diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..2768c0810c32dd239710769867bad0e3c2b05fae 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,19 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +src/assets/img/AIdeaText_Logo_vectores.png filter=lfs diff=lfs merge=lfs -text +src/assets/img/AIdeaTextCard.jpg filter=lfs diff=lfs merge=lfs -text +src/assets/img/ALPHA_Startup[[:space:]]Badges.png filter=lfs diff=lfs merge=lfs -text +src/assets/img/assets_img_logo_92x92.ico filter=lfs diff=lfs merge=lfs -text +src/assets/img/socialmedia/_MG_2535.jpg filter=lfs diff=lfs merge=lfs -text +src/assets/img/socialmedia/_MG_2585.jpg filter=lfs diff=lfs merge=lfs -text +src/assets/img/socialmedia/_MG_2587.jpg filter=lfs diff=lfs merge=lfs -text +src/assets/img/socialmedia/_MG_2590.jpg filter=lfs diff=lfs merge=lfs -text +src/assets/img/socialmedia/_MG_2678.jpg filter=lfs diff=lfs merge=lfs -text +src/assets/img/socialmedia/_MG_2727.jpg filter=lfs diff=lfs merge=lfs -text +src/assets/img/socialmedia/_MG_2735.jpg filter=lfs diff=lfs merge=lfs -text +src/assets/img/socialmedia/_MG_2790.jpg filter=lfs diff=lfs merge=lfs -text +src/assets/img/socialmedia/_MG_2845.JPG filter=lfs diff=lfs merge=lfs -text +src/assets/img/socialmedia/AIdeaTextCard.jpg filter=lfs diff=lfs merge=lfs -text +src/assets/img/socialmedia/Facebook_CoverPhoto_820x312.jpg filter=lfs diff=lfs merge=lfs -text +src/assets/img/socialmedia/Facebook_CoverPhoto-1_820x312.jpg filter=lfs diff=lfs merge=lfs -text diff --git a/src/assets/img/AIdeaTextCard.jpg b/src/assets/img/AIdeaTextCard.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d6858687edbbdf4e8a1afdda8148bd6e1ad2f08d --- /dev/null +++ b/src/assets/img/AIdeaTextCard.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7a2728751bd949172ae2a2980a34f77931f3bb9f3d5843a479c2275b1316272e +size 267978 diff --git a/src/assets/img/AIdeaText_Logo_vectores.png b/src/assets/img/AIdeaText_Logo_vectores.png new file mode 100644 index 0000000000000000000000000000000000000000..b0f1cbd57d0764fc78cbf675578b924f39f4c215 --- /dev/null +++ b/src/assets/img/AIdeaText_Logo_vectores.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:49e82e34b75e707b9fb46563347c64570aa7360a33adc3b18f82e7969f448917 +size 1008202 diff --git a/src/assets/img/ALPHA_Startup Badges.png b/src/assets/img/ALPHA_Startup Badges.png new file mode 100644 index 0000000000000000000000000000000000000000..80a5a4966f06b277853ae802c5cc4d68a5758246 --- /dev/null +++ b/src/assets/img/ALPHA_Startup Badges.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f55cb163a87ef69660185da4654e796edd66f30ac85a0db7c8f172fca8b02b09 +size 602398 diff --git a/src/assets/img/Ico-20x20.ico b/src/assets/img/Ico-20x20.ico new file mode 100644 index 0000000000000000000000000000000000000000..55e613b375d079f2cdc590a6ab8839267c370e26 Binary files /dev/null and b/src/assets/img/Ico-20x20.ico differ diff --git a/src/assets/img/Logo20x20.png b/src/assets/img/Logo20x20.png new file mode 100644 index 0000000000000000000000000000000000000000..607c5e2e2d5a373cce516434c0e95d2a6ed29e9c Binary files /dev/null and b/src/assets/img/Logo20x20.png differ diff --git a/src/assets/img/Logo24x24.png b/src/assets/img/Logo24x24.png new file mode 100644 index 0000000000000000000000000000000000000000..62a9257bdbe65f27481833b187793e6c2240cd67 Binary files /dev/null and b/src/assets/img/Logo24x24.png differ diff --git a/src/assets/img/Logo32x32.png b/src/assets/img/Logo32x32.png new file mode 100644 index 0000000000000000000000000000000000000000..1e8fb04d14bc8019de49faa95df386e1b67ea5ee Binary files /dev/null and b/src/assets/img/Logo32x32.png differ diff --git a/src/assets/img/Logo40x40.png b/src/assets/img/Logo40x40.png new file mode 100644 index 0000000000000000000000000000000000000000..74f1efa72a8c3123517c9a7caadaa186e20d8e34 Binary files /dev/null and b/src/assets/img/Logo40x40.png differ diff --git a/src/assets/img/Logo48x48.png b/src/assets/img/Logo48x48.png new file mode 100644 index 0000000000000000000000000000000000000000..b9f4076d33aa69cde951134f2ba0622afbefb156 