "inverse"
+ )
+
+ # Sugerir herramientas de mejora
+ if delta < 0:
+ suggest_improvement_tools(dimension)
+
+ with graph_col:
+ display_radar_chart_comparison(
+ baseline_metrics,
+ current_metrics
+ )
+
+def display_metrics_and_suggestions(metrics, text_type, title, show_suggestions=False):
+ """
+ Muestra métricas y opcionalmente sugerencias de mejora.
+ Args:
+ metrics: Diccionario con las métricas analizadas
+ text_type: Tipo de texto seleccionado
+ title: Título para las métricas ("Base" o "Iteración")
+ show_suggestions: Booleano para mostrar sugerencias
+ """
+ try:
+ thresholds = TEXT_TYPES[text_type]['thresholds']
+
+ st.markdown(f"### Métricas {title}")
+
+ for dimension, values in metrics.items():
+ score = values['normalized_score']
+ target = thresholds[dimension]['target']
+ min_val = thresholds[dimension]['min']
+
+ # Determinar estado y color
+ if score < min_val:
+ status = "⚠️ Por mejorar"
+ color = "inverse"
+ elif score < target:
+ status = "📈 Aceptable"
+ color = "off"
+ else:
+ status = "✅ Óptimo"
+ color = "normal"
+
+ # Mostrar métrica
+ st.metric(
+ dimension.title(),
+ f"{score:.2f}",
+ f"{status} (Meta: {target:.2f})",
+ delta_color=color,
+ help=f"Meta: {target:.2f}, Mínimo: {min_val:.2f}"
+ )
+
+ # Mostrar sugerencias si es necesario
+ if show_suggestions and score < target:
+ suggest_improvement_tools(dimension)
+
+ # Agregar espacio entre métricas
+ st.markdown("", unsafe_allow_html=True)
+
+ except Exception as e:
+ logger.error(f"Error mostrando métricas: {str(e)}")
+ st.error("Error al mostrar métricas")
+
+def display_radar_chart(metrics_config, thresholds, baseline_metrics=None):
+ """
+ Muestra el gráfico radar con los resultados.
+ Args:
+ metrics_config: Configuración actual de métricas
+ thresholds: Umbrales para las métricas
+ baseline_metrics: Métricas de línea base (opcional)
+ """
+ try:
+ # Preparar datos para el gráfico
+ categories = [m['label'] for m in metrics_config]
+ values_current = [m['value'] for m in metrics_config]
+ min_values = [m['thresholds']['min'] for m in metrics_config]
+ target_values = [m['thresholds']['target'] for m in metrics_config]
+
+ # Crear y configurar gráfico
+ fig = plt.figure(figsize=(8, 8))
+ ax = fig.add_subplot(111, projection='polar')
+
+ # Configurar radar
+ angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))]
+ angles += angles[:1]
+ values_current += values_current[:1]
+ min_values += min_values[:1]
+ target_values += target_values[:1]
+
+ # Configurar ejes
+ ax.set_xticks(angles[:-1])
+ ax.set_xticklabels(categories, fontsize=10)
+ circle_ticks = np.arange(0, 1.1, 0.2)
+ ax.set_yticks(circle_ticks)
+ ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
+ ax.set_ylim(0, 1)
+
+ # Dibujar áreas de umbrales
+ ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1,
+ label='Mínimo', alpha=0.5)
+ ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1,
+ label='Meta', alpha=0.5)
+ ax.fill_between(angles, target_values, [1]*len(angles),
+ color='#2ecc71', alpha=0.1)
+ ax.fill_between(angles, [0]*len(angles), min_values,
+ color='#e74c3c', alpha=0.1)
+
+ # Si hay línea base, dibujarla primero
+ if baseline_metrics is not None:
+ values_baseline = [baseline_metrics[m['key']]['normalized_score']
+ for m in metrics_config]
+ values_baseline += values_baseline[:1]
+ ax.plot(angles, values_baseline, '#888888', linewidth=2,
+ label='Línea base', linestyle='--')
+ ax.fill(angles, values_baseline, '#888888', alpha=0.1)
+
+ # Dibujar valores actuales
+ label = 'Actual' if baseline_metrics else 'Tu escritura'
+ color = '#3498db' if baseline_metrics else '#3498db'
+
+ ax.plot(angles, values_current, color, linewidth=2, label=label)
+ ax.fill(angles, values_current, color, alpha=0.2)
+
+ # Ajustar leyenda
+ legend_handles = []
+ if baseline_metrics:
+ legend_handles.extend([
+ plt.Line2D([], [], color='#888888', linestyle='--',
+ label='Línea base'),
+ plt.Line2D([], [], color='#3498db', label='Actual')
+ ])
+ else:
+ legend_handles.extend([
+ plt.Line2D([], [], color='#3498db', label='Tu escritura')
+ ])
+
+ legend_handles.extend([
+ plt.Line2D([], [], color='#e74c3c', linestyle='--', label='Mínimo'),
+ plt.Line2D([], [], color='#2ecc71', linestyle='--', label='Meta')
+ ])
+
+ ax.legend(
+ handles=legend_handles,
+ loc='upper right',
+ bbox_to_anchor=(1.3, 1.1),
+ fontsize=10,
+ frameon=True,
+ facecolor='white',
+ edgecolor='none',
+ shadow=True
+ )
+
+ plt.tight_layout()
+ st.pyplot(fig)
+ plt.close()
+
+ except Exception as e:
+ logger.error(f"Error mostrando gráfico radar: {str(e)}")
+ st.error("Error al mostrar el gráfico")
+
+#Funciones auxiliares ##################################
+
+
+############################################################
+# Unificamos la lógica de sugerencias en una función
+############################################################
+def suggest_improvement_tools_list(dimension):
+ """
+ Retorna en forma de lista las herramientas sugeridas
+ basadas en 'ANALYSIS_DIMENSION_MAPPING'.
+ """
+ suggestions = []
+ for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items():
+ # Verificamos si la dimensión está en primary o secondary
+ if dimension in mapping['primary'] or dimension in mapping['secondary']:
+ suggestions.extend(mapping['tools'])
+ # Si no hay nada, al menos retornamos un placeholder
+ return suggestions if suggestions else ["Sin sugerencias específicas."]
+
+
+def prepare_metrics_config(metrics, text_type='student_essay'):
+ """
+ Prepara la configuración de métricas en el mismo formato que display_results.
+ Args:
+ metrics: Diccionario con las métricas analizadas
+ text_type: Tipo de texto para los umbrales
+ Returns:
+ list: Lista de configuraciones de métricas
+ """
+ # Obtener umbrales según el tipo de texto
+ thresholds = TEXT_TYPES[text_type]['thresholds']
+
+ # Usar la misma estructura que en display_results
+ return [
+ {
+ 'label': "Vocabulario",
+ 'key': 'vocabulary',
+ 'value': metrics['vocabulary']['normalized_score'],
+ 'help': "Riqueza y variedad del vocabulario",
+ 'thresholds': thresholds['vocabulary']
+ },
+ {
+ 'label': "Estructura",
+ 'key': 'structure',
+ 'value': metrics['structure']['normalized_score'],
+ 'help': "Organización y complejidad de oraciones",
+ 'thresholds': thresholds['structure']
+ },
+ {
+ 'label': "Cohesión",
+ 'key': 'cohesion',
+ 'value': metrics['cohesion']['normalized_score'],
+ 'help': "Conexión y fluidez entre ideas",
+ 'thresholds': thresholds['cohesion']
+ },
+ {
+ 'label': "Claridad",
+ 'key': 'clarity',
+ 'value': metrics['clarity']['normalized_score'],
+ 'help': "Facilidad de comprensión del texto",
+ 'thresholds': thresholds['clarity']
+ }
+ ]
+
diff --git a/src/modules/studentact/current_situation_interface-v1.py b/src/modules/studentact/current_situation_interface-v1.py
new file mode 100644
index 0000000000000000000000000000000000000000..6119f6bf146976da43fe9311b5fc54551173341a
--- /dev/null
+++ b/src/modules/studentact/current_situation_interface-v1.py
@@ -0,0 +1,272 @@
+# modules/studentact/current_situation_interface.py
+
+import streamlit as st
+import logging
+from ..utils.widget_utils import generate_unique_key
+from .current_situation_analysis import (
+ analyze_text_dimensions,
+ analyze_clarity,
+ analyze_reference_clarity,
+ analyze_vocabulary_diversity,
+ analyze_cohesion,
+ analyze_structure,
+ get_dependency_depths,
+ normalize_score,
+ generate_sentence_graphs,
+ generate_word_connections,
+ generate_connection_paths,
+ create_vocabulary_network,
+ create_syntax_complexity_graph,
+ create_cohesion_heatmap,
+)
+
+logger = logging.getLogger(__name__)
+####################################
+def display_current_situation_interface(lang_code, nlp_models, t):
+ """
+ Interfaz simplificada para el análisis inicial, enfocada en recomendaciones directas.
+ """
+ # Inicializar estados si no existen
+ if 'text_input' not in st.session_state:
+ st.session_state.text_input = ""
+ if 'show_results' not in st.session_state:
+ st.session_state.show_results = False
+ if 'current_doc' not in st.session_state:
+ st.session_state.current_doc = None
+ if 'current_metrics' not in st.session_state:
+ st.session_state.current_metrics = None
+
+ st.markdown("## Análisis Inicial de Escritura")
+
+ # Container principal con dos columnas
+ with st.container():
+ input_col, results_col = st.columns([1,2])
+
+ with input_col:
+ st.markdown("### Ingresa tu texto")
+
+ # Función para manejar cambios en el texto
+ def on_text_change():
+ st.session_state.text_input = st.session_state.text_area
+ st.session_state.show_results = False # Resetear resultados cuando el texto cambia
+
+ # Text area con manejo de estado
+ text_input = st.text_area(
+ t.get('input_prompt', "Escribe o pega tu texto aquí:"),
+ height=400,
+ key="text_area",
+ value=st.session_state.text_input,
+ on_change=on_text_change,
+ help="Este texto será analizado para darte recomendaciones personalizadas"
+ )
+
+ # Botón de análisis
+ if st.button(
+ t.get('analyze_button', "Analizar mi escritura"),
+ type="primary",
+ disabled=not text_input.strip(),
+ use_container_width=True,
+ ):
+ try:
+ with st.spinner(t.get('processing', "Analizando...")):
+ # Procesar texto y obtener métricas
+ doc = nlp_models[lang_code](text_input)
+ metrics = analyze_text_dimensions(doc)
+
+ # Actualizar estado con nuevos resultados
+ st.session_state.current_doc = doc
+ st.session_state.current_metrics = metrics
+ st.session_state.show_results = True
+
+ # Mantener el texto en el estado
+ st.session_state.text_input = text_input
+
+ except Exception as e:
+ logger.error(f"Error en análisis: {str(e)}")
+ st.error(t.get('analysis_error', "Error al analizar el texto"))
+
+ # Mostrar resultados en la columna derecha
+ with results_col:
+ if st.session_state.show_results and st.session_state.current_metrics is not None:
+ display_recommendations(st.session_state.current_metrics, t)
+
+ # Opción para ver detalles
+ with st.expander("🔍 Ver análisis detallado", expanded=False):
+ display_current_situation_visual(
+ st.session_state.current_doc,
+ st.session_state.current_metrics
+ )
+
+def display_current_situation_visual(doc, metrics):
+ """
+ Muestra visualizaciones detalladas del análisis.
+ """
+ try:
+ st.markdown("### 📊 Visualizaciones Detalladas")
+
+ # 1. Visualización de vocabulario
+ with st.expander("Análisis de Vocabulario", expanded=True):
+ vocab_graph = create_vocabulary_network(doc)
+ if vocab_graph:
+ st.pyplot(vocab_graph)
+ plt.close(vocab_graph)
+
+ # 2. Visualización de estructura
+ with st.expander("Análisis de Estructura", expanded=True):
+ syntax_graph = create_syntax_complexity_graph(doc)
+ if syntax_graph:
+ st.pyplot(syntax_graph)
+ plt.close(syntax_graph)
+
+ # 3. Visualización de cohesión
+ with st.expander("Análisis de Cohesión", expanded=True):
+ cohesion_graph = create_cohesion_heatmap(doc)
+ if cohesion_graph:
+ st.pyplot(cohesion_graph)
+ plt.close(cohesion_graph)
+
+ except Exception as e:
+ logger.error(f"Error en visualización: {str(e)}")
+ st.error("Error al generar las visualizaciones")
+
+
+####################################
+def display_recommendations(metrics, t):
+ """
+ Muestra recomendaciones basadas en las métricas del texto.
+ """
+ # 1. Resumen Visual con Explicación
+ st.markdown("### 📊 Resumen de tu Análisis")
+
+ # Explicación del sistema de medición
+ st.markdown("""
+ **¿Cómo interpretar los resultados?**
+
+ Cada métrica se mide en una escala de 0.0 a 1.0, donde:
+ - 0.0 - 0.4: Necesita atención prioritaria
+ - 0.4 - 0.6: En desarrollo
+ - 0.6 - 0.8: Buen nivel
+ - 0.8 - 1.0: Nivel avanzado
+ """)
+
+ # Métricas con explicaciones detalladas
+ col1, col2, col3, col4 = st.columns(4)
+
+ with col1:
+ st.metric(
+ "Vocabulario",
+ f"{metrics['vocabulary']['normalized_score']:.2f}",
+ help="Mide la variedad y riqueza de tu vocabulario. Un valor alto indica un uso diverso de palabras sin repeticiones excesivas."
+ )
+ with st.expander("ℹ️ Detalles"):
+ st.write("""
+ **Vocabulario**
+ - Evalúa la diversidad léxica
+ - Considera palabras únicas vs. totales
+ - Detecta repeticiones innecesarias
+ - Valor óptimo: > 0.7
+ """)
+
+ with col2:
+ st.metric(
+ "Estructura",
+ f"{metrics['structure']['normalized_score']:.2f}",
+ help="Evalúa la complejidad y variedad de las estructuras sintácticas en tus oraciones."
+ )
+ with st.expander("ℹ️ Detalles"):
+ st.write("""
+ **Estructura**
+ - Analiza la complejidad sintáctica
+ - Mide variación en construcciones
+ - Evalúa longitud de oraciones
+ - Valor óptimo: > 0.6
+ """)
+
+ with col3:
+ st.metric(
+ "Cohesión",
+ f"{metrics['cohesion']['normalized_score']:.2f}",
+ help="Indica qué tan bien conectadas están tus ideas y párrafos entre sí."
+ )
+ with st.expander("ℹ️ Detalles"):
+ st.write("""
+ **Cohesión**
+ - Mide conexiones entre ideas
+ - Evalúa uso de conectores
+ - Analiza progresión temática
+ - Valor óptimo: > 0.65
+ """)
+
+ with col4:
+ st.metric(
+ "Claridad",
+ f"{metrics['clarity']['normalized_score']:.2f}",
+ help="Evalúa la facilidad de comprensión general de tu texto."
+ )
+ with st.expander("ℹ️ Detalles"):
+ st.write("""
+ **Claridad**
+ - Evalúa comprensibilidad
+ - Considera estructura lógica
+ - Mide precisión expresiva
+ - Valor óptimo: > 0.7
+ """)
+
+ st.markdown("---")
+
+ # 2. Recomendaciones basadas en puntuaciones
+ st.markdown("### 💡 Recomendaciones Personalizadas")
+
+ # Recomendaciones morfosintácticas
+ if metrics['structure']['normalized_score'] < 0.6:
+ st.warning("""
+ #### 📝 Análisis Morfosintáctico Recomendado
+
+ **Tu nivel actual sugiere que sería beneficioso:**
+ 1. Realizar el análisis morfosintáctico de 3 párrafos diferentes
+ 2. Practicar la combinación de oraciones simples en compuestas
+ 3. Identificar y clasificar tipos de oraciones en textos académicos
+ 4. Ejercitar la variación sintáctica
+
+ *Hacer clic en "Comenzar ejercicios" para acceder al módulo morfosintáctico*
+ """)
+
+ # Recomendaciones semánticas
+ if metrics['vocabulary']['normalized_score'] < 0.7:
+ st.warning("""
+ #### 📚 Análisis Semántico Recomendado
+
+ **Para mejorar tu vocabulario y expresión:**
+ A. Realiza el análisis semántico de un texto académico
+ B. Identifica y agrupa campos semánticos relacionados
+ C. Practica la sustitución léxica en tus párrafos
+ D. Construye redes de conceptos sobre tu tema
+ E. Analiza las relaciones entre ideas principales
+
+ *Hacer clic en "Comenzar ejercicios" para acceder al módulo semántico*
+ """)
+
+ # Recomendaciones de cohesión
+ if metrics['cohesion']['normalized_score'] < 0.65:
+ st.warning("""
+ #### 🔄 Análisis del Discurso Recomendado
+
+ **Para mejorar la conexión entre ideas:**
+ 1. Realizar el análisis del discurso de un texto modelo
+ 2. Practicar el uso de diferentes conectores textuales
+ 3. Identificar cadenas de referencia en textos académicos
+ 4. Ejercitar la progresión temática en tus escritos
+
+ *Hacer clic en "Comenzar ejercicios" para acceder al módulo de análisis del discurso*
+ """)
+
+ # Botón de acción
+ st.markdown("---")
+ col1, col2, col3 = st.columns([1,2,1])
+ with col2:
+ st.button(
+ "🎯 Comenzar ejercicios recomendados",
+ type="primary",
+ use_container_width=True,
+ key="start_exercises"
+ )
\ No newline at end of file
diff --git a/src/modules/studentact/current_situation_interface-v2.py b/src/modules/studentact/current_situation_interface-v2.py
new file mode 100644
index 0000000000000000000000000000000000000000..64316c76a1bc41b01bdfd35d76e7f47117aefa24
--- /dev/null
+++ b/src/modules/studentact/current_situation_interface-v2.py
@@ -0,0 +1,291 @@
+# modules/studentact/current_situation_interface.py
+
+import streamlit as st
+import logging
+from ..utils.widget_utils import generate_unique_key
+
+from ..database.current_situation_mongo_db import store_current_situation_result
+
+from .current_situation_analysis import (
+ analyze_text_dimensions,
+ analyze_clarity,
+ analyze_reference_clarity,
+ analyze_vocabulary_diversity,
+ analyze_cohesion,
+ analyze_structure,
+ get_dependency_depths,
+ normalize_score,
+ generate_sentence_graphs,
+ generate_word_connections,
+ generate_connection_paths,
+ create_vocabulary_network,
+ create_syntax_complexity_graph,
+ create_cohesion_heatmap,
+)
+
+logger = logging.getLogger(__name__)
+####################################
+
+def display_current_situation_interface(lang_code, nlp_models, t):
+ """
+ Interfaz simplificada para el análisis inicial, enfocada en recomendaciones directas.