Binary files /dev/null and b/src/assets/img/Logo48x48.png differ diff --git a/src/assets/img/Logo64x64.png b/src/assets/img/Logo64x64.png new file mode 100644 index 0000000000000000000000000000000000000000..2ca6802623fc1d7af63d00f5968a3d5b5bae9503 Binary files /dev/null and b/src/assets/img/Logo64x64.png differ diff --git a/src/assets/img/Logo_100x100.png b/src/assets/img/Logo_100x100.png new file mode 100644 index 0000000000000000000000000000000000000000..56218a1e058ae34ec4597229d7516e244a9141b8 Binary files /dev/null and b/src/assets/img/Logo_100x100.png differ diff --git a/src/assets/img/Logo_300x300.png b/src/assets/img/Logo_300x300.png new file mode 100644 index 0000000000000000000000000000000000000000..ca1e518d7dd4b7f7f8c9ee572a471d9e84e2a285 Binary files /dev/null and b/src/assets/img/Logo_300x300.png differ diff --git a/src/assets/img/Mesa de trabajo 1png 0.3.png b/src/assets/img/Mesa de trabajo 1png 0.3.png new file mode 100644 index 0000000000000000000000000000000000000000..ca1e518d7dd4b7f7f8c9ee572a471d9e84e2a285 Binary files /dev/null and b/src/assets/img/Mesa de trabajo 1png 0.3.png differ diff --git a/src/assets/img/aideaText-ICO.png b/src/assets/img/aideaText-ICO.png new file mode 100644 index 0000000000000000000000000000000000000000..2ee4bd459c441721576e37e6a36ea5dab0d11853 Binary files /dev/null and b/src/assets/img/aideaText-ICO.png differ diff --git a/src/assets/img/aideaText-Logo-32x32.png b/src/assets/img/aideaText-Logo-32x32.png new file mode 100644 index 0000000000000000000000000000000000000000..ca1e518d7dd4b7f7f8c9ee572a471d9e84e2a285 Binary files /dev/null and b/src/assets/img/aideaText-Logo-32x32.png differ diff --git a/src/assets/img/aideaText_icon.ico b/src/assets/img/aideaText_icon.ico new file mode 100644 index 0000000000000000000000000000000000000000..55e613b375d079f2cdc590a6ab8839267c370e26 Binary files /dev/null and b/src/assets/img/aideaText_icon.ico differ diff --git a/src/assets/img/aideaText_logo.png b/src/assets/img/aideaText_logo.png new file mode 100644 index 0000000000000000000000000000000000000000..2ca6802623fc1d7af63d00f5968a3d5b5bae9503 Binary files /dev/null and b/src/assets/img/aideaText_logo.png differ diff --git a/src/assets/img/assets_img_logo_92x92.ico b/src/assets/img/assets_img_logo_92x92.ico new file mode 100644 index 0000000000000000000000000000000000000000..a6b7f948745805884f5f98ec1e256e8e3f9ff5a2 --- /dev/null +++ b/src/assets/img/assets_img_logo_92x92.ico @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d2a957f8116c5f5658526a763b5280aaf589e9b57aea3ab59ac8fd683d374ef3 +size 372062 diff --git a/src/assets/img/logo120x120.png b/src/assets/img/logo120x120.png new file mode 100644 index 0000000000000000000000000000000000000000..48f5ccc4764185f62d9acfce3889bc283bc7a776 Binary files /dev/null and b/src/assets/img/logo120x120.png differ diff --git a/src/assets/img/logo_92x92.jpg b/src/assets/img/logo_92x92.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ceb744511b50a4217a7aacacd8612111caa750b9 Binary files /dev/null and b/src/assets/img/logo_92x92.jpg differ diff --git a/src/assets/img/logo_92x92.png b/src/assets/img/logo_92x92.png new file mode 100644 index 0000000000000000000000000000000000000000..ca1e518d7dd4b7f7f8c9ee572a471d9e84e2a285 Binary files /dev/null and b/src/assets/img/logo_92x92.png differ diff --git a/src/assets/img/socialmedia/AIdeaTextCard.jpg b/src/assets/img/socialmedia/AIdeaTextCard.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d6858687edbbdf4e8a1afdda8148bd6e1ad2f08d --- /dev/null +++ b/src/assets/img/socialmedia/AIdeaTextCard.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7a2728751bd949172ae2a2980a34f77931f3bb9f3d5843a479c2275b1316272e +size 267978 diff --git a/src/assets/img/socialmedia/Facebook_CoverPhoto-1_820x312.jpg b/src/assets/img/socialmedia/Facebook_CoverPhoto-1_820x312.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a66b299331b686fd1abaa9e2d586a0ac8145509b --- /dev/null +++ b/src/assets/img/socialmedia/Facebook_CoverPhoto-1_820x312.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b24221fd528714afc31c87ee586ed3d173eb0767f1755decf5f192946f96743c +size 245022 diff --git a/src/assets/img/socialmedia/Facebook_CoverPhoto_820x312.jpg b/src/assets/img/socialmedia/Facebook_CoverPhoto_820x312.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f7df72ab8678c198ad1ad65a0773d7a52ae0f17c --- /dev/null +++ b/src/assets/img/socialmedia/Facebook_CoverPhoto_820x312.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5733fa2fe5d1d76f9a01f7346536dd7ecd6e5f223006386a81b3188bcfa985bb +size 288692 diff --git a/src/assets/img/socialmedia/_MG_2535.jpg b/src/assets/img/socialmedia/_MG_2535.jpg new file mode 100644 index 0000000000000000000000000000000000000000..14588a2ac61b96fc7b992ed02adb6c2260808aba --- /dev/null +++ b/src/assets/img/socialmedia/_MG_2535.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a94188b158e88ff1cec1db6b39a6d28e564c77f685e7c076a7f3b76dffa0fe19 +size 328071 diff --git a/src/assets/img/socialmedia/_MG_2585.jpg b/src/assets/img/socialmedia/_MG_2585.jpg new file mode 100644 index 0000000000000000000000000000000000000000..40b471e15bfa5110e56086f99bfdfc5664488202 --- /dev/null +++ b/src/assets/img/socialmedia/_MG_2585.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8997c5e41a528400b818088548162c2c13315ceb87803148af64dd9932207838 +size 336437 diff --git a/src/assets/img/socialmedia/_MG_2587.jpg b/src/assets/img/socialmedia/_MG_2587.jpg new file mode 100644 index 0000000000000000000000000000000000000000..245ff4de85f942a81e15205890d69efccb1cc98f --- /dev/null +++ b/src/assets/img/socialmedia/_MG_2587.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:def2e98c90c7c55aa8ee7b2ee31b81ca3c950fd12149e1c23742c236aad85ee9 +size 330562 diff --git a/src/assets/img/socialmedia/_MG_2590.jpg b/src/assets/img/socialmedia/_MG_2590.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d1f6eef2df22285046ee0eb9dbdf018ffbb80548 --- /dev/null +++ b/src/assets/img/socialmedia/_MG_2590.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:128dd26ddb18fe0008818f78535305b79fc4c258a123db4076cd2f9b67c1ae3d +size 331821 diff --git a/src/assets/img/socialmedia/_MG_2678.jpg b/src/assets/img/socialmedia/_MG_2678.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ec6bc527ba6599bf465eff0ea22d5ac38dd49fc8 --- /dev/null +++ b/src/assets/img/socialmedia/_MG_2678.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5bdf2d4d2ddc6d974c2a9b21d44c24a3b98b952e31032df83b60e6ebde61c836 +size 334653 diff --git a/src/assets/img/socialmedia/_MG_2727.jpg b/src/assets/img/socialmedia/_MG_2727.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0ef802da4b321214b13faebd40445da2b3f6b3e9 --- /dev/null +++ b/src/assets/img/socialmedia/_MG_2727.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c2d4a162817cbebba5738f564a92a48546f5208877152cf0545962f74c3f495e +size 336480 diff --git a/src/assets/img/socialmedia/_MG_2735.jpg b/src/assets/img/socialmedia/_MG_2735.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4e052bdcf6eb2a98c041d740311776f25433b5d2 --- /dev/null +++ b/src/assets/img/socialmedia/_MG_2735.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:527d01d3e09061d1a77513b75b55bcceb2840dbc8631e85b9542b7aaa9a85841 +size 330883 diff --git a/src/assets/img/socialmedia/_MG_2790.jpg b/src/assets/img/socialmedia/_MG_2790.jpg new file mode 100644 index 0000000000000000000000000000000000000000..56ae0ef0627c4c5b23e734eb5a04938946a12f2d --- /dev/null +++ b/src/assets/img/socialmedia/_MG_2790.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:21bcc1b99cf3d1ab4ab6d480ffeb3867ee4ef17a18d8e1873e3ea46cc548722b +size 340251 diff --git a/src/assets/img/socialmedia/_MG_2845.JPG b/src/assets/img/socialmedia/_MG_2845.JPG new file mode 100644 index 0000000000000000000000000000000000000000..532b2dedf9267b935d78eb77604661137c4d8c3d --- /dev/null +++ b/src/assets/img/socialmedia/_MG_2845.JPG @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ad3a77f44abe700d87e36e3125890aeb29a2194f8ef006fc895c8eff49eeed8a +size 346928 diff --git a/src/assets/img/socialmedia/txt.txt b/src/assets/img/socialmedia/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..4ae269230b7e47622f201c982c221245887d0228 --- /dev/null +++ b/src/assets/img/socialmedia/txt.txt @@ -0,0 +1 @@ +txtx \ No newline at end of file diff --git a/src/assets/img/text.txt b/src/assets/img/text.