+ """
+ try:
+ # Inicializar estados si no existen
+ if 'text_input' not in st.session_state:
+ st.session_state.text_input = ""
+ if 'show_results' not in st.session_state:
+ st.session_state.show_results = False
+ if 'current_doc' not in st.session_state:
+ st.session_state.current_doc = None
+ if 'current_metrics' not in st.session_state:
+ st.session_state.current_metrics = None
+
+ st.markdown("## Análisis Inicial de Escritura")
+
+ # Container principal con dos columnas
+ with st.container():
+ input_col, results_col = st.columns([1,2])
+
+ with input_col:
+ st.markdown("### Ingresa tu texto")
+
+ # Función para manejar cambios en el texto
+ def on_text_change():
+ st.session_state.text_input = st.session_state.text_area
+ st.session_state.show_results = False # Resetear resultados cuando el texto cambia
+
+ # Text area con manejo de estado
+ text_input = st.text_area(
+ t.get('input_prompt', "Escribe o pega tu texto aquí:"),
+ height=400,
+ key="text_area",
+ value=st.session_state.text_input,
+ on_change=on_text_change,
+ help="Este texto será analizado para darte recomendaciones personalizadas"
+ )
+
+ if st.button(
+ t.get('analyze_button', "Analizar mi escritura"),
+ type="primary",
+ disabled=not text_input.strip(),
+ use_container_width=True,
+ ):
+ try:
+ with st.spinner(t.get('processing', "Analizando...")):
+ # Procesar texto y obtener métricas
+ doc = nlp_models[lang_code](text_input)
+ metrics = analyze_text_dimensions(doc)
+
+ # Guardar en MongoDB
+ storage_success = store_current_situation_result(
+ username=st.session_state.username,
+ text=text_input,
+ metrics=metrics,
+ feedback=None # Por ahora sin feedback
+ )
+
+ if not storage_success:
+ logger.warning("No se pudo guardar el análisis en la base de datos")
+
+ # Actualizar estado
+ st.session_state.current_doc = doc
+ st.session_state.current_metrics = metrics
+ st.session_state.show_results = True
+ st.session_state.text_input = text_input
+
+ except Exception as e:
+ logger.error(f"Error en análisis: {str(e)}")
+ st.error(t.get('analysis_error', "Error al analizar el texto"))
+
+ # Mostrar resultados en la columna derecha
+ with results_col:
+ if st.session_state.show_results and st.session_state.current_metrics is not None:
+ display_recommendations(st.session_state.current_metrics, t)
+
+ # Opción para ver detalles
+ with st.expander("🔍 Ver análisis detallado", expanded=False):
+ display_current_situation_visual(
+ st.session_state.current_doc,
+ st.session_state.current_metrics
+ )
+
+ except Exception as e:
+ logger.error(f"Error en interfaz: {str(e)}")
+ st.error("Ocurrió un error. Por favor, intente de nuevo.")
+
+
+
+def display_current_situation_visual(doc, metrics):
+ """
+ Muestra visualizaciones detalladas del análisis.
+ """
+ try:
+ st.markdown("### 📊 Visualizaciones Detalladas")
+
+ # 1. Visualización de vocabulario
+ with st.expander("Análisis de Vocabulario", expanded=True):
+ vocab_graph = create_vocabulary_network(doc)
+ if vocab_graph:
+ st.pyplot(vocab_graph)
+ plt.close(vocab_graph)
+
+ # 2. Visualización de estructura
+ with st.expander("Análisis de Estructura", expanded=True):
+ syntax_graph = create_syntax_complexity_graph(doc)
+ if syntax_graph:
+ st.pyplot(syntax_graph)
+ plt.close(syntax_graph)
+
+ # 3. Visualización de cohesión
+ with st.expander("Análisis de Cohesión", expanded=True):
+ cohesion_graph = create_cohesion_heatmap(doc)
+ if cohesion_graph:
+ st.pyplot(cohesion_graph)
+ plt.close(cohesion_graph)
+
+ except Exception as e:
+ logger.error(f"Error en visualización: {str(e)}")
+ st.error("Error al generar las visualizaciones")
+
+
+####################################
+def display_recommendations(metrics, t):
+ """
+ Muestra recomendaciones basadas en las métricas del texto.
+ """
+ # 1. Resumen Visual con Explicación
+ st.markdown("### 📊 Resumen de tu Análisis")
+
+ # Explicación del sistema de medición
+ st.markdown("""
+ **¿Cómo interpretar los resultados?**
+
+ Cada métrica se mide en una escala de 0.0 a 1.0, donde:
+ - 0.0 - 0.4: Necesita atención prioritaria
+ - 0.4 - 0.6: En desarrollo
+ - 0.6 - 0.8: Buen nivel
+ - 0.8 - 1.0: Nivel avanzado
+ """)
+
+ # Métricas con explicaciones detalladas
+ col1, col2, col3, col4 = st.columns(4)
+
+ with col1:
+ st.metric(
+ "Vocabulario",
+ f"{metrics['vocabulary']['normalized_score']:.2f}",
+ help="Mide la variedad y riqueza de tu vocabulario. Un valor alto indica un uso diverso de palabras sin repeticiones excesivas."
+ )
+ with st.expander("ℹ️ Detalles"):
+ st.write("""
+ **Vocabulario**
+ - Evalúa la diversidad léxica
+ - Considera palabras únicas vs. totales
+ - Detecta repeticiones innecesarias
+ - Valor óptimo: > 0.7
+ """)
+
+ with col2:
+ st.metric(
+ "Estructura",
+ f"{metrics['structure']['normalized_score']:.2f}",
+ help="Evalúa la complejidad y variedad de las estructuras sintácticas en tus oraciones."
+ )
+ with st.expander("ℹ️ Detalles"):
+ st.write("""
+ **Estructura**
+ - Analiza la complejidad sintáctica
+ - Mide variación en construcciones
+ - Evalúa longitud de oraciones
+ - Valor óptimo: > 0.6
+ """)
+
+ with col3:
+ st.metric(
+ "Cohesión",
+ f"{metrics['cohesion']['normalized_score']:.2f}",
+ help="Indica qué tan bien conectadas están tus ideas y párrafos entre sí."
+ )
+ with st.expander("ℹ️ Detalles"):
+ st.write("""
+ **Cohesión**
+ - Mide conexiones entre ideas
+ - Evalúa uso de conectores
+ - Analiza progresión temática
+ - Valor óptimo: > 0.65
+ """)
+
+ with col4:
+ st.metric(
+ "Claridad",
+ f"{metrics['clarity']['normalized_score']:.2f}",
+ help="Evalúa la facilidad de comprensión general de tu texto."
+ )
+ with st.expander("ℹ️ Detalles"):
+ st.write("""
+ **Claridad**
+ - Evalúa comprensibilidad
+ - Considera estructura lógica
+ - Mide precisión expresiva
+ - Valor óptimo: > 0.7
+ """)
+
+ st.markdown("---")
+
+ # 2. Recomendaciones basadas en puntuaciones
+ st.markdown("### 💡 Recomendaciones Personalizadas")
+
+ # Recomendaciones morfosintácticas
+ if metrics['structure']['normalized_score'] < 0.6:
+ st.warning("""
+ #### 📝 Análisis Morfosintáctico Recomendado
+
+ **Tu nivel actual sugiere que sería beneficioso:**
+ 1. Realizar el análisis morfosintáctico de 3 párrafos diferentes
+ 2. Practicar la combinación de oraciones simples en compuestas
+ 3. Identificar y clasificar tipos de oraciones en textos académicos
+ 4. Ejercitar la variación sintáctica
+
+ *Hacer clic en "Comenzar ejercicios" para acceder al módulo morfosintáctico*
+ """)
+
+ # Recomendaciones semánticas
+ if metrics['vocabulary']['normalized_score'] < 0.7:
+ st.warning("""
+ #### 📚 Análisis Semántico Recomendado
+
+ **Para mejorar tu vocabulario y expresión:**
+ A. Realiza el análisis semántico de un texto académico
+ B. Identifica y agrupa campos semánticos relacionados
+ C. Practica la sustitución léxica en tus párrafos
+ D. Construye redes de conceptos sobre tu tema
+ E. Analiza las relaciones entre ideas principales
+
+ *Hacer clic en "Comenzar ejercicios" para acceder al módulo semántico*
+ """)
+
+ # Recomendaciones de cohesión
+ if metrics['cohesion']['normalized_score'] < 0.65:
+ st.warning("""
+ #### 🔄 Análisis del Discurso Recomendado
+
+ **Para mejorar la conexión entre ideas:**
+ 1. Realizar el análisis del discurso de un texto modelo
+ 2. Practicar el uso de diferentes conectores textuales
+ 3. Identificar cadenas de referencia en textos académicos
+ 4. Ejercitar la progresión temática en tus escritos
+
+ *Hacer clic en "Comenzar ejercicios" para acceder al módulo de análisis del discurso*
+ """)
+
+ # Botón de acción
+ st.markdown("---")
+ col1, col2, col3 = st.columns([1,2,1])
+ with col2:
+ st.button(
+ "🎯 Comenzar ejercicios recomendados",
+ type="primary",
+ use_container_width=True,
+ key="start_exercises"
+ )
diff --git a/src/modules/studentact/current_situation_interface-v3.py b/src/modules/studentact/current_situation_interface-v3.py
new file mode 100644
index 0000000000000000000000000000000000000000..599801971ea94f92e107469154a201bf248825cd
--- /dev/null
+++ b/src/modules/studentact/current_situation_interface-v3.py
@@ -0,0 +1,190 @@
+# modules/studentact/current_situation_interface.py
+
+import streamlit as st
+import logging
+from ..utils.widget_utils import generate_unique_key
+import matplotlib.pyplot as plt
+import numpy as np
+from ..database.current_situation_mongo_db import store_current_situation_result
+
+from .current_situation_analysis import (
+ analyze_text_dimensions,
+ analyze_clarity,
+ analyze_reference_clarity,
+ analyze_vocabulary_diversity,
+ analyze_cohesion,
+ analyze_structure,
+ get_dependency_depths,
+ normalize_score,
+ generate_sentence_graphs,
+ generate_word_connections,
+ generate_connection_paths,
+ create_vocabulary_network,
+ create_syntax_complexity_graph,
+ create_cohesion_heatmap,
+)
+
+# Configuración del estilo de matplotlib para el gráfico de radar
+plt.rcParams['font.family'] = 'sans-serif'
+plt.rcParams['axes.grid'] = True
+plt.rcParams['axes.spines.top'] = False
+plt.rcParams['axes.spines.right'] = False
+
+logger = logging.getLogger(__name__)
+####################################
+
+def display_current_situation_interface(lang_code, nlp_models, t):
+ """
+ Interfaz simplificada con gráfico de radar para visualizar métricas.
+ """
+ try:
+ # Inicializar estados si no existen
+ if 'text_input' not in st.session_state:
+ st.session_state.text_input = ""
+ if 'show_results' not in st.session_state:
+ st.session_state.show_results = False
+ if 'current_doc' not in st.session_state:
+ st.session_state.current_doc = None
+ if 'current_metrics' not in st.session_state:
+ st.session_state.current_metrics = None
+
+ st.markdown("## Análisis Inicial de Escritura")
+
+ # Container principal con dos columnas
+ with st.container():
+ input_col, results_col = st.columns([1,2])
+
+ with input_col:
+ #st.markdown("### Ingresa tu texto")
+
+ # Función para manejar cambios en el texto
+ def on_text_change():
+ st.session_state.text_input = st.session_state.text_area
+ st.session_state.show_results = False
+
+ # Text area con manejo de estado
+ text_input = st.text_area(
+ t.get('input_prompt', "Escribe o pega tu texto aquí:"),
+ height=400,
+ key="text_area",
+ value=st.session_state.text_input,
+ on_change=on_text_change,
+ help="Este texto será analizado para darte recomendaciones personalizadas"
+ )
+
+ if st.button(
+ t.get('analyze_button', "Analizar mi escritura"),
+ type="primary",
+ disabled=not text_input.strip(),
+ use_container_width=True,
+ ):
+ try:
+ with st.spinner(t.get('processing', "Analizando...")):
+ doc = nlp_models[lang_code](text_input)
+ metrics = analyze_text_dimensions(doc)
+
+ # Guardar en MongoDB
+ storage_success = store_current_situation_result(
+ username=st.session_state.username,
+ text=text_input,
+ metrics=metrics,
+ feedback=None
+ )
+
+ if not storage_success:
+ logger.warning("No se pudo guardar el análisis en la base de datos")
+
+ st.session_state.current_doc = doc
+ st.session_state.current_metrics = metrics
+ st.session_state.show_results = True
+ st.session_state.text_input = text_input
+
+ except Exception as e:
+ logger.error(f"Error en análisis: {str(e)}")
+ st.error(t.get('analysis_error', "Error al analizar el texto"))
+
+ # Mostrar resultados en la columna derecha
+ with results_col:
+ if st.session_state.show_results and st.session_state.current_metrics is not None:
+ display_radar_chart(st.session_state.current_metrics)
+
+ except Exception as e:
+ logger.error(f"Error en interfaz: {str(e)}")
+ st.error("Ocurrió un error. Por favor, intente de nuevo.")
+
+def display_radar_chart(metrics):
+ """
+ Muestra un gráfico de radar con las métricas del usuario y el patrón ideal.
+ """
+ try:
+ # Container con proporción reducida
+ with st.container():
+ # Métricas en la parte superior
+ col1, col2, col3, col4 = st.columns(4)
+ with col1:
+ st.metric("Vocabulario", f"{metrics['vocabulary']['normalized_score']:.2f}", "1.00")
+ with col2:
+ st.metric("Estructura", f"{metrics['structure']['normalized_score']:.2f}", "1.00")
+ with col3:
+ st.metric("Cohesión", f"{metrics['cohesion']['normalized_score']:.2f}", "1.00")
+ with col4:
+ st.metric("Claridad", f"{metrics['clarity']['normalized_score']:.2f}", "1.00")
+
+ # Contenedor para el gráfico con ancho controlado
+ _, graph_col, _ = st.columns([1,2,1])
+
+ with graph_col:
+ # Preparar datos
+ categories = ['Vocabulario', 'Estructura', 'Cohesión', 'Claridad']
+ values_user = [
+ metrics['vocabulary']['normalized_score'],
+ metrics['structure']['normalized_score'],
+ metrics['cohesion']['normalized_score'],
+ metrics['clarity']['normalized_score']
+ ]
+ values_pattern = [1.0, 1.0, 1.0, 1.0] # Patrón ideal
+
+ # Crear figura más compacta
+ fig = plt.figure(figsize=(6, 6))
+ ax = fig.add_subplot(111, projection='polar')
+
+ # Número de variables
+ num_vars = len(categories)
+
+ # Calcular ángulos
+ angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)]
+ angles += angles[:1]
+
+ # Extender valores para cerrar polígonos
+ values_user += values_user[:1]
+ values_pattern += values_pattern[:1]
+
+ # Configurar ejes y etiquetas
+ ax.set_xticks(angles[:-1])
+ ax.set_xticklabels(categories, fontsize=8)
+
+ # Círculos concéntricos y etiquetas
+ circle_ticks = np.arange(0, 1.1, 0.2) # Reducido a 5 niveles
+ ax.set_yticks(circle_ticks)
+ ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
+ ax.set_ylim(0, 1)
+
+ # Dibujar patrón ideal
+ ax.plot(angles, values_pattern, 'g--', linewidth=1, label='Patrón', alpha=0.5)
+ ax.fill(angles, values_pattern, 'g', alpha=0.1)
+
+ # Dibujar valores del usuario
+ ax.plot(angles, values_user, 'b-', linewidth=2, label='Tu escritura')
+ ax.fill(angles, values_user, 'b', alpha=0.2)
+
+ # Leyenda
+ ax.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1), fontsize=8)
+
+ # Ajustes finales
+ plt.tight_layout()
+ st.pyplot(fig)
+ plt.close()
+
+ except Exception as e:
+ logger.error(f"Error generando gráfico de radar: {str(e)}")
+ st.error("Error al generar la visualización")
\ No newline at end of file
diff --git a/src/modules/studentact/current_situation_interface.py b/src/modules/studentact/current_situation_interface.py
new file mode 100644
index 0000000000000000000000000000000000000000..27d522bea7a017121700e993e9155d787f3e3aea
--- /dev/null
+++ b/src/modules/studentact/current_situation_interface.py
@@ -0,0 +1,448 @@
+# modules/studentact/current_situation_interface.py
+
+import streamlit as st
+import logging
+from ..utils.widget_utils import generate_unique_key
+import matplotlib.pyplot as plt
+import numpy as np
+from ..database.current_situation_mongo_db import store_current_situation_result
+
+# Importaciones locales
+from translations import get_translations
+
+# Importamos la función de recomendaciones personalizadas si existe
+try:
+ from .claude_recommendations import display_personalized_recommendations
+except ImportError:
+ # Si no existe el módulo, definimos una función placeholder
+ def display_personalized_recommendations(text, metrics, text_type, lang_code, t):
+ # Obtener el mensaje de advertencia traducido si está disponible
+ warning = t.get('module_not_available', "Módulo de recomendaciones personalizadas no disponible. Por favor, contacte al administrador.")
+ st.warning(warning)
+
+from .current_situation_analysis import (
+ analyze_text_dimensions,
+ analyze_clarity,
+ analyze_vocabulary_diversity,
+ analyze_cohesion,
+ analyze_structure,
+ get_dependency_depths,
+ normalize_score,
+ generate_sentence_graphs,
+ generate_word_connections,
+ generate_connection_paths,
+ create_vocabulary_network,
+ create_syntax_complexity_graph,
+ create_cohesion_heatmap
+)
+
+# Configuración del estilo de matplotlib para el gráfico de radar
+plt.rcParams['font.family'] = 'sans-serif'
+plt.rcParams['axes.grid'] = True
+plt.rcParams['axes.spines.top'] = False
+plt.rcParams['axes.spines.right'] = False
+
+logger = logging.getLogger(__name__)
+
+# Definición de tipos de texto con umbrales
+TEXT_TYPES = {
+ 'academic_article': {
+ # Los nombres se obtendrán de las traducciones
+ 'thresholds': {
+ 'vocabulary': {'min': 0.70, 'target': 0.85},
+ 'structure': {'min': 0.75, 'target': 0.90},
+ 'cohesion': {'min': 0.65, 'target': 0.80},
+ 'clarity': {'min': 0.70, 'target': 0.85}
+ }
+ },
+ 'student_essay': {
+ 'thresholds': {
+ 'vocabulary': {'min': 0.60, 'target': 0.75},
+ 'structure': {'min': 0.65, 'target': 0.80},
+ 'cohesion': {'min': 0.55, 'target': 0.70},
+ 'clarity': {'min': 0.60, 'target': 0.75}
+ }
+ },
+ 'general_communication': {
+ 'thresholds': {
+ 'vocabulary': {'min': 0.50, 'target': 0.65},
+ 'structure': {'min': 0.55, 'target': 0.70},
+ 'cohesion': {'min': 0.45, 'target': 0.60},
+ 'clarity': {'min': 0.50, 'target': 0.65}
+ }
+ }
+}
+
+####################################################
+####################################################
+def display_current_situation_interface(lang_code, nlp_models, t):
+ """
+ Interfaz simplificada con gráfico de radar para visualizar métricas.
+ """
+ # Agregar logs para depuración
+ logger.info(f"Idioma: {lang_code}")
+ logger.info(f"Claves en t: {list(t.keys())}")
+
+ # Inicializar estados si no existen
+ if 'text_input' not in st.session_state:
+ st.session_state.text_input = ""
+ if 'text_area' not in st.session_state:
+ st.session_state.text_area = ""
+ if 'show_results' not in st.session_state:
+ st.session_state.show_results = False
+ if 'current_doc' not in st.session_state:
+ st.session_state.current_doc = None
+ if 'current_metrics' not in st.session_state:
+ st.session_state.current_metrics = None
+ if 'current_recommendations' not in st.session_state:
+ st.session_state.current_recommendations = None
+
+ try:
+ # Container principal con dos columnas
+ with st.container():
+ input_col, results_col = st.columns([1,2])
+
+###############################################################################################
+ # CSS personalizado para que el formulario ocupe todo el alto disponible
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+###############################################################################################
+ with input_col:
+ with st.form(key=f"text_input_form_{lang_code}"):
+ text_input = st.text_area(
+ t.get('input_prompt', "Escribe o pega tu texto aquí:"),
+ height=800,
+ key=f"text_area_{lang_code}",
+ value=st.session_state.text_input,
+ help=t.get('help', "Este texto será analizado para darte recomendaciones personalizadas")
+ )
+
+ submit_button = st.form_submit_button(
+ t.get('analyze_button', "Analizar mi escritura"),
+ type="primary",
+ use_container_width=True
+ )
+
+ if submit_button:
+ if text_input.strip():
+ st.session_state.text_input = text_input
+
+#######################################################################
+ # Código para análisis...
+ try:
+ with st.spinner(t.get('processing', "Analizando...")): # Usando t.get directamente
+ doc = nlp_models[lang_code](text_input)
+ metrics = analyze_text_dimensions(doc)
+
+ storage_success = store_current_situation_result(
+ username=st.session_state.username,
+ text=text_input,
+ metrics=metrics,
+ feedback=None
+ )
+
+ if not storage_success:
+ logger.warning("No se pudo guardar el análisis en la base de datos")
+
+ st.session_state.current_doc = doc
+ st.session_state.current_metrics = metrics
+ st.session_state.show_results = True
+
+ except Exception as e:
+ logger.error(f"Error en análisis: {str(e)}")
+ st.error(t.get('analysis_error', "Error al analizar el texto")) # Usando t.get directamente
+
+ # Mostrar resultados en la columna derecha
+ with results_col:
+ if st.session_state.show_results and st.session_state.current_metrics is not None:
+ # Primero los radio buttons para tipo de texto - usando t.get directamente
+ st.markdown(f"### {t.get('text_type_header', 'Tipo de texto')}")
+
+ # Preparar opciones de tipos de texto con nombres traducidos
+ text_type_options = {}
+ for text_type_key in TEXT_TYPES.keys():
+ # Fallback a nombres genéricos si no hay traducción
+ default_names = {
+ 'academic_article': 'Academic Article' if lang_code == 'en' else 'Article Académique' if lang_code == 'fr' else 'Artigo Acadêmico' if lang_code == 'pt' else 'Artículo Académico',
+ 'student_essay': 'Student Essay' if lang_code == 'en' else 'Devoir Universitaire' if lang_code == 'fr' else 'Trabalho Universitário' if lang_code == 'pt' else 'Trabajo Universitario',
+ 'general_communication': 'General Communication' if lang_code == 'en' else 'Communication Générale' if lang_code == 'fr' else 'Comunicação Geral' if lang_code == 'pt' else 'Comunicación General'
+ }
+ text_type_options[text_type_key] = default_names.get(text_type_key, text_type_key)
+
+ text_type = st.radio(
+ label=t.get('text_type_header', "Tipo de texto"), # Usando t.get directamente
+ options=list(TEXT_TYPES.keys()),
+ format_func=lambda x: text_type_options.get(x, x),
+ horizontal=True,
+ key="text_type_radio",
+ label_visibility="collapsed",
+ help=t.get('text_type_help', "Selecciona el tipo de texto para ajustar los criterios de evaluación") # Usando t.get directamente
+ )
+
+ st.session_state.current_text_type = text_type
+
+ # Crear subtabs con nombres traducidos
+ diagnosis_tab = "Diagnosis" if lang_code == 'en' else "Diagnostic" if lang_code == 'fr' else "Diagnóstico" if lang_code == 'pt' else "Diagnóstico"
+ recommendations_tab = "Recommendations" if lang_code == 'en' else "Recommandations" if lang_code == 'fr' else "Recomendações" if lang_code == 'pt' else "Recomendaciones"
+
+ subtab1, subtab2 = st.tabs([diagnosis_tab, recommendations_tab])
+
+ # Mostrar resultados en el primer subtab
+ with subtab1:
+ display_diagnosis(
+ metrics=st.session_state.current_metrics,
+ text_type=text_type,
+ lang_code=lang_code,
+ t=t # Pasar t directamente, no current_situation_t
+ )
+
+ # Mostrar recomendaciones en el segundo subtab
+ with subtab2:
+ # Llamar directamente a la función de recomendaciones personalizadas
+ display_personalized_recommendations(
+ text=text_input,
+ metrics=st.session_state.current_metrics,
+ text_type=text_type,
+ lang_code=lang_code,
+ t=t
+ )
+
+ except Exception as e:
+ logger.error(f"Error en interfaz principal: {str(e)}")
+ st.error(t.get('error_interface', "Ocurrió un error al cargar la interfaz")) # Usando t.get directamente
+
+#################################################################
+#################################################################
+def display_diagnosis(metrics, text_type=None, lang_code='es', t=None):
+ """
+ Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
+ """
+ try:
+ # Asegurar que tenemos traducciones
+ if t is None:
+ t = {}
+
+ # Traducciones para títulos y etiquetas
+ dimension_labels = {
+ 'es': {
+ 'title': "Tipo de texto",
+ 'vocabulary': "Vocabulario",
+ 'structure': "Estructura",
+ 'cohesion': "Cohesión",
+ 'clarity': "Claridad",
+ 'improvement': "⚠️ Por mejorar",
+ 'acceptable': "📈 Aceptable",
+ 'optimal': "✅ Óptimo",
+ 'target': "Meta: {:.2f}"
+ },
+ 'en': {
+ 'title': "Text Type",
+ 'vocabulary': "Vocabulary",
+ 'structure': "Structure",
+ 'cohesion': "Cohesion",
+ 'clarity': "Clarity",
+ 'improvement': "⚠️ Needs improvement",
+ 'acceptable': "📈 Acceptable",
+ 'optimal': "✅ Optimal",
+ 'target': "Target: {:.2f}"
+ },
+ 'fr': {
+ 'title': "Type de texte",
+ 'vocabulary': "Vocabulaire",
+ 'structure': "Structure",
+ 'cohesion': "Cohésion",
+ 'clarity': "Clarté",
+ 'improvement': "⚠️ À améliorer",
+ 'acceptable': "📈 Acceptable",
+ 'optimal': "✅ Optimal",
+ 'target': "Objectif: {:.2f}"
+ },
+ 'pt': {
+ 'title': "Tipo de texto",
+ 'vocabulary': "Vocabulário",
+ 'structure': "Estrutura",
+ 'cohesion': "Coesão",
+ 'clarity': "Clareza",
+ 'improvement': "⚠️ Precisa melhorar",
+ 'acceptable': "📈 Aceitável",
+ 'optimal': "✅ Ótimo",
+ 'target': "Meta: {:.2f}"
+ }
+ }
+
+ # Obtener traducciones para el idioma actual, con fallback a español
+ labels = dimension_labels.get(lang_code, dimension_labels['es'])
+
+ # Usar valor por defecto si no se especifica tipo
+ text_type = text_type or 'student_essay'
+
+ # Obtener umbrales según el tipo de texto
+ thresholds = TEXT_TYPES[text_type]['thresholds']
+
+ # Crear dos columnas para las métricas y el gráfico
+ metrics_col, graph_col = st.columns([1, 1.5])
+
+ # Columna de métricas
+ with metrics_col:
+ metrics_config = [
+ {
+ 'label': labels['vocabulary'],
+ 'key': 'vocabulary',
+ 'value': metrics['vocabulary']['normalized_score'],
+ 'help': t.get('vocabulary_help', "Riqueza y variedad del vocabulario"),
+ 'thresholds': thresholds['vocabulary']
+ },
+ {
+ 'label': labels['structure'],
+ 'key': 'structure',
+ 'value': metrics['structure']['normalized_score'],
+ 'help': t.get('structure_help', "Organización y complejidad de oraciones"),
+ 'thresholds': thresholds['structure']
+ },
+ {
+ 'label': labels['cohesion'],
+ 'key': 'cohesion',
+ 'value': metrics['cohesion']['normalized_score'],
+ 'help': t.get('cohesion_help', "Conexión y fluidez entre ideas"),
+ 'thresholds': thresholds['cohesion']
+ },
+ {
+ 'label': labels['clarity'],
+ 'key': 'clarity',
+ 'value': metrics['clarity']['normalized_score'],
+ 'help': t.get('clarity_help', "Facilidad de comprensión del texto"),
+ 'thresholds': thresholds['clarity']
+ }
+ ]
+
+ # Mostrar métricas con textos traducidos
+ for metric in metrics_config:
+ value = metric['value']
+ if value < metric['thresholds']['min']:
+ status = labels['improvement']
+ color = "inverse"
+ elif value < metric['thresholds']['target']:
+ status = labels['acceptable']
+ color = "off"
+ else:
+ status = labels['optimal']
+ color = "normal"
+
+ target_text = labels['target'].format(metric['thresholds']['target'])
+
+ st.metric(
+ metric['label'],
+ f"{value:.2f}",
+ f"{status} ({target_text})",
+ delta_color=color,
+ help=metric['help']
+ )
+ st.markdown("", unsafe_allow_html=True)
+
+ # Gráfico radar en la columna derecha
+ with graph_col:
+ display_radar_chart(metrics_config, thresholds, lang_code) # Pasar el parámetro lang_code
+
+ except Exception as e:
+ logger.error(f"Error mostrando resultados: {str(e)}")
+ st.error(t.get('error_results', "Error al mostrar los resultados"))
+
+##################################################################
+##################################################################
+def display_radar_chart(metrics_config, thresholds, lang_code='es'):
+ """
+ Muestra el gráfico radar con los resultados.
+ """
+ try:
+ # Traducción de las etiquetas de leyenda según el idioma
+ legend_translations = {
+ 'es': {'min': 'Mínimo', 'target': 'Meta', 'user': 'Tu escritura'},
+ 'en': {'min': 'Minimum', 'target': 'Target', 'user': 'Your writing'},
+ 'fr': {'min': 'Minimum', 'target': 'Objectif', 'user': 'Votre écriture'},
+ 'pt': {'min': 'Mínimo', 'target': 'Meta', 'user': 'Sua escrita'}
+ }
+
+ # Usar español por defecto si el idioma no está soportado
+ translations = legend_translations.get(lang_code, legend_translations['es'])
+
+ # Preparar datos para el gráfico
+ categories = [m['label'] for m in metrics_config]
+ values_user = [m['value'] for m in metrics_config]
+ min_values = [m['thresholds']['min'] for m in metrics_config]
+ target_values = [m['thresholds']['target'] for m in metrics_config]
+
+ # Crear y configurar gráfico
+ fig = plt.figure(figsize=(8, 8))
+ ax = fig.add_subplot(111, projection='polar')
+
+ # Configurar radar
+ angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))]
+ angles += angles[:1]
+ values_user += values_user[:1]
+ min_values += min_values[:1]
+ target_values += target_values[:1]
+
+ # Configurar ejes
+ ax.set_xticks(angles[:-1])
+ ax.set_xticklabels(categories, fontsize=10)
+ circle_ticks = np.arange(0, 1.1, 0.2)
+ ax.set_yticks(circle_ticks)
+ ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
+ ax.set_ylim(0, 1)
+
+ # Dibujar áreas de umbrales con etiquetas traducidas
+ ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label=translations['min'], alpha=0.5)
+ ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label=translations['target'], alpha=0.5)
+ ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1)
+ ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1)
+
+ # Dibujar valores del usuario con etiqueta traducida
+ ax.plot(angles, values_user, '#3498db', linewidth=2, label=translations['user'])
+ ax.fill(angles, values_user, '#3498db', alpha=0.2)
+
+ # Ajustar leyenda
+ ax.legend(
+ loc='upper right',
+ bbox_to_anchor=(1.3, 1.1),
+ fontsize=10,
+ frameon=True,
+ facecolor='white',
+ edgecolor='none',
+ shadow=True
+ )
+
+ plt.tight_layout()
+ st.pyplot(fig)
+ plt.close()
+
+ except Exception as e:
+ logger.error(f"Error mostrando gráfico radar: {str(e)}")
+ st.error("Error al mostrar el gráfico")
\ No newline at end of file
diff --git a/src/modules/studentact/student_activities.py b/src/modules/studentact/student_activities.py
new file mode 100644
index 0000000000000000000000000000000000000000..40b8e2a4ed849660561e2e7fb030d269f9080c07
--- /dev/null
+++ b/src/modules/studentact/student_activities.py
@@ -0,0 +1,111 @@
+#modules/studentact/student_activities.py
+
+import streamlit as st
+import pandas as pd
+import matplotlib.pyplot as plt
+import seaborn as sns
+import base64
+from io import BytesIO
+from reportlab.pdfgen import canvas
+from reportlab.lib.pagesizes import letter
+from docx import Document
+from odf.opendocument import OpenDocumentText
+from odf.text import P
+from datetime import datetime, timedelta
+import pytz
+import logging
+
+# Configuración de logging
+logging.basicConfig(level=logging.DEBUG)
+logger = logging.getLogger(__name__)
+
+# Importaciones locales
+try:
+ from ..database.morphosintax_mongo_db import get_student_morphosyntax_data
+ from ..database.semantic_mongo_db import get_student_semantic_data
+ from ..database.discourse_mongo_db import get_student_discourse_data
+
+ from ..database.chat_mongo_db import get_chat_history
+
+ logger.info("Importaciones locales exitosas")
+except ImportError as e:
+ logger.error(f"Error en las importaciones locales: {e}")
+
+def display_student_progress(username, lang_code, t):
+ logger.debug(f"Iniciando display_student_progress para {username}")
+
+ st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
+
+ # Obtener los datos del estudiante
+ student_data = get_student_morphosyntax_data(username)
+
+ if not student_data or len(student_data.get('entries', [])) == 0:
+ logger.warning(f"No se encontraron datos para el estudiante {username}")
+ st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
+ st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
+ return
+
+ logger.debug(f"Datos del estudiante obtenidos: {len(student_data['entries'])} entradas")
+
+ # Resumen de actividades
+ with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True):
+ total_entries = len(student_data['entries'])
+ st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
+
+ # Gráfico de tipos de análisis
+ try:
+ analysis_types = [entry.get('analysis_type', 'unknown') for entry in student_data['entries']]
+ analysis_counts = pd.Series(analysis_types).value_counts()
+ fig, ax = plt.subplots()
+ sns.barplot(x=analysis_counts.index, y=analysis_counts.values, ax=ax)
+ ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
+ ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
+ ax.set_ylabel(t.get("count", "Cantidad"))
+ st.pyplot(fig)
+ except Exception as e:
+ logger.error(f"Error al crear el gráfico: {e}")
+ st.error("No se pudo crear el gráfico de tipos de análisis.")
+
+ # Función para generar el contenido del archivo de actividades de las últimas 48 horas
+ def generate_activity_content_48h():
+ content = f"Actividades de {username} en las últimas 48 horas\n\n"
+
+ two_days_ago = datetime.now(pytz.utc) - timedelta(days=2)
+
+ try:
+ morphosyntax_analyses = get_student_morphosyntax_data(username)
+ recent_morphosyntax = [a for a in morphosyntax_analyses if datetime.fromisoformat(a['timestamp']) > two_days_ago]
+
+ content += f"Análisis morfosintácticos: {len(recent_morphosyntax)}\n"
+ for analysis in recent_morphosyntax:
+ content += f"- Análisis del {analysis['timestamp']}: {analysis['text'][:50]}...\n"
+
+ chat_history = get_chat_history(username, None)
+ recent_chats = [c for c in chat_history if datetime.fromisoformat(c['timestamp']) > two_days_ago]
+
+ content += f"\nConversaciones de chat: {len(recent_chats)}\n"
+ for chat in recent_chats:
+ content += f"- Chat del {chat['timestamp']}: {len(chat['messages'])} mensajes\n"
+ except Exception as e:
+ logger.error(f"Error al generar el contenido de actividades: {e}")
+ content += "Error al recuperar los datos de actividades.\n"
+
+ return content
+
+ # Botones para descargar el histórico de actividades de las últimas 48 horas
+ st.subheader(t.get("download_history_48h", "Descargar Histórico de Actividades (Últimas 48 horas)"))
+ if st.button("Generar reporte de 48 horas"):
+ try:
+ report_content = generate_activity_content_48h()
+ st.text_area("Reporte de 48 horas", report_content, height=300)
+ st.download_button(
+ label="Descargar TXT (48h)",
+ data=report_content,
+ file_name="actividades_48h.txt",
+ mime="text/plain"
+ )
+ except Exception as e:
+ logger.error(f"Error al generar el reporte: {e}")
+ st.error("No se pudo generar el reporte. Por favor, verifica los logs para más detalles.")