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/23-7-2024_auth.py b/src/modules/23-7-2024_auth.py new file mode 100644 index 0000000000000000000000000000000000000000..1919f0375c28484a5eeaa70533135e70e96357c6 --- /dev/null +++ b/src/modules/23-7-2024_auth.py @@ -0,0 +1,135 @@ +### auth.py +import os +from azure.cosmos import CosmosClient, exceptions +import bcrypt +import base64 + +################################################################################################################ +def clean_and_validate_key(key): + key = key.strip() + while len(key) % 4 != 0: + key += '=' + try: + base64.b64decode(key) + return key + except: + raise ValueError("La clave proporcionada no es válida") + +# Azure Cosmos DB configuration +endpoint = os.environ.get("COSMOS_ENDPOINT") +key = os.environ.get("COSMOS_KEY") + +if not endpoint or not key: + raise ValueError("Las variables de entorno COSMOS_ENDPOINT y COSMOS_KEY deben estar configuradas") + +key = clean_and_validate_key(key) + +try: + client = CosmosClient(endpoint, key) + database = client.get_database_client("user_database") + container = database.get_container_client("users") + # Prueba de conexión + database_list = list(client.list_databases()) + print(f"Conexión exitosa. Bases de datos encontradas: {len(database_list)}") +except Exception as e: + print(f"Error al conectar con Cosmos DB: {str(e)}") + raise + +#############################################################################################################3 +def hash_password(password): + """Hash a password for storing.""" + return bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8') + +################################################################################################################ +def verify_password(stored_password, provided_password): + """Verify a stored password against one provided by user""" + return bcrypt.checkpw(provided_password.encode('utf-8'), stored_password.encode('utf-8')) + +################################################################################################################ +def register_user(username, password, additional_info=None): + try: + query = f"SELECT * FROM c WHERE c.id = '{username}'" + existing_user = list(container.query_items(query=query, enable_cross_partition_query=True)) + + if existing_user: + return False # User already exists + + new_user = { + 'id': username, + 'password': hash_password(password), + 'role': 'Estudiante', + 'additional_info': additional_info or {} + } + + new_user['partitionKey'] = username + + container.create_item(body=new_user) + return True + except exceptions.CosmosHttpResponseError as e: + print(f"Error al registrar usuario: {str(e)}") + return False + + +################################################################################################################ +def authenticate_user(username, password): + """Authenticate a user.""" + try: + query = f"SELECT * FROM c WHERE c.id = '{username}'" + results = list(container.query_items(query=query, partition_key=username)) + + if results: + stored_user = results[0] + if verify_password(stored_user['password'], password): + return True + except exceptions.CosmosHttpResponseError: + pass + + return False + + +################################################################################################################ +def get_user_role(username): + """Get the role of a user.""" + try: + query = f"SELECT c.role FROM c WHERE c.id = '{username}'" + results = list(container.query_items(query=query, partition_key=username)) + + if results: + return results[0]['role'] + except exceptions.CosmosHttpResponseError: + pass + + return None + +################################################################################################################ +def