+
+ logger.debug("Finalizando display_student_progress")
\ No newline at end of file
diff --git a/src/modules/studentact/student_activities_v2-complet.py b/src/modules/studentact/student_activities_v2-complet.py
new file mode 100644
index 0000000000000000000000000000000000000000..638797e45d311fa223873be6058fb6093a4fbcc8
--- /dev/null
+++ b/src/modules/studentact/student_activities_v2-complet.py
@@ -0,0 +1,794 @@
+##############
+###modules/studentact/student_activities_v2.py
+
+import streamlit as st
+import re
+import io
+from io import BytesIO
+import pandas as pd
+import numpy as np
+import time
+import matplotlib.pyplot as plt
+from datetime import datetime
+from spacy import displacy
+import random
+import base64
+import seaborn as sns
+import logging
+
+# Importaciones de la base de datos
+from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis
+from ..database.semantic_mongo_db import get_student_semantic_analysis
+from ..database.discourse_mongo_db import get_student_discourse_analysis
+from ..database.chat_mongo_db import get_chat_history
+
+logger = logging.getLogger(__name__)
+
+###################################################################################
+
+def display_student_activities(username: str, lang_code: str, t: dict):
+ """
+ Muestra todas las actividades del estudiante
+ Args:
+ username: Nombre del estudiante
+ lang_code: Código del idioma
+ t: Diccionario de traducciones
+ """
+ try:
+ st.header(t.get('activities_title', 'Mis Actividades'))
+
+ # Tabs para diferentes tipos de análisis
+ tabs = st.tabs([
+ t.get('morpho_activities', 'Análisis Morfosintáctico'),
+ t.get('semantic_activities', 'Análisis Semántico'),
+ t.get('discourse_activities', 'Análisis del Discurso'),
+ t.get('chat_activities', 'Conversaciones con el Asistente')
+ ])
+
+ # Tab de Análisis Morfosintáctico
+ with tabs[0]:
+ display_morphosyntax_activities(username, t)
+
+ # Tab de Análisis Semántico
+ with tabs[1]:
+ display_semantic_activities(username, t)
+
+ # Tab de Análisis del Discurso
+ with tabs[2]:
+ display_discourse_activities(username, t)
+
+ # Tab de Conversaciones del Chat
+ with tabs[3]:
+ display_chat_activities(username, t)
+
+ except Exception as e:
+ logger.error(f"Error mostrando actividades: {str(e)}")
+ st.error(t.get('error_loading_activities', 'Error al cargar las actividades'))
+
+
+###############################################################################################
+def display_morphosyntax_activities(username: str, t: dict):
+ """Muestra actividades de análisis morfosintáctico"""
+ try:
+ analyses = get_student_morphosyntax_analysis(username)
+ if not analyses:
+ st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados'))
+ return
+
+ for analysis in analyses:
+ with st.expander(
+ f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
+ expanded=False
+ ):
+ st.text(f"{t.get('analyzed_text', 'Texto analizado')}:")
+ st.write(analysis['text'])
+
+ if 'arc_diagrams' in analysis:
+ st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos'))
+ for diagram in analysis['arc_diagrams']:
+ st.write(diagram, unsafe_allow_html=True)
+
+ except Exception as e:
+ logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}")
+ st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico'))
+
+
+###############################################################################################
+def display_semantic_activities(username: str, t: dict):
+ """Muestra actividades de análisis semántico"""
+ try:
+ logger.info(f"Recuperando análisis semántico para {username}")
+ analyses = get_student_semantic_analysis(username)
+
+ if not analyses:
+ logger.info("No se encontraron análisis semánticos")
+ st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados'))
+ return
+
+ logger.info(f"Procesando {len(analyses)} análisis semánticos")
+ for analysis in analyses:
+ try:
+ # Verificar campos mínimos necesarios
+ if not all(key in analysis for key in ['timestamp', 'concept_graph']):
+ logger.warning(f"Análisis incompleto: {analysis.keys()}")
+ continue
+
+ # Formatear fecha
+ timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
+ formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
+
+ with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
+ if analysis['concept_graph']:
+ logger.debug("Decodificando gráfico de conceptos")
+ try:
+ image_bytes = base64.b64decode(analysis['concept_graph'])
+ st.image(image_bytes, use_column_width=True)
+ logger.debug("Gráfico mostrado exitosamente")
+ except Exception as img_error:
+ logger.error(f"Error decodificando imagen: {str(img_error)}")
+ st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
+ else:
+ st.info(t.get('no_graph', 'No hay visualización disponible'))
+
+ except Exception as e:
+ logger.error(f"Error procesando análisis individual: {str(e)}")
+ continue
+
+ except Exception as e:
+ logger.error(f"Error mostrando análisis semántico: {str(e)}")
+ st.error(t.get('error_semantic', 'Error al mostrar análisis semántico'))
+
+
+###################################################################################################
+def display_discourse_activities(username: str, t: dict):
+ """Muestra actividades de análisis del discurso"""
+ try:
+ logger.info(f"Recuperando análisis del discurso para {username}")
+ analyses = get_student_discourse_analysis(username)
+
+ if not analyses:
+ logger.info("No se encontraron análisis del discurso")
+ st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados'))
+ return
+
+ logger.info(f"Procesando {len(analyses)} análisis del discurso")
+ for analysis in analyses:
+ try:
+ # Verificar campos mínimos necesarios
+ if not all(key in analysis for key in ['timestamp', 'combined_graph']):
+ logger.warning(f"Análisis incompleto: {analysis.keys()}")
+ continue
+
+ # Formatear fecha
+ timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
+ formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
+
+ with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
+ if analysis['combined_graph']:
+ logger.debug("Decodificando gráfico combinado")
+ try:
+ image_bytes = base64.b64decode(analysis['combined_graph'])
+ st.image(image_bytes, use_column_width=True)
+ logger.debug("Gráfico mostrado exitosamente")
+ except Exception as img_error:
+ logger.error(f"Error decodificando imagen: {str(img_error)}")
+ st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
+ else:
+ st.info(t.get('no_visualization', 'No hay visualización comparativa disponible'))
+
+ except Exception as e:
+ logger.error(f"Error procesando análisis individual: {str(e)}")
+ continue
+
+ except Exception as e:
+ logger.error(f"Error mostrando análisis del discurso: {str(e)}")
+ st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso'))
+
+#################################################################################
+def display_discourse_comparison(analysis: dict, t: dict):
+ """Muestra la comparación de análisis del discurso"""
+ st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
+
+ col1, col2 = st.columns(2)
+ with col1:
+ st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
+ df1 = pd.DataFrame(analysis['key_concepts1'])
+ st.dataframe(df1)
+
+ with col2:
+ st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
+ df2 = pd.DataFrame(analysis['key_concepts2'])
+ st.dataframe(df2)
+
+#################################################################################
+def display_chat_activities(username: str, t: dict):
+ """
+ Muestra historial de conversaciones del chat
+ """
+ try:
+ # Obtener historial del chat
+ chat_history = get_chat_history(
+ username=username,
+ analysis_type='sidebar',
+ limit=50
+ )
+
+ if not chat_history:
+ st.info(t.get('no_chat_history', 'No hay conversaciones registradas'))
+ return
+
+ for chat in reversed(chat_history): # Mostrar las más recientes primero
+ try:
+ # Convertir timestamp a datetime para formato
+ timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00'))
+ formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
+
+ with st.expander(
+ f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}",
+ expanded=False
+ ):
+ if 'messages' in chat and chat['messages']:
+ # Mostrar cada mensaje en la conversación
+ for message in chat['messages']:
+ role = message.get('role', 'unknown')
+ content = message.get('content', '')
+
+ # Usar el componente de chat de Streamlit
+ with st.chat_message(role):
+ st.markdown(content)
+
+ # Agregar separador entre mensajes
+ st.divider()
+ else:
+ st.warning(t.get('invalid_chat_format', 'Formato de chat no válido'))
+
+ except Exception as e:
+ logger.error(f"Error mostrando conversación: {str(e)}")
+ continue
+
+ except Exception as e:
+ logger.error(f"Error mostrando historial del chat: {str(e)}")
+ st.error(t.get('error_chat', 'Error al mostrar historial del chat'))
+
+
+
+
+
+
+
+
+
+'''
+##########versión 25-9-2024---02:30 ################ OK (username)####################
+
+def display_student_progress(username, lang_code, t, student_data):
+ st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
+
+ if not student_data or len(student_data.get('entries', [])) == 0:
+ st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
+ st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
+ return
+
+ with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True):
+ total_entries = len(student_data['entries'])
+ st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
+
+ # Gráfico de tipos de análisis
+ analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
+ analysis_counts = pd.Series(analysis_types).value_counts()
+ fig, ax = plt.subplots()
+ analysis_counts.plot(kind='bar', ax=ax)
+ ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
+ ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
+ ax.set_ylabel(t.get("count", "Cantidad"))
+ st.pyplot(fig)
+
+ # Mostrar los últimos análisis morfosintácticos
+ with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")):
+ morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
+ for entry in morphosyntax_entries[:5]: # Mostrar los últimos 5
+ st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
+ if 'arc_diagrams' in entry and entry['arc_diagrams']:
+ st.components.v1.html(entry['arc_diagrams'][0], height=300, scrolling=True)
+
+ # Añadir secciones similares para análisis semánticos y discursivos si es necesario
+
+ # Mostrar el historial de chat
+ with st.expander(t.get("chat_history", "Historial de Chat")):
+ if 'chat_history' in student_data:
+ for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
+ st.subheader(f"{t.get('chat_from', 'Chat del')} {chat['timestamp']}")
+ for message in chat['messages']:
+ st.write(f"{message['role'].capitalize()}: {message['content']}")
+ st.write("---")
+ else:
+ st.write(t.get("no_chat_history", "No hay historial de chat disponible."))
+
+
+##########versión 24-9-2024---17:30 ################ OK FROM--V2 de def get_student_data(username)####################
+
+def display_student_progress(username, lang_code, t, student_data):
+ if not student_data or len(student_data['entries']) == 0:
+ st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
+ st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
+ return
+
+ st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
+
+ with st.expander(t.get("activities_summary", "Resumen de Actividades y Progreso"), expanded=True):
+ total_entries = len(student_data['entries'])
+ st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
+
+ # Gráfico de tipos de análisis
+ analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
+ analysis_counts = pd.Series(analysis_types).value_counts()
+
+ fig, ax = plt.subplots(figsize=(8, 4))
+ analysis_counts.plot(kind='bar', ax=ax)
+ ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
+ ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
+ ax.set_ylabel(t.get("count", "Cantidad"))
+ st.pyplot(fig)
+
+ # Histórico de Análisis Morfosintácticos
+ with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")):
+ morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
+ if not morphosyntax_entries:
+ st.warning("No se encontraron análisis morfosintácticos.")
+ for entry in morphosyntax_entries:
+ st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
+ if 'arc_diagrams' in entry and entry['arc_diagrams']:
+ try:
+ st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
+ except Exception as e:
+ logger.error(f"Error al mostrar diagrama de arco: {str(e)}")
+ st.error("Error al mostrar el diagrama de arco.")
+ else:
+ st.write(t.get("no_arc_diagram", "No se encontró diagrama de arco para este análisis."))
+
+ # Histórico de Análisis Semánticos
+ with st.expander(t.get("semantic_history", "Histórico de Análisis Semánticos")):
+ semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
+ if not semantic_entries:
+ st.warning("No se encontraron análisis semánticos.")
+ for entry in semantic_entries:
+ st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
+ if 'key_concepts' in entry:
+ st.write(t.get("key_concepts", "Conceptos clave:"))
+ concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']])
+ st.markdown(f"{concepts_str}
", unsafe_allow_html=True)
+ if 'graph' in entry:
+ try:
+ img_bytes = base64.b64decode(entry['graph'])
+ st.image(img_bytes, caption=t.get("conceptual_relations_graph", "Gráfico de relaciones conceptuales"))
+ except Exception as e:
+ logger.error(f"Error al mostrar gráfico semántico: {str(e)}")
+ st.error(t.get("graph_display_error", f"No se pudo mostrar el gráfico: {str(e)}"))
+
+ # Histórico de Análisis Discursivos
+ with st.expander(t.get("discourse_history", "Histórico de Análisis Discursivos")):
+ discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
+ for entry in discourse_entries:
+ st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
+ for i in [1, 2]:
+ if f'key_concepts{i}' in entry:
+ st.write(f"{t.get('key_concepts', 'Conceptos clave')} {t.get('document', 'documento')} {i}:")
+ concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry[f'key_concepts{i}']])
+ st.markdown(f"{concepts_str}
", unsafe_allow_html=True)
+ try:
+ if 'combined_graph' in entry and entry['combined_graph']:
+ img_bytes = base64.b64decode(entry['combined_graph'])
+ st.image(img_bytes, caption=t.get("combined_graph", "Gráfico combinado"))
+ elif 'graph1' in entry and 'graph2' in entry:
+ col1, col2 = st.columns(2)
+ with col1:
+ if entry['graph1']:
+ img_bytes1 = base64.b64decode(entry['graph1'])
+ st.image(img_bytes1, caption=t.get("graph_doc1", "Gráfico documento 1"))
+ with col2:
+ if entry['graph2']:
+ img_bytes2 = base64.b64decode(entry['graph2'])
+ st.image(img_bytes2, caption=t.get("graph_doc2", "Gráfico documento 2"))
+ except Exception as e:
+ st.error(t.get("graph_display_error", f"No se pudieron mostrar los gráficos: {str(e)}"))
+
+ # Histórico de Conversaciones con el ChatBot
+ with st.expander(t.get("chatbot_history", "Histórico de Conversaciones con el ChatBot")):
+ if 'chat_history' in student_data and student_data['chat_history']:
+ for i, chat in enumerate(student_data['chat_history']):
+ st.subheader(f"{t.get('conversation', 'Conversación')} {i+1} - {chat['timestamp']}")
+ for message in chat['messages']:
+ if message['role'] == 'user':
+ st.write(f"{t.get('user', 'Usuario')}: {message['content']}")
+ else:
+ st.write(f"{t.get('assistant', 'Asistente')}: {message['content']}")
+ st.write("---")
+ else:
+ st.write(t.get("no_chat_history", "No se encontraron conversaciones con el ChatBot."))
+
+ # Añadir logs para depuración
+ if st.checkbox(t.get("show_debug_data", "Mostrar datos de depuración")):
+ st.write(t.get("student_debug_data", "Datos del estudiante (para depuración):"))
+ st.json(student_data)
+
+ # Mostrar conteo de tipos de análisis
+ analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
+ type_counts = {t: analysis_types.count(t) for t in set(analysis_types)}
+ st.write("Conteo de tipos de análisis:")
+ st.write(type_counts)
+
+
+#############################--- Update 16:00 24-9 #########################################
+def display_student_progress(username, lang_code, t, student_data):
+ try:
+ st.subheader(t.get('student_activities', 'Student Activitie'))
+
+ if not student_data or all(len(student_data.get(key, [])) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
+ st.warning(t.get('no_data_warning', 'No analysis data found for this student.'))
+ return
+
+ # Resumen de actividades
+ total_analyses = sum(len(student_data.get(key, [])) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
+ st.write(f"{t.get('total_analyses', 'Total analyses performed')}: {total_analyses}")
+
+ # Gráfico de tipos de análisis
+ analysis_counts = {
+ t.get('morpho_analyses', 'Morphosyntactic Analyses'): len(student_data.get('morphosyntax_analyses', [])),
+ t.get('semantic_analyses', 'Semantic Analyses'): len(student_data.get('semantic_analyses', [])),
+ t.get('discourse_analyses', 'Discourse Analyses'): len(student_data.get('discourse_analyses', []))
+ }
+ # Configurar el estilo de seaborn para un aspecto más atractivo
+ sns.set_style("whitegrid")
+
+ # Crear una figura más pequeña
+ fig, ax = plt.subplots(figsize=(6, 4))
+
+ # Usar colores más atractivos
+ colors = ['#ff9999', '#66b3ff', '#99ff99']
+
+ # Crear el gráfico de barras
+ bars = ax.bar(analysis_counts.keys(), analysis_counts.values(), color=colors)
+
+ # Añadir etiquetas de valor encima de cada barra
+ for bar in bars:
+ height = bar.get_height()
+ ax.text(bar.get_x() + bar.get_width()/2., height,
+ f'{height}',
+ ha='center', va='bottom')
+
+ # Configurar el título y las etiquetas
+ ax.set_title(t.get('analysis_types_chart', 'Types of analyses performed'), fontsize=12)
+ ax.set_ylabel(t.get('count', 'Count'), fontsize=10)
+
+ # Rotar las etiquetas del eje x para mejor legibilidad
+ plt.xticks(rotation=45, ha='right')
+
+ # Ajustar el diseño para que todo quepa
+ plt.tight_layout()
+
+ # Mostrar el gráfico en Streamlit
+ st.pyplot(fig)
+
+ # Mostrar los últimos análisis
+ for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
+ with st.expander(t.get(f'{analysis_type}_expander', f'{analysis_type.capitalize()} History')):
+ for analysis in student_data.get(analysis_type, [])[:5]: # Mostrar los últimos 5
+ st.subheader(f"{t.get('analysis_from', 'Analysis from')} {analysis.get('timestamp', 'N/A')}")
+ if analysis_type == 'morphosyntax_analyses':
+ if 'arc_diagrams' in analysis:
+ st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
+ elif analysis_type == 'semantic_analyses':
+ if 'key_concepts' in analysis:
+ st.write(t.get('key_concepts', 'Key concepts'))
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
+ if 'graph' in analysis:
+ st.image(base64.b64decode(analysis['graph']))
+ elif analysis_type == 'discourse_analyses':
+ for i in [1, 2]:
+ if f'key_concepts{i}' in analysis:
+ st.write(f"{t.get('key_concepts', 'Key concepts')} {t.get('document', 'Document')} {i}")
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
+ if 'combined_graph' in analysis:
+ st.image(base64.b64decode(analysis['combined_graph']))
+
+ # Mostrar el historial de chat
+ with st.expander(t.get('chat_history_expander', 'Chat History')):
+ for chat in student_data.get('chat_history', [])[:5]: # Mostrar las últimas 5 conversaciones
+ st.subheader(f"{t.get('chat_from', 'Chat from')} {chat.get('timestamp', 'N/A')}")
+ for message in chat.get('messages', []):
+ st.write(f"{message.get('role', 'Unknown').capitalize()}: {message.get('content', 'No content')}")
+ st.write("---")
+
+ except Exception as e:
+ logger.error(f"Error in display_student_progress: {str(e)}", exc_info=True)
+ st.error(t.get('error_loading_progress', 'Error loading student progress. Please try again later.'))
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+#####################################################################
+def display_student_progress(username, lang_code, t, student_data):
+ st.subheader(t['student_progress'])
+
+ if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
+ st.warning(t['no_data_warning'])
+ return
+
+ # Resumen de actividades
+ total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
+ st.write(f"{t['total_analyses']}: {total_analyses}")
+
+ # Gráfico de tipos de análisis
+ analysis_counts = {
+ t['morpho_analyses']: len(student_data['morphosyntax_analyses']),
+ t['semantic_analyses']: len(student_data['semantic_analyses']),
+ t['discourse_analyses']: len(student_data['discourse_analyses'])
+ }
+ fig, ax = plt.subplots()
+ ax.bar(analysis_counts.keys(), analysis_counts.values())
+ ax.set_title(t['analysis_types_chart'])
+ st.pyplot(fig)
+
+ # Mostrar los últimos análisis
+ for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
+ with st.expander(t[f'{analysis_type}_expander']):
+ for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5
+ st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")
+ if analysis_type == 'morphosyntax_analyses':
+ if 'arc_diagrams' in analysis:
+ st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
+ elif analysis_type == 'semantic_analyses':
+ if 'key_concepts' in analysis:
+ st.write(t['key_concepts'])
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
+ if 'graph' in analysis:
+ st.image(base64.b64decode(analysis['graph']))
+ elif analysis_type == 'discourse_analyses':
+ for i in [1, 2]:
+ if f'key_concepts{i}' in analysis:
+ st.write(f"{t['key_concepts']} {t['document']} {i}")
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
+ if 'combined_graph' in analysis:
+ st.image(base64.b64decode(analysis['combined_graph']))
+
+ # Mostrar el historial de chat
+ with st.expander(t['chat_history_expander']):
+ for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
+ st.subheader(f"{t['chat_from']} {chat['timestamp']}")
+ for message in chat['messages']:
+ st.write(f"{message['role'].capitalize()}: {message['content']}")
+ st.write("---")
+
+
+
+def display_student_progress(username, lang_code, t, student_data):
+ st.subheader(t['student_activities'])
+
+ if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
+ st.warning(t['no_data_warning'])
+ return
+
+ # Resumen de actividades
+ total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
+ st.write(f"{t['total_analyses']}: {total_analyses}")
+
+ # Gráfico de tipos de análisis
+ analysis_counts = {
+ t['morphological_analysis']: len(student_data['morphosyntax_analyses']),
+ t['semantic_analyses']: len(student_data['semantic_analyses']),
+ t['discourse_analyses']: len(student_data['discourse_analyses'])
+ }
+ fig, ax = plt.subplots()
+ ax.bar(analysis_counts.keys(), analysis_counts.values())
+ ax.set_title(t['analysis_types_chart'])
+ st.pyplot(fig)
+
+ # Mostrar los últimos análisis
+ for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
+ with st.expander(t[f'{analysis_type}_expander']):
+ for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5
+ st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")
+ if analysis_type == 'morphosyntax_analyses':
+ if 'arc_diagrams' in analysis:
+ st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
+ elif analysis_type == 'semantic_analyses':
+ if 'key_concepts' in analysis:
+ st.write(t['key_concepts'])
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
+ if 'graph' in analysis:
+ st.image(base64.b64decode(analysis['graph']))
+ elif analysis_type == 'discourse_analyses':
+ for i in [1, 2]:
+ if f'key_concepts{i}' in analysis:
+ st.write(f"{t['key_concepts']} {t['document']} {i}")
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
+ if 'combined_graph' in analysis:
+ st.image(base64.b64decode(analysis['combined_graph']))
+
+ # Mostrar el historial de chat
+ with st.expander(t['chat_history_expander']):
+ for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
+ st.subheader(f"{t['chat_from']} {chat['timestamp']}")
+ for message in chat['messages']:
+ st.write(f"{message['role'].capitalize()}: {message['content']}")
+ st.write("---")
+
+
+
+
+def display_student_progress(username, lang_code, t, student_data):
+ st.subheader(t['student_activities'])
+
+ if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
+ st.warning(t['no_data_warning'])
+ return
+
+ # Resumen de actividades
+ total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
+ st.write(f"{t['total_analyses']}: {total_analyses}")
+
+ # Gráfico de tipos de análisis
+ analysis_counts = {
+ t['morphological_analysis']: len(student_data['morphosyntax_analyses']),
+ t['semantic_analyses']: len(student_data['semantic_analyses']),
+ t['discourse_analyses']: len(student_data['discourse_analyses'])
+ }
+ fig, ax = plt.subplots()
+ ax.bar(analysis_counts.keys(), analysis_counts.values())
+ ax.set_title(t['analysis_types_chart'])
+ st.pyplot(fig)
+
+ # Mostrar los últimos análisis
+ for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
+ with st.expander(t[f'{analysis_type}_expander']):
+ for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5
+ st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")
+ if analysis_type == 'morphosyntax_analyses':
+ if 'arc_diagrams' in analysis:
+ st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
+ elif analysis_type == 'semantic_analyses':
+ if 'key_concepts' in analysis:
+ st.write(t['key_concepts'])
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
+ if 'graph' in analysis:
+ st.image(base64.b64decode(analysis['graph']))
+ elif analysis_type == 'discourse_analyses':
+ for i in [1, 2]:
+ if f'key_concepts{i}' in analysis:
+ st.write(f"{t['key_concepts']} {t['document']} {i}")
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
+ if 'combined_graph' in analysis:
+ st.image(base64.b64decode(analysis['combined_graph']))
+
+ # Mostrar el historial de chat
+ with st.expander(t['chat_history_expander']):
+ for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
+ st.subheader(f"{t['chat_from']} {chat['timestamp']}")
+ for message in chat['messages']:
+ st.write(f"{message['role'].capitalize()}: {message['content']}")
+ st.write("---")
+
+
+
+
+def display_student_progress(username, lang_code, t):
+ st.subheader(t['student_activities'])
+ st.write(f"{t['activities_message']} {username}")
+
+ # Aquí puedes agregar más contenido estático o placeholder
+ st.info(t['activities_placeholder'])
+
+ # Si necesitas mostrar algún dato, puedes usar datos de ejemplo o placeholders
+ col1, col2, col3 = st.columns(3)
+ col1.metric(t['morpho_analyses'], "5") # Ejemplo de dato
+ col2.metric(t['semantic_analyses'], "3") # Ejemplo de dato
+ col3.metric(t['discourse_analyses'], "2") # Ejemplo de dato
+
+
+
+def display_student_progress(username, lang_code, t):
+ st.title(f"Actividades de {username}")
+
+ # Obtener todos los datos del estudiante
+ student_data = get_student_data(username)
+
+ if not student_data or len(student_data.get('entries', [])) == 0:
+ st.warning("No se encontraron datos de análisis para este estudiante.")
+ st.info("Intenta realizar algunos análisis de texto primero.")
+ return
+
+ # Resumen de actividades
+ with st.expander("Resumen de Actividades", expanded=True):
+ total_entries = len(student_data['entries'])
+ st.write(f"Total de análisis realizados: {total_entries}")
+
+ # Gráfico de tipos de análisis
+ analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
+ analysis_counts = pd.Series(analysis_types).value_counts()
+ fig, ax = plt.subplots()
+ analysis_counts.plot(kind='bar', ax=ax)
+ ax.set_title("Tipos de análisis realizados")
+ ax.set_xlabel("Tipo de análisis")
+ ax.set_ylabel("Cantidad")
+ st.pyplot(fig)
+
+ # Histórico de Análisis Morfosintácticos
+ with st.expander("Histórico de Análisis Morfosintácticos"):
+ morpho_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
+ for analysis in morpho_analyses[:5]: # Mostrar los últimos 5
+ st.subheader(f"Análisis del {analysis['timestamp']}")
+ if 'arc_diagrams' in analysis:
+ st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
+
+ # Histórico de Análisis Semánticos
+ with st.expander("Histórico de Análisis Semánticos"):
+ semantic_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
+ for analysis in semantic_analyses[:5]: # Mostrar los últimos 5
+ st.subheader(f"Análisis del {analysis['timestamp']}")
+ if 'key_concepts' in analysis:
+ concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis['key_concepts']])
+ st.markdown(f"{concepts_str}
", unsafe_allow_html=True)
+ if 'graph' in analysis:
+ try:
+ img_bytes = base64.b64decode(analysis['graph'])
+ st.image(img_bytes, caption="Gráfico de relaciones conceptuales")
+ except Exception as e:
+ st.error(f"No se pudo mostrar el gráfico: {str(e)}")
+
+ # Histórico de Análisis Discursivos
+ with st.expander("Histórico de Análisis Discursivos"):
+ discourse_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
+ for analysis in discourse_analyses[:5]: # Mostrar los últimos 5
+ st.subheader(f"Análisis del {analysis['timestamp']}")
+ for i in [1, 2]:
+ if f'key_concepts{i}' in analysis:
+ concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis[f'key_concepts{i}']])
+ st.write(f"Conceptos clave del documento {i}:")
+ st.markdown(f"{concepts_str}
", unsafe_allow_html=True)
+ if 'combined_graph' in analysis:
+ try:
+ img_bytes = base64.b64decode(analysis['combined_graph'])
+ st.image(img_bytes)
+ except Exception as e:
+ st.error(f"No se pudo mostrar el gráfico combinado: {str(e)}")
+
+ # Histórico de Conversaciones con el ChatBot
+ with st.expander("Histórico de Conversaciones con el ChatBot"):
+ if 'chat_history' in student_data:
+ for i, chat in enumerate(student_data['chat_history'][:5]): # Mostrar las últimas 5 conversaciones
+ st.subheader(f"Conversación {i+1} - {chat['timestamp']}")
+ for message in chat['messages']:
+ st.write(f"{message['role'].capitalize()}: {message['content']}")
+ st.write("---")
+ else:
+ st.write("No se encontraron conversaciones con el ChatBot.")
+
+ # Opción para mostrar datos de depuración
+ if st.checkbox("Mostrar datos de depuración"):
+ st.write("Datos del estudiante (para depuración):")
+ st.json(student_data)
+
+'''
\ No newline at end of file
diff --git a/src/modules/studentact/student_activities_v2-error.py b/src/modules/studentact/student_activities_v2-error.py
new file mode 100644
index 0000000000000000000000000000000000000000..864574edcf68c27f3fd935eda8799efa8308d28e
--- /dev/null
+++ b/src/modules/studentact/student_activities_v2-error.py
@@ -0,0 +1,251 @@
+##############
+###modules/studentact/student_activities_v2.py
+
+import streamlit as st
+import re
+import io
+from io import BytesIO
+import pandas as pd
+import numpy as np
+import time
+import matplotlib.pyplot as plt
+from datetime import datetime
+from spacy import displacy
+import random
+import base64
+import seaborn as sns
+import logging
+
+# Importaciones de la base de datos
+from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis
+from ..database.semantic_mongo_db import get_student_semantic_analysis
+from ..database.discourse_mongo_db import get_student_discourse_analysis
+from ..database.chat_mongo_db import get_chat_history
+
+logger = logging.getLogger(__name__)
+
+###################################################################################
+def display_student_activities(username: str, lang_code: str, t: dict):
+ """
+ Muestra todas las actividades del estudiante
+ Args:
+ username: Nombre del estudiante
+ lang_code: Código del idioma
+ t: Diccionario de traducciones
+ """
+ try:
+ st.header(t.get('activities_title', 'Mis Actividades'))
+
+ # Tabs para diferentes tipos de análisis
+ tabs = st.tabs([
+ t.get('morpho_activities', 'Análisis Morfosintáctico'),
+ t.get('semantic_activities', 'Análisis Semántico'),
+ t.get('discourse_activities', 'Análisis del Discurso'),
+ t.get('chat_activities', 'Conversaciones con el Asistente')
+ ])
+
+ # Tab de Análisis Morfosintáctico
+ with tabs[0]:
+ display_morphosyntax_activities(username, t)
+
+ # Tab de Análisis Semántico
+ with tabs[1]:
+ display_semantic_activities(username, t)
+
+ # Tab de Análisis del Discurso
+ with tabs[2]:
+ display_discourse_activities(username, t)
+
+ # Tab de Conversaciones del Chat
+ with tabs[3]:
+ display_chat_activities(username, t)
+
+ except Exception as e:
+ logger.error(f"Error mostrando actividades: {str(e)}")
+ st.error(t.get('error_loading_activities', 'Error al cargar las actividades'))
+
+###################################################################################
+def display_morphosyntax_activities(username: str, t: dict):
+ """Muestra actividades de análisis morfosintáctico"""
+ try:
+ analyses = get_student_morphosyntax_analysis(username)
+ if not analyses:
+ st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados'))
+ return
+
+ for analysis in analyses:
+ with st.expander(
+ f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
+ expanded=False
+ ):
+ st.text(f"{t.get('analyzed_text', 'Texto analizado')}:")
+ st.write(analysis['text'])
+
+ if 'arc_diagrams' in analysis:
+ st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos'))
+ for diagram in analysis['arc_diagrams']:
+ st.write(diagram, unsafe_allow_html=True)
+
+ except Exception as e:
+ logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}")
+ st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico'))
+
+###################################################################################
+def display_semantic_activities(username: str, t: dict):
+ """Muestra actividades de análisis semántico"""
+ try:
+ analyses = get_student_semantic_analysis(username)
+ if not analyses:
+ st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados'))
+ return
+
+ for analysis in analyses:
+ with st.expander(
+ f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
+ expanded=False
+ ):
+
+ # Mostrar conceptos clave
+ if 'key_concepts' in analysis:
+ st.subheader(t.get('key_concepts', 'Conceptos clave'))
+ df = pd.DataFrame(
+ analysis['key_concepts'],
+ columns=['Concepto', 'Frecuencia']
+ )
+ st.dataframe(df)
+
+ # Mostrar gráfico de conceptos
+ if 'concept_graph' in analysis and analysis['concept_graph']:
+ st.subheader(t.get('concept_graph', 'Grafo de conceptos'))
+ image_bytes = base64.b64decode(analysis['concept_graph'])
+ st.image(image_bytes)
+
+ except Exception as e:
+ logger.error(f"Error mostrando análisis semántico: {str(e)}")
+ st.error(t.get('error_semantic', 'Error al mostrar análisis semántico'))
+
+###################################################################################
+
+def display_discourse_activities(username: str, t: dict):
+ """Muestra actividades de análisis del discurso"""
+ try:
+ analyses = get_student_discourse_analysis(username)
+ if not analyses:
+ st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados'))
+ return
+
+ for analysis in analyses:
+ with st.expander(
+ f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}",
+ expanded=False
+ ):
+
+ # Mostrar conceptos clave
+ if 'key_concepts1' in analysis and 'key_concepts2' in analysis:
+ st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
+
+ col1, col2 = st.columns(2)
+ with col1:
+ st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
+ df1 = pd.DataFrame(
+ analysis['key_concepts1'],
+ columns=['Concepto', 'Frecuencia']
+ )
+ st.dataframe(df1)
+
+ with col2:
+ st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
+ df2 = pd.DataFrame(
+ analysis['key_concepts2'],
+ columns=['Concepto', 'Frecuencia']
+ )
+ st.dataframe(df2)
+
+ # Mostrar gráficos
+ if all(key in analysis for key in ['graph1', 'graph2']):
+ st.subheader(t.get('visualizations', 'Visualizaciones'))
+
+ col1, col2 = st.columns(2)
+ with col1:
+ st.markdown(f"**{t.get('graph_text_1', 'Grafo Texto 1')}**")
+ if analysis['graph1']:
+ image_bytes = base64.b64decode(analysis['graph1'])
+ st.image(image_bytes)
+
+ with col2:
+ st.markdown(f"**{t.get('graph_text_2', 'Grafo Texto 2')}**")
+ if analysis['graph2']:
+ image_bytes = base64.b64decode(analysis['graph2'])
+ st.image(image_bytes)
+
+ except Exception as e:
+ logger.error(f"Error mostrando análisis del discurso: {str(e)}")
+ st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso'))
+#################################################################################
+
+def display_discourse_comparison(analysis: dict, t: dict):
+ """Muestra la comparación de análisis del discurso"""
+ st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
+
+ col1, col2 = st.columns(2)
+ with col1:
+ st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
+ df1 = pd.DataFrame(analysis['key_concepts1'])
+ st.dataframe(df1)
+
+ with col2:
+ st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
+ df2 = pd.DataFrame(analysis['key_concepts2'])
+ st.dataframe(df2)
+
+#################################################################################
+
+
+def display_chat_activities(username: str, t: dict):
+ """
+ Muestra historial de conversaciones del chat
+ """
+ try:
+ # Obtener historial del chat
+ chat_history = get_chat_history(
+ username=username,
+ analysis_type='sidebar',
+ limit=50
+ )
+
+ if not chat_history:
+ st.info(t.get('no_chat_history', 'No hay conversaciones registradas'))
+ return
+
+ for chat in reversed(chat_history): # Mostrar las más recientes primero
+ try:
+ # Convertir timestamp a datetime para formato
+ timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00'))
+ formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
+
+ with st.expander(
+ f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}",
+ expanded=False
+ ):
+ if 'messages' in chat and chat['messages']:
+ # Mostrar cada mensaje en la conversación
+ for message in chat['messages']:
+ role = message.get('role', 'unknown')
+ content = message.get('content', '')
+
+ # Usar el componente de chat de Streamlit
+ with st.chat_message(role):
+ st.markdown(content)
+
+ # Agregar separador entre mensajes
+ st.divider()
+ else:
+ st.warning(t.get('invalid_chat_format', 'Formato de chat no válido'))
+
+ except Exception as e:
+ logger.error(f"Error mostrando conversación: {str(e)}")
+ continue
+
+ except Exception as e:
+ logger.error(f"Error mostrando historial del chat: {str(e)}")
+ st.error(t.get('error_chat', 'Error al mostrar historial del chat'))
\ No newline at end of file
diff --git a/src/modules/studentact/student_activities_v2.py b/src/modules/studentact/student_activities_v2.py
new file mode 100644
index 0000000000000000000000000000000000000000..9f8eac7f06cd9d1ee1ba97b59dea5d31f03873c2
--- /dev/null
+++ b/src/modules/studentact/student_activities_v2.py
@@ -0,0 +1,780 @@
+##############
+###modules/studentact/student_activities_v2.py
+
+import streamlit as st
+import re
+import io
+from io import BytesIO
+import pandas as pd
+import numpy as np
+import time
+import matplotlib.pyplot as plt
+from datetime import datetime, timedelta
+from spacy import displacy
+import random
+import base64
+import seaborn as sns
+import logging
+
+# Importaciones de la base de datos
+from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis
+from ..database.semantic_mongo_db import get_student_semantic_analysis
+from ..database.discourse_mongo_db import get_student_discourse_analysis
+from ..database.chat_mongo_db import get_chat_history
+from ..database.current_situation_mongo_db import get_current_situation_analysis
+from ..database.claude_recommendations_mongo_db import get_claude_recommendations
+
+# Importar la función generate_unique_key
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+###################################################################################
+
+def display_student_activities(username: str, lang_code: str, t: dict):
+ """
+ Muestra todas las actividades del estudiante
+ Args:
+ username: Nombre del estudiante
+ lang_code: Código del idioma
+ t: Diccionario de traducciones
+ """
+ try:
+ # Cambiado de "Mis Actividades" a "Registro de mis actividades"
+ #st.header(t.get('activities_title', 'Registro de mis actividades'))
+
+ # Tabs para diferentes tipos de análisis
+ # Cambiado "Análisis del Discurso" a "Análisis comparado de textos"
+ tabs = st.tabs([
+ t.get('current_situation_activities', 'Registros de la función: Mi Situación Actual'),
+ t.get('morpho_activities', 'Registros de mis análisis morfosintácticos'),
+ t.get('semantic_activities', 'Registros de mis análisis semánticos'),
+ t.get('discourse_activities', 'Registros de mis análisis comparado de textos'),
+ t.get('chat_activities', 'Registros de mis conversaciones con el tutor virtual')
+ ])
+
+ # Tab de Situación Actual
+ with tabs[0]:
+ display_current_situation_activities(username, t)
+
+ # Tab de Análisis Morfosintáctico
+ with tabs[1]:
+ display_morphosyntax_activities(username, t)
+
+ # Tab de Análisis Semántico
+ with tabs[2]:
+ display_semantic_activities(username, t)
+
+ # Tab de Análisis del Discurso (mantiene nombre interno pero UI muestra "Análisis comparado de textos")
+ with tabs[3]:
+ display_discourse_activities(username, t)
+
+ # Tab de Conversaciones del Chat
+ with tabs[4]:
+ display_chat_activities(username, t)
+
+ except Exception as e:
+ logger.error(f"Error mostrando actividades: {str(e)}")
+ st.error(t.get('error_loading_activities', 'Error al cargar las actividades'))
+
+
+###############################################################################################
+
+def display_current_situation_activities(username: str, t: dict):
+ """
+ Muestra análisis de situación actual junto con las recomendaciones de Claude
+ unificando la información de ambas colecciones y emparejándolas por cercanía temporal.
+ """
+ try:
+ # Recuperar datos de ambas colecciones
+ logger.info(f"Recuperando análisis de situación actual para {username}")
+ situation_analyses = get_current_situation_analysis(username, limit=10)
+
+ # Verificar si hay datos
+ if situation_analyses:
+ logger.info(f"Recuperados {len(situation_analyses)} análisis de situación")
+ # Depurar para ver la estructura de datos
+ for i, analysis in enumerate(situation_analyses):
+ logger.info(f"Análisis #{i+1}: Claves disponibles: {list(analysis.keys())}")
+ if 'metrics' in analysis:
+ logger.info(f"Métricas disponibles: {list(analysis['metrics'].keys())}")
+ else:
+ logger.warning("No se encontraron análisis de situación actual")
+
+ logger.info(f"Recuperando recomendaciones de Claude para {username}")
+ claude_recommendations = get_claude_recommendations(username)
+
+ if claude_recommendations:
+ logger.info(f"Recuperadas {len(claude_recommendations)} recomendaciones de Claude")
+ else:
+ logger.warning("No se encontraron recomendaciones de Claude")
+
+ # Verificar si hay algún tipo de análisis disponible
+ if not situation_analyses and not claude_recommendations:
+ logger.info("No se encontraron análisis de situación actual ni recomendaciones")
+ st.info(t.get('no_current_situation', 'No hay análisis de situación actual registrados'))
+ return
+
+ # Crear pares combinados emparejando diagnósticos y recomendaciones cercanos en tiempo
+ logger.info("Creando emparejamientos temporales de análisis")
+
+ # Convertir timestamps a objetos datetime para comparación
+ situation_times = []
+ for analysis in situation_analyses:
+ if 'timestamp' in analysis:
+ try:
+ timestamp_str = analysis['timestamp']
+ dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
+ situation_times.append((dt, analysis))
+ except Exception as e:
+ logger.error(f"Error parseando timestamp de situación: {str(e)}")
+
+ recommendation_times = []
+ for recommendation in claude_recommendations:
+ if 'timestamp' in recommendation:
+ try:
+ timestamp_str = recommendation['timestamp']
+ dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
+ recommendation_times.append((dt, recommendation))
+ except Exception as e:
+ logger.error(f"Error parseando timestamp de recomendación: {str(e)}")
+
+ # Ordenar por tiempo
+ situation_times.sort(key=lambda x: x[0], reverse=True)
+ recommendation_times.sort(key=lambda x: x[0], reverse=True)
+
+ # Crear pares combinados
+ combined_items = []
+
+ # Primero, procesar todas las situaciones encontrando la recomendación más cercana
+ for sit_time, situation in situation_times:
+ # Buscar la recomendación más cercana en tiempo
+ best_match = None
+ min_diff = timedelta(minutes=30) # Máxima diferencia de tiempo aceptable (30 minutos)
+ best_rec_time = None
+
+ for rec_time, recommendation in recommendation_times:
+ time_diff = abs(sit_time - rec_time)
+ if time_diff < min_diff:
+ min_diff = time_diff
+ best_match = recommendation
+ best_rec_time = rec_time
+
+ # Crear un elemento combinado
+ if best_match:
+ timestamp_key = sit_time.isoformat()
+ combined_items.append((timestamp_key, {
+ 'situation': situation,
+ 'recommendation': best_match,
+ 'time_diff': min_diff.total_seconds()
+ }))
+ # Eliminar la recomendación usada para no reutilizarla
+ recommendation_times = [(t, r) for t, r in recommendation_times if t != best_rec_time]
+ logger.info(f"Emparejado: Diagnóstico {sit_time} con Recomendación {best_rec_time} (diferencia: {min_diff})")
+ else:
+ # Si no hay recomendación cercana, solo incluir la situación
+ timestamp_key = sit_time.isoformat()
+ combined_items.append((timestamp_key, {
+ 'situation': situation
+ }))
+ logger.info(f"Sin emparejar: Diagnóstico {sit_time} sin recomendación cercana")
+
+ # Agregar recomendaciones restantes sin situación
+ for rec_time, recommendation in recommendation_times:
+ timestamp_key = rec_time.isoformat()
+ combined_items.append((timestamp_key, {
+ 'recommendation': recommendation
+ }))
+ logger.info(f"Sin emparejar: Recomendación {rec_time} sin diagnóstico cercano")
+
+ # Ordenar por tiempo (más reciente primero)
+ combined_items.sort(key=lambda x: x[0], reverse=True)
+
+ logger.info(f"Procesando {len(combined_items)} elementos combinados")
+
+ # Mostrar cada par combinado
+ for i, (timestamp_key, analysis_pair) in enumerate(combined_items):
+ try:
+ # Obtener datos de situación y recomendación
+ situation_data = analysis_pair.get('situation', {})
+ recommendation_data = analysis_pair.get('recommendation', {})
+ time_diff = analysis_pair.get('time_diff')
+
+ # Si no hay ningún dato, continuar al siguiente
+ if not situation_data and not recommendation_data:
+ continue
+
+ # Determinar qué texto mostrar (priorizar el de la situación)
+ text_to_show = situation_data.get('text', recommendation_data.get('text', ''))
+ text_type = situation_data.get('text_type', recommendation_data.get('text_type', ''))
+
+ # Formatear fecha para mostrar
+ try:
+ # Usar timestamp del key que ya es un formato ISO
+ dt = datetime.fromisoformat(timestamp_key)
+ formatted_date = dt.strftime("%d/%m/%Y %H:%M:%S")
+ except Exception as date_error:
+ logger.error(f"Error formateando fecha: {str(date_error)}")
+ formatted_date = timestamp_key
+
+ # Determinar el título del expander
+ title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}"
+ if text_type:
+ text_type_display = {
+ 'academic_article': t.get('academic_article', 'Artículo académico'),
+ 'student_essay': t.get('student_essay', 'Trabajo universitario'),
+ 'general_communication': t.get('general_communication', 'Comunicación general')
+ }.get(text_type, text_type)
+ title += f" - {text_type_display}"
+
+ # Añadir indicador de emparejamiento si existe
+ if time_diff is not None:
+ if time_diff < 60: # menos de un minuto
+ title += f" 🔄 (emparejados)"
+ else:
+ title += f" 🔄 (emparejados, diferencia: {int(time_diff//60)} min)"
+
+ # Usar un ID único para cada expander
+ expander_id = f"analysis_{i}_{timestamp_key.replace(':', '_')}"
+
+ # Mostrar el análisis en un expander
+ with st.expander(title, expanded=False):
+ # Mostrar texto analizado con key único
+ st.subheader(t.get('analyzed_text', 'Texto analizado'))
+ st.text_area(
+ "Text Content",
+ value=text_to_show,
+ height=100,
+ disabled=True,
+ label_visibility="collapsed",
+ key=f"text_area_{expander_id}"
+ )
+
+ # Crear tabs para separar diagnóstico y recomendaciones
+ diagnosis_tab, recommendations_tab = st.tabs([
+ t.get('diagnosis_tab', 'Diagnóstico'),
+ t.get('recommendations_tab', 'Recomendaciones')
+ ])
+
+ # Tab de diagnóstico
+ with diagnosis_tab:
+ if situation_data and 'metrics' in situation_data:
+ metrics = situation_data['metrics']
+
+ # Dividir en dos columnas
+ col1, col2 = st.columns(2)
+
+ # Principales métricas en formato de tarjetas
+ with col1:
+ st.subheader(t.get('key_metrics', 'Métricas clave'))
+
+ # Mostrar cada métrica principal
+ for metric_name, metric_data in metrics.items():
+ try:
+ # Determinar la puntuación
+ score = None
+ if isinstance(metric_data, dict):
+ # Intentar diferentes nombres de campo
+ if 'normalized_score' in metric_data:
+ score = metric_data['normalized_score']
+ elif 'score' in metric_data:
+ score = metric_data['score']
+ elif 'value' in metric_data:
+ score = metric_data['value']
+ elif isinstance(metric_data, (int, float)):
+ score = metric_data
+
+ if score is not None:
+ # Asegurarse de que score es numérico
+ if isinstance(score, (int, float)):
+ # Determinar color y emoji basado en la puntuación
+ if score < 0.5:
+ emoji = "🔴"
+ color = "#ffcccc" # light red
+ elif score < 0.75:
+ emoji = "🟡"
+ color = "#ffffcc" # light yellow
+ else:
+ emoji = "🟢"
+ color = "#ccffcc" # light green
+
+ # Mostrar la métrica con estilo
+ st.markdown(f"""
+
+ {emoji} {metric_name.capitalize()}: {score:.2f}
+
+ """, unsafe_allow_html=True)
+ else:
+ # Si no es numérico, mostrar como texto
+ st.markdown(f"""
+
+ ℹ️ {metric_name.capitalize()}: {str(score)}
+
+ """, unsafe_allow_html=True)
+ except Exception as e:
+ logger.error(f"Error procesando métrica {metric_name}: {str(e)}")
+
+ # Mostrar detalles adicionales si están disponibles
+ with col2:
+ st.subheader(t.get('details', 'Detalles'))
+
+ # Para cada métrica, mostrar sus detalles si existen
+ for metric_name, metric_data in metrics.items():
+ try:
+ if isinstance(metric_data, dict):
+ # Mostrar detalles directamente o buscar en subcampos
+ details = None
+ if 'details' in metric_data and metric_data['details']:
+ details = metric_data['details']
+ else:
+ # Crear un diccionario con los detalles excluyendo 'normalized_score' y similares
+ details = {k: v for k, v in metric_data.items()
+ if k not in ['normalized_score', 'score', 'value']}
+
+ if details:
+ st.write(f"**{metric_name.capitalize()}**")
+ st.json(details, expanded=False)
+ except Exception as e:
+ logger.error(f"Error mostrando detalles de {metric_name}: {str(e)}")
+ else:
+ st.info(t.get('no_diagnosis', 'No hay datos de diagnóstico disponibles'))
+
+ # Tab de recomendaciones
+ with recommendations_tab:
+ if recommendation_data and 'recommendations' in recommendation_data:
+ st.markdown(f"""
+
+ {recommendation_data['recommendations']}
+
+ """, unsafe_allow_html=True)
+ elif recommendation_data and 'feedback' in recommendation_data:
+ st.markdown(f"""
+
+ {recommendation_data['feedback']}
+
+ """, unsafe_allow_html=True)
+ else:
+ st.info(t.get('no_recommendations', 'No hay recomendaciones disponibles'))
+
+ except Exception as e:
+ logger.error(f"Error procesando par de análisis: {str(e)}")
+ continue
+
+ except Exception as e:
+ logger.error(f"Error mostrando actividades de situación actual: {str(e)}")
+ st.error(t.get('error_current_situation', 'Error al mostrar análisis de situación actual'))
+
+###############################################################################################
+
+def display_morphosyntax_activities(username: str, t: dict):
+ """
+ Muestra actividades de análisis morfosintáctico, incluyendo base e iteraciones
+ desde las nuevas colecciones: student_morphosyntax_analysis_base y student_morphosyntax_iterations
+ """
+ try:
+ # Importación inline para evitar problemas de circularidad
+ # Utilizamos la función de la nueva estructura de DB iterativa
+ from ..database.morphosyntax_iterative_mongo_db import get_student_morphosyntax_analysis
+
+ logger.info(f"Recuperando análisis morfosintáctico para {username}")
+
+ # Esta función ahora trae tanto las bases como sus iteraciones
+ base_analyses = get_student_morphosyntax_analysis(username)
+
+ if not base_analyses:
+ logger.info("No se encontraron análisis morfosintácticos")
+ st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados'))
+ return
+
+ logger.info(f"Procesando {len(base_analyses)} análisis morfosintácticos base")
+
+ # Procesar cada análisis base con sus iteraciones
+ for base_analysis in base_analyses:
+ try:
+ # Formatear fecha
+ timestamp = datetime.fromisoformat(base_analysis['timestamp'].replace('Z', '+00:00'))
+ formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
+
+ # Título del expander: incluir información de si tiene iteraciones
+ expander_title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}"
+ if base_analysis.get('has_iterations', False):
+ expander_title += f" ({t.get('has_iterations', 'Con iteraciones')})"
+
+ with st.expander(expander_title, expanded=False):
+ # Mostrar texto base
+ st.subheader(t.get('base_text', 'Texto original'))
+ st.text_area(
+ "Base Text Content",
+ value=base_analysis.get('text', ''),
+ height=100,
+ disabled=True,
+ label_visibility="collapsed",
+ key=f"base_text_{str(base_analysis['_id'])}"
+ )
+
+ # Mostrar diagrama de arco base si existe
+ if 'arc_diagrams' in base_analysis and base_analysis['arc_diagrams']:
+ st.subheader(t.get('syntactic_diagrams', 'Diagrama sintáctico (original)'))
+ # Mostrar cada diagrama (normalmente solo uno por oración)
+ for diagram in base_analysis['arc_diagrams']:
+ st.write(diagram, unsafe_allow_html=True)
+
+ # Procesar iteraciones si existen
+ if 'iterations' in base_analysis and base_analysis['iterations']:
+ st.markdown("---") # Línea divisoria
+ st.subheader(t.get('iterations', 'Versiones mejoradas'))
+
+ # Crear tabs para cada iteración
+ iteration_tabs = st.tabs([
+ f"{t.get('iteration', 'Versión')} {i+1}"
+ for i in range(len(base_analysis['iterations']))
+ ])
+
+ # Mostrar cada iteración en su propia pestaña
+ for i, (tab, iteration) in enumerate(zip(iteration_tabs, base_analysis['iterations'])):
+ with tab:
+ # Timestamp de la iteración
+ iter_timestamp = datetime.fromisoformat(
+ iteration['timestamp'].replace('Z', '+00:00'))
+ iter_formatted_date = iter_timestamp.strftime("%d/%m/%Y %H:%M:%S")
+ st.caption(f"{t.get('iteration_date', 'Fecha de versión')}: {iter_formatted_date}")
+
+ # Texto de la iteración
+ st.text_area(
+ f"Iteration Text {i+1}",
+ value=iteration.get('iteration_text', ''),
+ height=100,
+ disabled=True,
+ label_visibility="collapsed",
+ key=f"iter_text_{str(iteration['_id'])}"
+ )
+
+ # Diagrama de arco de la iteración
+ if 'arc_diagrams' in iteration and iteration['arc_diagrams']:
+ st.subheader(t.get('iteration_diagram', 'Diagrama sintáctico (mejorado)'))
+ for diagram in iteration['arc_diagrams']:
+ st.write(diagram, unsafe_allow_html=True)
+
+ except Exception as e:
+ logger.error(f"Error procesando análisis morfosintáctico: {str(e)}")
+ st.error(t.get('error_processing_analysis', 'Error procesando este análisis'))
+ continue
+
+ except Exception as e:
+ logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}")
+ st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico'))
+
+
+###############################################################################################
+
+def display_semantic_activities(username: str, t: dict):
+ """Muestra actividades de análisis semántico"""
+ try:
+ logger.info(f"Recuperando análisis semántico para {username}")
+ analyses = get_student_semantic_analysis(username)
+
+ if not analyses:
+ logger.info("No se encontraron análisis semánticos")
+ st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados'))
+ return
+
+ logger.info(f"Procesando {len(analyses)} análisis semánticos")
+
+ for analysis in analyses:
+ try:
+ # Verificar campos necesarios
+ if not all(key in analysis for key in ['timestamp', 'concept_graph']):
+ logger.warning(f"Análisis incompleto: {analysis.keys()}")
+ continue
+
+ # Formatear fecha
+ timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
+ formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
+
+ # Crear expander
+ with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
+ # Procesar y mostrar gráfico
+ if analysis.get('concept_graph'):
+ try:
+ # Convertir de base64 a bytes
+ logger.debug("Decodificando gráfico de conceptos")
+ image_data = analysis['concept_graph']
+
+ # Si el gráfico ya es bytes, usarlo directamente
+ if isinstance(image_data, bytes):
+ image_bytes = image_data
+ else:
+ # Si es string base64, decodificar
+ image_bytes = base64.b64decode(image_data)
+
+ logger.debug(f"Longitud de bytes de imagen: {len(image_bytes)}")
+
+ # Mostrar imagen
+ st.image(
+ image_bytes,
+ caption=t.get('concept_network', 'Red de Conceptos'),
+ use_container_width=True
+ )
+ logger.debug("Gráfico mostrado exitosamente")
+
+ except Exception as img_error:
+ logger.error(f"Error procesando gráfico: {str(img_error)}")
+ st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
+ else:
+ st.info(t.get('no_graph', 'No hay visualización disponible'))
+
+ except Exception as e:
+ logger.error(f"Error procesando análisis individual: {str(e)}")
+ continue
+
+ except Exception as e:
+ logger.error(f"Error mostrando análisis semántico: {str(e)}")
+ st.error(t.get('error_semantic', 'Error al mostrar análisis semántico'))
+
+
+###################################################################################################
+
+def display_discourse_activities(username: str, t: dict):
+ """Muestra actividades de análisis del discurso (mostrado como 'Análisis comparado de textos' en la UI)"""
+ try:
+ logger.info(f"Recuperando análisis del discurso para {username}")
+ analyses = get_student_discourse_analysis(username)
+
+ if not analyses:
+ logger.info("No se encontraron análisis del discurso")
+ # Usamos el término "análisis comparado de textos" en la UI
+ st.info(t.get('no_discourse_analyses', 'No hay análisis comparados de textos registrados'))
+ return
+
+ logger.info(f"Procesando {len(analyses)} análisis del discurso")
+ for analysis in analyses:
+ try:
+ # Verificar campos mínimos necesarios
+ if not all(key in analysis for key in ['timestamp']):
+ logger.warning(f"Análisis incompleto: {analysis.keys()}")
+ continue
+
+ # Formatear fecha
+ timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
+ formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
+
+ with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
+ # Crear dos columnas para mostrar los documentos lado a lado
+ col1, col2 = st.columns(2)
+
+ # Documento 1 - Columna izquierda
+ with col1:
+ st.subheader(t.get('doc1_title', 'Documento 1'))
+ st.markdown(t.get('key_concepts', 'Conceptos Clave'))
+
+ # Mostrar conceptos clave en formato de etiquetas
+ if 'key_concepts1' in analysis and analysis['key_concepts1']:
+ concepts_html = f"""
+
+ {''.join([
+ f'
'
+ f'{concept}'
+ f'({freq:.2f})
'
+ for concept, freq in analysis['key_concepts1']
+ ])}
+
+ """
+ st.markdown(concepts_html, unsafe_allow_html=True)
+ else:
+ st.info(t.get('no_concepts', 'No hay conceptos disponibles'))
+
+ # Mostrar grafo 1
+ if 'graph1' in analysis:
+ try:
+ if isinstance(analysis['graph1'], bytes):
+ st.image(
+ analysis['graph1'],
+ use_container_width=True
+ )
+ else:
+ logger.warning(f"graph1 no es bytes: {type(analysis['graph1'])}")
+ st.warning(t.get('graph_not_available', 'Gráfico no disponible'))
+ except Exception as e:
+ logger.error(f"Error mostrando graph1: {str(e)}")
+ st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
+ else:
+ st.info(t.get('no_visualization', 'No hay visualización disponible'))
+
+ # Interpretación del grafo
+ st.markdown("**📊 Interpretación del grafo:**")
+ st.markdown("""
+ - 🔀 Las flechas indican la dirección de la relación entre conceptos
+ - 🎨 Los colores más intensos indican conceptos más centrales en el texto
+ - ⭕ El tamaño de los nodos representa la frecuencia del concepto
+ - ↔️ El grosor de las líneas indica la fuerza de la conexión
+ """)
+
+ # Documento 2 - Columna derecha
+ with col2:
+ st.subheader(t.get('doc2_title', 'Documento 2'))
+ st.markdown(t.get('key_concepts', 'Conceptos Clave'))
+
+ # Mostrar conceptos clave en formato de etiquetas
+ if 'key_concepts2' in analysis and analysis['key_concepts2']:
+ concepts_html = f"""
+
+ {''.join([
+ f'
'
+ f'{concept}'
+ f'({freq:.2f})
'
+ for concept, freq in analysis['key_concepts2']
+ ])}
+
+ """
+ st.markdown(concepts_html, unsafe_allow_html=True)
+ else:
+ st.info(t.get('no_concepts', 'No hay conceptos disponibles'))
+
+ # Mostrar grafo 2
+ if 'graph2' in analysis:
+ try:
+ if isinstance(analysis['graph2'], bytes):
+ st.image(
+ analysis['graph2'],
+ use_container_width=True
+ )
+ else:
+ logger.warning(f"graph2 no es bytes: {type(analysis['graph2'])}")
+ st.warning(t.get('graph_not_available', 'Gráfico no disponible'))
+ except Exception as e:
+ logger.error(f"Error mostrando graph2: {str(e)}")
+ st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
+ else:
+ st.info(t.get('no_visualization', 'No hay visualización disponible'))
+
+ # Interpretación del grafo
+ st.markdown("**📊 Interpretación del grafo:**")
+ st.markdown("""
+ - 🔀 Las flechas indican la dirección de la relación entre conceptos
+ - 🎨 Los colores más intensos indican conceptos más centrales en el texto
+ - ⭕ El tamaño de los nodos representa la frecuencia del concepto
+ - ↔️ El grosor de las líneas indica la fuerza de la conexión
+ """)
+
+ except Exception as e:
+ logger.error(f"Error procesando análisis individual: {str(e)}")
+ continue
+
+ except Exception as e:
+ logger.error(f"Error mostrando análisis del discurso: {str(e)}")
+ # Usamos el término "análisis comparado de textos" en la UI
+ st.error(t.get('error_discourse', 'Error al mostrar análisis comparado de textos'))
+
+
+
+#################################################################################
+
+def display_discourse_comparison(analysis: dict, t: dict):
+ """
+ Muestra la comparación de conceptos clave en análisis del discurso.
+ Formato horizontal simplificado.
+ """
+ st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
+
+ # Verificar si tenemos los conceptos necesarios
+ if not ('key_concepts1' in analysis and analysis['key_concepts1']):
+ st.info(t.get('no_concepts', 'No hay conceptos disponibles para comparar'))
+ return
+
+ # Conceptos del Texto 1 - Formato horizontal
+ st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}:**")
+ try:
+ # Comprobar formato y mostrar horizontalmente
+ if isinstance(analysis['key_concepts1'], list) and len(analysis['key_concepts1']) > 0:
+ if isinstance(analysis['key_concepts1'][0], list) and len(analysis['key_concepts1'][0]) == 2:
+ # Formatear como "concepto (valor), concepto2 (valor2), ..."
+ concepts_text = ", ".join([f"{c[0]} ({c[1]})" for c in analysis['key_concepts1'][:10]])
+ st.markdown(f"*{concepts_text}*")
+ else:
+ # Si no tiene el formato esperado, mostrar como lista simple
+ st.markdown(", ".join(str(c) for c in analysis['key_concepts1'][:10]))
+ else:
+ st.write(str(analysis['key_concepts1']))
+ except Exception as e:
+ logger.error(f"Error mostrando key_concepts1: {str(e)}")
+ st.error(t.get('error_concepts1', 'Error mostrando conceptos del Texto 1'))
+
+ # Conceptos del Texto 2 - Formato horizontal
+ st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}:**")
+ if 'key_concepts2' in analysis and analysis['key_concepts2']:
+ try:
+ # Comprobar formato y mostrar horizontalmente
+ if isinstance(analysis['key_concepts2'], list) and len(analysis['key_concepts2']) > 0:
+ if isinstance(analysis['key_concepts2'][0], list) and len(analysis['key_concepts2'][0]) == 2:
+ # Formatear como "concepto (valor), concepto2 (valor2), ..."
+ concepts_text = ", ".join([f"{c[0]} ({c[1]})" for c in analysis['key_concepts2'][:10]])
+ st.markdown(f"*{concepts_text}*")
+ else:
+ # Si no tiene el formato esperado, mostrar como lista simple
+ st.markdown(", ".join(str(c) for c in analysis['key_concepts2'][:10]))
+ else:
+ st.write(str(analysis['key_concepts2']))
+ except Exception as e:
+ logger.error(f"Error mostrando key_concepts2: {str(e)}")
+ st.error(t.get('error_concepts2', 'Error mostrando conceptos del Texto 2'))
+ else:
+ st.info(t.get('no_concepts2', 'No hay conceptos disponibles para el Texto 2'))
+
+
+#################################################################################
+def display_chat_activities(username: str, t: dict):
+ """
+ Muestra historial de conversaciones del chat
+ """
+ try:
+ # Obtener historial del chat
+ chat_history = get_chat_history(
+ username=username,
+ analysis_type='sidebar',
+ limit=50
+ )
+
+ if not chat_history:
+ st.info(t.get('no_chat_history', 'No hay conversaciones registradas'))
+ return
+
+ for chat in reversed(chat_history): # Mostrar las más recientes primero
+ try:
+ # Convertir timestamp a datetime para formato
+ timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00'))
+ formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
+
+ with st.expander(
+ f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}",
+ expanded=False
+ ):
+ if 'messages' in chat and chat['messages']:
+ # Mostrar cada mensaje en la conversación
+ for message in chat['messages']:
+ role = message.get('role', 'unknown')
+ content = message.get('content', '')
+
+ # Usar el componente de chat de Streamlit
+ with st.chat_message(role):
+ st.markdown(content)
+
+ # Agregar separador entre mensajes
+ st.divider()
+ else:
+ st.warning(t.get('invalid_chat_format', 'Formato de chat no válido'))
+
+ except Exception as e:
+ logger.error(f"Error mostrando conversación: {str(e)}")
+ continue
+
+ except Exception as e:
+ logger.error(f"Error mostrando historial del chat: {str(e)}")
+ st.error(t.get('error_chat', 'Error al mostrar historial del chat'))
+
+#################################################################################
diff --git a/src/modules/studentact/temp_current_situation_interface.py b/src/modules/studentact/temp_current_situation_interface.py
new file mode 100644
index 0000000000000000000000000000000000000000..c5c62f53c8f66bfd658f68862f06b5624f34b0bf
--- /dev/null
+++ b/src/modules/studentact/temp_current_situation_interface.py
@@ -0,0 +1,311 @@
+# modules/studentact/current_situation_interface.py
+
+import streamlit as st
+import logging
+from ..utils.widget_utils import generate_unique_key
+from .current_situation_analysis import (
+ analyze_text_dimensions,
+ create_vocabulary_network,
+ create_syntax_complexity_graph,
+ create_cohesion_heatmap
+)
+
+logger = logging.getLogger(__name__)
+
+def display_current_situation_interface(lang_code, nlp_models, t):
+ """
+ Interfaz modular para el análisis de la situación actual del estudiante.
+ Esta función maneja la presentación y la interacción con el usuario.
+
+ Args:
+ lang_code: Código del idioma actual
+ nlp_models: Diccionario de modelos de spaCy cargados
+ t: Diccionario de traducciones
+ """
+ st.markdown("## Mi Situación Actual de Escritura")
+
+ # Container principal para mejor organización visual
+ with st.container():
+ # Columnas para entrada y visualización
+ text_col, visual_col = st.columns([1,2])
+
+ with text_col:
+ # Área de entrada de texto
+ text_input = st.text_area(
+ t.get('current_situation_input', "Ingresa tu texto para analizar:"),
+ height=400,
+ key=generate_unique_key("current_situation", "input")
+ )
+
+ # Botón de análisis
+ if st.button(
+ t.get('analyze_button', "Explorar mi escritura"),
+ type="primary",
+ disabled=not text_input,
+ key=generate_unique_key("current_situation", "analyze")
+ ):
+ try:
+ with st.spinner(t.get('processing', "Analizando texto...")):
+ # 1. Procesar el texto
+ doc = nlp_models[lang_code](text_input)
+ metrics = analyze_text_dimensions(doc)
+
+ # 2. Mostrar visualizaciones en la columna derecha
+ with visual_col:
+ display_current_situation_visual(doc, metrics)
+
+ # 3. Obtener retroalimentación de Claude
+ feedback = get_claude_feedback(metrics, text_input)
+
+ # 4. Guardar los resultados
+ from ..database.current_situation_mongo_db import store_current_situation_result
+
+ if st.button(t.get('analyze_button', "Explorar mi escritura")):
+ with st.spinner(t.get('processing', "Analizando texto...")):
+ # Procesar y analizar
+ doc = nlp_models[lang_code](text_input)
+
+ # Obtener métricas con manejo de errores
+ try:
+ metrics = analyze_text_dimensions(doc)
+ except Exception as e:
+ logger.error(f"Error en análisis: {str(e)}")
+ st.error("Error en el análisis de dimensiones")
+ return
+
+ # Obtener feedback
+ try:
+ feedback = get_claude_feedback(metrics, text_input)
+ except Exception as e:
+ logger.error(f"Error obteniendo feedback: {str(e)}")
+ st.error("Error obteniendo retroalimentación")
+ return
+
+ # Guardar resultados con verificación
+ if store_current_situation_result(
+ st.session_state.username,
+ text_input,
+ metrics,
+ feedback
+ ):
+ st.success(t.get('save_success', "Análisis guardado"))
+
+ # Mostrar visualizaciones y recomendaciones
+ display_current_situation_visual(doc, metrics)
+ show_recommendations(feedback, t)
+ else:
+ st.error("Error al guardar el análisis")
+
+ except Exception as e:
+ logger.error(f"Error en interfaz: {str(e)}")
+ st.error("Error general en la interfaz")
+
+################################################################
+def display_current_situation_visual(doc, metrics):
+ """Visualización mejorada de resultados con interpretaciones"""
+ try:
+ with st.container():
+ # Estilos CSS mejorados para los contenedores
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # 1. Riqueza de Vocabulario
+ with st.expander("📚 Riqueza de Vocabulario", expanded=True):
+ st.markdown('', unsafe_allow_html=True)
+ vocabulary_graph = create_vocabulary_network(doc)
+ if vocabulary_graph:
+ # Mostrar gráfico
+ st.pyplot(vocabulary_graph)
+ plt.close(vocabulary_graph)
+
+ # Interpretación
+ st.markdown('
', unsafe_allow_html=True)
+ st.markdown("**¿Qué significa este gráfico?**")
+ st.markdown("""
+ - 🔵 Los nodos azules representan palabras clave en tu texto
+ - 📏 El tamaño de cada nodo indica su frecuencia de uso
+ - 🔗 Las líneas conectan palabras que aparecen juntas frecuentemente
+ - 🎨 Los colores más intensos indican palabras más centrales
+ """)
+ st.markdown("
", unsafe_allow_html=True)
+ st.markdown("
", unsafe_allow_html=True)
+
+ # 2. Estructura de Oraciones
+ with st.expander("🏗️ Complejidad Estructural", expanded=True):
+ st.markdown('', unsafe_allow_html=True)
+ syntax_graph = create_syntax_complexity_graph(doc)
+ if syntax_graph:
+ st.pyplot(syntax_graph)
+ plt.close(syntax_graph)
+
+ st.markdown('
', unsafe_allow_html=True)
+ st.markdown("**Análisis de la estructura:**")
+ st.markdown("""
+ - 📊 Las barras muestran la complejidad de cada oración
+ - 📈 Mayor altura indica estructuras más elaboradas
+ - 🎯 La línea punteada indica el nivel óptimo de complejidad
+ - 🔄 Variación en las alturas sugiere dinamismo en la escritura
+ """)
+ st.markdown("
", unsafe_allow_html=True)
+ st.markdown("
", unsafe_allow_html=True)
+
+ # 3. Cohesión Textual
+ with st.expander("🔄 Cohesión del Texto", expanded=True):
+ st.markdown('', unsafe_allow_html=True)
+ cohesion_map = create_cohesion_heatmap(doc)
+ if cohesion_map:
+ st.pyplot(cohesion_map)
+ plt.close(cohesion_map)
+
+ st.markdown('
', unsafe_allow_html=True)
+ st.markdown("**¿Cómo leer el mapa de calor?**")
+ st.markdown("""
+ - 🌈 Colores más intensos indican mayor conexión entre oraciones
+ - 📝 La diagonal muestra la coherencia interna de cada oración
+ - 🔗 Las zonas claras sugieren oportunidades de mejorar conexiones
+ - 🎯 Un buen texto muestra patrones de color consistentes
+ """)
+ st.markdown("
", unsafe_allow_html=True)
+ st.markdown("
", unsafe_allow_html=True)
+
+ # 4. Métricas Generales
+ with st.expander("📊 Resumen de Métricas", expanded=True):
+ col1, col2, col3 = st.columns(3)
+
+ with col1:
+ st.metric(
+ "Diversidad Léxica",
+ f"{metrics['vocabulary_richness']:.2f}/1.0",
+ help="Mide la variedad de palabras diferentes utilizadas"
+ )
+
+ with col2:
+ st.metric(
+ "Complejidad Estructural",
+ f"{metrics['structural_complexity']:.2f}/1.0",
+ help="Indica qué tan elaboradas son las estructuras de las oraciones"
+ )
+
+ with col3:
+ st.metric(
+ "Cohesión Textual",
+ f"{metrics['cohesion_score']:.2f}/1.0",
+ help="Evalúa qué tan bien conectadas están las ideas entre sí"
+ )
+
+ except Exception as e:
+ logger.error(f"Error en visualización: {str(e)}")
+ st.error("Error al generar las visualizaciones")
+
+################################################################
+def show_recommendations(feedback, t):
+ """
+ Muestra las recomendaciones y ejercicios personalizados para el estudiante,
+ permitiendo el seguimiento de su progreso.
+
+ Args:
+ feedback: Diccionario con retroalimentación y ejercicios recomendados
+ t: Diccionario de traducciones
+ """
+ st.markdown("### " + t.get('recommendations_title', "Recomendaciones para mejorar"))
+
+ for area, exercises in feedback['recommendations'].items():
+ with st.expander(f"💡 {area}"):
+ try:
+ # Descripción del área de mejora
+ st.markdown(exercises['description'])
+
+ # Obtener el historial de ejercicios del estudiante
+ from ..database.current_situation_mongo_db import get_student_exercises_history
+ exercises_history = get_student_exercises_history(st.session_state.username)
+
+ # Separar ejercicios en completados y pendientes
+ completed = exercises_history.get(area, [])
+
+ # Mostrar estado actual
+ progress_col1, progress_col2 = st.columns([3,1])
+ with progress_col1:
+ st.markdown("**Ejercicio sugerido:**")
+ st.markdown(exercises['activity'])
+
+ with progress_col2:
+ # Verificar si el ejercicio ya está completado
+ exercise_key = f"{area}_{exercises['activity']}"
+ is_completed = exercise_key in completed
+
+ if is_completed:
+ st.success("✅ Completado")
+ else:
+ # Botón para marcar ejercicio como completado
+ if st.button(
+ t.get('mark_complete', "Marcar como completado"),
+ key=generate_unique_key("exercise", area),
+ type="primary"
+ ):
+ try:
+ from ..database.current_situation_mongo_db import update_exercise_status
+
+ # Actualizar estado del ejercicio
+ success = update_exercise_status(
+ username=st.session_state.username,
+ area=area,
+ exercise=exercises['activity'],
+ completed=True
+ )
+
+ if success:
+ st.success(t.get(
+ 'exercise_completed',
+ "¡Ejercicio marcado como completado!"
+ ))
+ st.rerun()
+ else:
+ st.error(t.get(
+ 'exercise_error',
+ "Error al actualizar el estado del ejercicio"
+ ))
+ except Exception as e:
+ logger.error(f"Error actualizando estado del ejercicio: {str(e)}")
+ st.error(t.get('update_error', "Error al actualizar el ejercicio"))
+
+ # Mostrar recursos adicionales si existen
+ if 'resources' in exercises:
+ st.markdown("**Recursos adicionales:**")
+ for resource in exercises['resources']:
+ st.markdown(f"- {resource}")
+
+ # Mostrar fecha de finalización si está completado
+ if is_completed:
+ completion_date = exercises_history[exercise_key].get('completion_date')
+ if completion_date:
+ st.caption(
+ t.get('completed_on', "Completado el") +
+ f": {completion_date.strftime('%d/%m/%Y %H:%M')}"
+ )
+
+ except Exception as e:
+ logger.error(f"Error mostrando recomendaciones para {area}: {str(e)}")
+ st.error(t.get(
+ 'recommendations_error',
+ f"Error al mostrar las recomendaciones para {area}"
+ ))
\ No newline at end of file
diff --git a/src/modules/text_analysis/__init__.py b/src/modules/text_analysis/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..a8781ff2d1a28dde08cad6688e7efb909aeabaa9
--- /dev/null
+++ b/src/modules/text_analysis/__init__.py
@@ -0,0 +1,29 @@
+# modules/text_analysis/__init__.py
+import logging
+
+logging.basicConfig(
+ level=logging.INFO,
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
+)
+
+# Importaciones de morpho_analysis
+from .morpho_analysis import (
+ perform_advanced_morphosyntactic_analysis,
+ get_repeated_words_colors,
+ highlight_repeated_words,
+ generate_arc_diagram,
+ get_detailed_pos_analysis,
+ get_morphological_analysis,
+ get_sentence_structure_analysis,
+ POS_COLORS,
+ POS_TRANSLATIONS
+)
+
+# Importaciones de semantic_analysis
+from .semantic_analysis import (
+ create_concept_graph,
+ visualize_concept_graph,
+ identify_key_concepts
+)
+
+
diff --git a/src/modules/text_analysis/__pycache__/__init__.cpython-311.pyc b/src/modules/text_analysis/__pycache__/__init__.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3e7768ec60cb4a06cdaec79228f7036c906df7b0
Binary files /dev/null and b/src/modules/text_analysis/__pycache__/__init__.cpython-311.pyc differ
diff --git a/src/modules/text_analysis/__pycache__/discourse_analysis.cpython-311.pyc b/src/modules/text_analysis/__pycache__/discourse_analysis.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5f526ab04a41ca07b198c4e4aaf1337b595c5f33
Binary files /dev/null and b/src/modules/text_analysis/__pycache__/discourse_analysis.cpython-311.pyc differ
diff --git a/src/modules/text_analysis/__pycache__/morpho_analysis.cpython-311.pyc b/src/modules/text_analysis/__pycache__/morpho_analysis.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d74855a63b98e328d11eb2b08352b26f31a23655
Binary files /dev/null and b/src/modules/text_analysis/__pycache__/morpho_analysis.cpython-311.pyc differ
diff --git a/src/modules/text_analysis/__pycache__/semantic_analysis.cpython-311.pyc b/src/modules/text_analysis/__pycache__/semantic_analysis.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..53c63e092b99349668b992be27100905c36bb707
Binary files /dev/null and b/src/modules/text_analysis/__pycache__/semantic_analysis.cpython-311.pyc differ
diff --git a/src/modules/text_analysis/coherence_analysis.py b/src/modules/text_analysis/coherence_analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..d3f5a12faa99758192ecc4ed3fc22c9249232e86
--- /dev/null
+++ b/src/modules/text_analysis/coherence_analysis.py
@@ -0,0 +1 @@
+
diff --git a/src/modules/text_analysis/complex_structures.py b/src/modules/text_analysis/complex_structures.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/modules/text_analysis/discourse_analysis.py b/src/modules/text_analysis/discourse_analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..d674ff959495afc8ef0cf2541bfa9115f1edd500
--- /dev/null
+++ b/src/modules/text_analysis/discourse_analysis.py
@@ -0,0 +1,286 @@
+# modules/text_analysis/discourse_analysis.py
+# Configuración de matplotlib
+
+import streamlit as st
+import spacy
+import networkx as nx
+import matplotlib.pyplot as plt
+import pandas as pd
+import numpy as np
+import logging
+import io
+import base64
+from collections import Counter, defaultdict
+import logging
+
+
+logging.basicConfig(level=logging.INFO)
+logger = logging.getLogger(__name__)
+
+
+from .semantic_analysis import (
+ create_concept_graph,
+ visualize_concept_graph,
+ identify_key_concepts
+)
+
+
+from .stopwords import (
+ get_custom_stopwords,
+ process_text,
+ get_stopwords_for_spacy
+)
+
+
+#####################
+POS_TRANSLATIONS = {
+ 'es': {
+ 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
+ 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
+ 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
+ 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
+ 'VERB': 'Verbo', 'X': 'Otro',
+ },
+ 'en': {
+ 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
+ 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
+ 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
+ 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
+ 'VERB': 'Verb', 'X': 'Other',
+ },
+ 'fr': {
+ 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
+ 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
+ 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
+ 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
+ 'VERB': 'Verbe', 'X': 'Autre',
+ },
+ 'pt': {
+ 'ADJ': 'Adjetivo', 'ADP': 'Preposição', 'ADV': 'Advérbio', 'AUX': 'Auxiliar',
+ 'CCONJ': 'Conjunção Coordenativa', 'DET': 'Determinante', 'INTJ': 'Interjeição',
+ 'NOUN': 'Substantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronome',
+ 'PROPN': 'Nome Próprio', 'SCONJ': 'Conjunção Subordinativa', 'SYM': 'Símbolo',
+ 'VERB': 'Verbo', 'X': 'Outro',
+ }
+}
+
+ENTITY_LABELS = {
+ 'es': {
+ "Personas": "lightblue",
+ "Lugares": "lightcoral",
+ "Inventos": "lightgreen",
+ "Fechas": "lightyellow",
+ "Conceptos": "lightpink"
+ },
+ 'en': {
+ "People": "lightblue",
+ "Places": "lightcoral",
+ "Inventions": "lightgreen",
+ "Dates": "lightyellow",
+ "Concepts": "lightpink"
+ },
+ 'fr': {
+ "Personnes": "lightblue",
+ "Lieux": "lightcoral",
+ "Inventions": "lightgreen",
+ "Dates": "lightyellow",
+ "Concepts": "lightpink"
+ },
+ 'pt': {
+ "Pessoas": "lightblue",
+ "Lugares": "lightcoral",
+ "Invenções": "lightgreen",
+ "Datas": "lightyellow",
+ "Conceitos": "lightpink"
+ }
+}
+
+#################
+
+def fig_to_bytes(fig, dpi=100):
+ """Convierte una figura de matplotlib a bytes."""
+ try:
+ buf = io.BytesIO()
+ fig.savefig(buf, format='png', dpi=dpi, bbox_inches='tight') # Sin compression
+ buf.seek(0)
+ return buf.getvalue()
+ except Exception as e:
+ logger.error(f"Error en fig_to_bytes: {str(e)}")
+ return None
+
+################################################################################################
+def compare_semantic_analysis(text1, text2, nlp, lang):
+ """
+ Realiza el análisis semántico comparativo entre dos textos
+ """
+ try:
+ # Diccionario de traducciones para los títulos de los gráficos COMPARATIVOS
+ COMPARE_GRAPH_TITLES = {
+ 'es': {
+ 'doc1_network': 'Relaciones entre conceptos clave del documento 1',
+ 'doc1_centrality': 'Centralidad de los conceptos clave del documento 1',
+ 'doc2_network': 'Relaciones entre conceptos clave del documento 2',
+ 'doc2_centrality': 'Centralidad de los conceptos clave del documento 2'
+ },
+ 'en': {
+ 'doc1_network': 'Key concept relationships in document 1',
+ 'doc1_centrality': 'Key concept centrality in document 1',
+ 'doc2_network': 'Key concept relationships in document 2',
+ 'doc2_centrality': 'Key concept centrality in document 2'
+ },
+ 'fr': {
+ 'doc1_network': 'Relations entre concepts clés du document 1',
+ 'doc1_centrality': 'Centralité des concepts clés du document 1',
+ 'doc2_network': 'Relations entre concepts clés du document 2',
+ 'doc2_centrality': 'Centralité des concepts clés du document 2'
+ },
+ 'pt': {
+ 'doc1_network': 'Relações entre conceitos-chave do documento 1',
+ 'doc1_centrality': 'Centralidade dos conceitos-chave do documento 1',
+ 'doc2_network': 'Relações entre conceitos-chave do documento 2',
+ 'doc2_centrality': 'Centralidade dos conceitos-chave do documento 2'
+ }
+ }
+
+ # Obtener traducciones (inglés por defecto)
+ titles = COMPARE_GRAPH_TITLES.get(lang, COMPARE_GRAPH_TITLES['en'])
+
+ logger.info(f"Iniciando análisis comparativo para idioma: {lang}")
+
+ # Resto del código permanece exactamente igual...
+ stopwords = get_custom_stopwords(lang)
+ logger.info(f"Obtenidas {len(stopwords)} stopwords para el idioma {lang}")
+
+ doc1 = nlp(text1)
+ doc2 = nlp(text2)
+
+ key_concepts1 = identify_key_concepts(doc1, stopwords=stopwords, min_freq=2, min_length=3)
+ key_concepts2 = identify_key_concepts(doc2, stopwords=stopwords, min_freq=2, min_length=3)
+
+ if not key_concepts1 or not key_concepts2:
+ raise ValueError("No se pudieron identificar conceptos clave en uno o ambos textos")
+
+ G1 = create_concept_graph(doc1, key_concepts1)
+ G2 = create_concept_graph(doc2, key_concepts2)
+
+ # Primer grafo con título traducido
+ plt.figure(figsize=(12, 8))
+ fig1 = visualize_concept_graph(G1, lang)
+ plt.title(titles['doc1_network'], pad=20)
+ plt.tight_layout()
+
+ # Segundo grafo con título traducido
+ plt.figure(figsize=(12, 8))
+ fig2 = visualize_concept_graph(G2, lang)
+ plt.title(titles['doc2_network'], pad=20)
+ plt.tight_layout()
+
+ return fig1, fig2, key_concepts1, key_concepts2
+
+ except Exception as e:
+ logger.error(f"Error en compare_semantic_analysis: {str(e)}")
+ plt.close('all')
+ raise
+ finally:
+ plt.close('all')
+
+############################################
+def create_concept_table(key_concepts):
+ """
+ Crea una tabla de conceptos clave con sus frecuencias
+ Args:
+ key_concepts: Lista de tuplas (concepto, frecuencia)
+ Returns:
+ pandas.DataFrame: Tabla formateada de conceptos
+ """
+ try:
+ if not key_concepts:
+ logger.warning("Lista de conceptos vacía")
+ return pd.DataFrame(columns=['Concepto', 'Frecuencia'])
+
+ df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia'])
+ df['Frecuencia'] = df['Frecuencia'].round(2)
+ return df
+ except Exception as e:
+ logger.error(f"Error en create_concept_table: {str(e)}")
+ return pd.DataFrame(columns=['Concepto', 'Frecuencia'])
+
+
+##########################################################
+
+def perform_discourse_analysis(text1, text2, nlp, lang):
+ """
+ Realiza el análisis completo del discurso
+ Args:
+ text1: Primer texto a analizar
+ text2: Segundo texto a analizar
+ nlp: Modelo de spaCy cargado
+ lang: Código de idioma
+ Returns:
+ dict: Resultados del análisis con gráficos convertidos a bytes
+ """
+ try:
+ logger.info("Iniciando análisis del discurso...")
+
+ # Verificar inputs
+ if not text1 or not text2:
+ raise ValueError("Los textos de entrada no pueden estar vacíos")
+
+ if not nlp:
+ raise ValueError("Modelo de lenguaje no inicializado")
+
+ # Realizar análisis comparativo
+ fig1, fig2, key_concepts1, key_concepts2 = compare_semantic_analysis(
+ text1, text2, nlp, lang
+ )
+
+ logger.info("Análisis comparativo completado, convirtiendo figuras a bytes...")
+
+ # Convertir figuras a bytes para almacenamiento
+ graph1_bytes = fig_to_bytes(fig1)
+ graph2_bytes = fig_to_bytes(fig2)
+
+ logger.info(f"Figura 1 convertida a {len(graph1_bytes) if graph1_bytes else 0} bytes")
+ logger.info(f"Figura 2 convertida a {len(graph2_bytes) if graph2_bytes else 0} bytes")
+
+ # Verificar que las conversiones fueron exitosas antes de continuar
+ if not graph1_bytes or not graph2_bytes:
+ logger.error("Error al convertir figuras a bytes - obteniendo 0 bytes")
+ # Opción 1: Devolver error
+ raise ValueError("No se pudieron convertir las figuras a bytes")
+
+ # Crear tablas de resultados
+ table1 = create_concept_table(key_concepts1)
+ table2 = create_concept_table(key_concepts2)
+
+ # Cerrar figuras para liberar memoria
+ plt.close(fig1)
+ plt.close(fig2)
+
+ result = {
+ 'graph1': graph1_bytes, # Bytes en lugar de figura
+ 'graph2': graph2_bytes, # Bytes en lugar de figura
+ 'combined_graph': None, # No hay gráfico combinado por ahora
+ 'key_concepts1': key_concepts1,
+ 'key_concepts2': key_concepts2,
+ 'table1': table1,
+ 'table2': table2,
+ 'success': True
+ }
+
+ logger.info("Análisis del discurso completado y listo para almacenamiento")
+ return result
+
+ except Exception as e:
+ logger.error(f"Error en perform_discourse_analysis: {str(e)}")
+ # Asegurar limpieza de recursos
+ plt.close('all')
+ return {
+ 'success': False,
+ 'error': str(e)
+ }
+ finally:
+ # Asegurar limpieza en todos los casos
+ plt.close('all')
+
+#################################################################
\ No newline at end of file
diff --git a/src/modules/text_analysis/entity_analysis.py b/src/modules/text_analysis/entity_analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/modules/text_analysis/idiom_detection.py b/src/modules/text_analysis/idiom_detection.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/modules/text_analysis/intertextual_analysis.py b/src/modules/text_analysis/intertextual_analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/modules/text_analysis/morpho_analysis-Back1910-25-9-24.py b/src/modules/text_analysis/morpho_analysis-Back1910-25-9-24.py
new file mode 100644
index 0000000000000000000000000000000000000000..7a0823063d965ac2ca3715fc1484046dd8be39a6
--- /dev/null
+++ b/src/modules/text_analysis/morpho_analysis-Back1910-25-9-24.py
@@ -0,0 +1,253 @@
+import spacy
+from spacy import displacy
+from streamlit.components.v1 import html
+import base64
+
+from collections import Counter
+import re
+from ..utils.widget_utils import generate_unique_key
+
+import logging
+logger = logging.getLogger(__name__)
+
+
+# Define colors for grammatical categories
+POS_COLORS = {
+ 'ADJ': '#FFA07A', # Light Salmon
+ 'ADP': '#98FB98', # Pale Green
+ 'ADV': '#87CEFA', # Light Sky Blue
+ 'AUX': '#DDA0DD', # Plum
+ 'CCONJ': '#F0E68C', # Khaki
+ 'DET': '#FFB6C1', # Light Pink
+ 'INTJ': '#FF6347', # Tomato
+ 'NOUN': '#90EE90', # Light Green
+ 'NUM': '#FAFAD2', # Light Goldenrod Yellow
+ 'PART': '#D3D3D3', # Light Gray
+ 'PRON': '#FFA500', # Orange
+ 'PROPN': '#20B2AA', # Light Sea Green
+ 'SCONJ': '#DEB887', # Burlywood
+ 'SYM': '#7B68EE', # Medium Slate Blue
+ 'VERB': '#FF69B4', # Hot Pink
+ 'X': '#A9A9A9', # Dark Gray
+}
+
+POS_TRANSLATIONS = {
+ 'es': {
+ 'ADJ': 'Adjetivo',
+ 'ADP': 'Preposición',
+ 'ADV': 'Adverbio',
+ 'AUX': 'Auxiliar',
+ 'CCONJ': 'Conjunción Coordinante',
+ 'DET': 'Determinante',
+ 'INTJ': 'Interjección',
+ 'NOUN': 'Sustantivo',
+ 'NUM': 'Número',
+ 'PART': 'Partícula',
+ 'PRON': 'Pronombre',
+ 'PROPN': 'Nombre Propio',
+ 'SCONJ': 'Conjunción Subordinante',
+ 'SYM': 'Símbolo',
+ 'VERB': 'Verbo',
+ 'X': 'Otro',
+ },
+ 'en': {
+ 'ADJ': 'Adjective',
+ 'ADP': 'Preposition',
+ 'ADV': 'Adverb',
+ 'AUX': 'Auxiliary',
+ 'CCONJ': 'Coordinating Conjunction',
+ 'DET': 'Determiner',
+ 'INTJ': 'Interjection',
+ 'NOUN': 'Noun',
+ 'NUM': 'Number',
+ 'PART': 'Particle',
+ 'PRON': 'Pronoun',
+ 'PROPN': 'Proper Noun',
+ 'SCONJ': 'Subordinating Conjunction',
+ 'SYM': 'Symbol',
+ 'VERB': 'Verb',
+ 'X': 'Other',
+ },
+ 'fr': {
+ 'ADJ': 'Adjectif',
+ 'ADP': 'Préposition',
+ 'ADV': 'Adverbe',
+ 'AUX': 'Auxiliaire',
+ 'CCONJ': 'Conjonction de Coordination',
+ 'DET': 'Déterminant',
+ 'INTJ': 'Interjection',
+ 'NOUN': 'Nom',
+ 'NUM': 'Nombre',
+ 'PART': 'Particule',
+ 'PRON': 'Pronom',
+ 'PROPN': 'Nom Propre',
+ 'SCONJ': 'Conjonction de Subordination',
+ 'SYM': 'Symbole',
+ 'VERB': 'Verbe',
+ 'X': 'Autre',
+ }
+}
+
+def generate_arc_diagram(doc):
+ arc_diagrams = []
+ for sent in doc.sents:
+ words = [token.text for token in sent]
+ # Calculamos el ancho del SVG basado en la longitud de la oración
+ svg_width = max(100, len(words) * 120)
+ # Altura fija para cada oración
+ svg_height = 300 # Controla la altura del SVG
+
+ # Renderizamos el diagrama de dependencias
+ html = displacy.render(sent, style="dep", options={
+ "add_lemma":False, # Introduced in version 2.2.4, this argument prints the lemma’s in a separate row below the token texts.
+ "arrow_spacing": 12, #This argument is used for adjusting the spacing between arrows in px to avoid overlaps.
+ "arrow_width": 2, #This argument is used for adjusting the width of arrow head in px.
+ "arrow_stroke": 2, #This argument is used for adjusting the width of arrow path in px.
+ "collapse_punct": True, #It attaches punctuation to the tokens.
+ "collapse_phrases": False, # This argument merges the noun phrases into one token.
+ "compact":False, # If you will take this argument as true, you will get the “Compact mode” with square arrows that takes up less space.
+ "color": "#ffffff",
+ "bg": "#0d6efd",
+ "compact": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_).
+ "distance": 100, # Aumentamos la distancia entre palabras
+ "fine_grained": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_).
+ "offset_x": 0, # This argument is used for spacing on left side of the SVG in px.
+ "word_spacing": 25, #This argument is used for adjusting the vertical spacing between words and arcs in px.
+ })
+
+ # Ajustamos el tamaño del SVG y el viewBox
+ html = re.sub(r'width="(\d+)"', f'width="{svg_width}"', html)
+ html = re.sub(r'height="(\d+)"', f'height="{svg_height}"', html)
+ html = re.sub(r'