update_user_info(username, new_info): + """Update user information.""" + try: + query = f"SELECT * FROM c WHERE c.id = '{username}'" + results = list(container.query_items(query=query, partition_key=username)) + + if results: + user = results[0] + user['additional_info'].update(new_info) + container.upsert_item(user, partition_key=username) + return True + except exceptions.CosmosHttpResponseError: + pass + + return False + +################################################################################################################ +def delete_user(username): + """Delete a user.""" + try: + query = f"SELECT * FROM c WHERE c.id = '{username}'" + results = list(container.query_items(query=query, partition_key=username)) + + if results: + user = results[0] + container.delete_item(item=user['id'], partition_key=username) + return True + except exceptions.CosmosHttpResponseError: + pass + + return False \ No newline at end of file diff --git a/src/modules/23-7-2024_ui.py b/src/modules/23-7-2024_ui.py new file mode 100644 index 0000000000000000000000000000000000000000..61b9cfa1929613b94deaf41659aab855877e772a --- /dev/null +++ b/src/modules/23-7-2024_ui.py @@ -0,0 +1,344 @@ +# modules/ui.py +# Importaciones estandar de python +import io +import streamlit as st +import matplotlib +matplotlib.use('Agg') +import matplotlib.pyplot as plt +import squarify +import pandas as pd +from datetime import datetime +import base64 +from spacy import displacy +import re +from .morpho_analysis import POS_COLORS, POS_TRANSLATIONS # Asegúrate de que esta importación esté presente +print("POS_COLORS:", POS_COLORS) +print("POS_TRANSLATIONS:", POS_TRANSLATIONS) + +# Importaciones locales +from .auth import authenticate_user, register_user, get_user_role +from .database import get_student_data, store_analysis_result +from .morpho_analysis import get_repeated_words_colors, highlight_repeated_words, POS_COLORS, POS_TRANSLATIONS +from .syntax_analysis import visualize_syntax + +######################################################################### +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', # Light Salmon + 'ADP': '#98FB98', # Pale Green + 'ADV': '#87CEFA', # Light Sky Blue + 'AUX': '#DDA0DD', # Plum + 'CCONJ': '#F0E68C', # Khaki + 'DET': '#FFB6C1', # Light Pink + 'INTJ': '#FF6347', # Tomato + 'NOUN': '#90EE90', # Light Green + 'NUM': '#FAFAD2', # Light Goldenrod Yellow + 'PART': '#D3D3D3', # Light Gray + 'PRON': '#FFA500', # Orange + 'PROPN': '#20B2AA', # Light Sea Green + 'SCONJ': '#DEB887', # Burlywood + 'SYM': '#7B68EE', # Medium Slate Blue + 'VERB': '#FF69B4', # Hot Pink + 'X': '#A9A9A9', # Dark Gray +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', + 'ADP': 'Adposición', + 'ADV': 'Adverbio', + 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', + 'DET': 'Determinante', + 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', + 'NUM': 'Número', + 'PART': 'Partícula', + 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', + 'SCONJ': 'Conjunción Subordinante', + 'SYM': 'Símbolo', + 'VERB': 'Verbo', + 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', + 'ADP': 'Adposition', + 'ADV': 'Adverb', + 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', + 'DET': 'Determiner', + 'INTJ': 'Interjection', + 'NOUN': 'Noun', + 'NUM': 'Number', + 'PART': 'Particle', + 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', + 'SCONJ': 'Subordinating Conjunction', + 'SYM': 'Symbol', + 'VERB': 'Verb', + 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', + 'ADP': 'Adposition', + 'ADV': 'Adverbe', + 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', + 'DET': 'Déterminant', + 'INTJ': 'Interjection', + 'NOUN': 'Nom', + 'NUM': 'Nombre', + 'PART': 'Particule', + 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', + 'SCONJ': 'Conjonction de Subordination', + 'SYM': 'Symbole', + 'VERB': 'Verbe', + 'X': 'Autre', + } +} + +########################################################################## +def login_page(): + st.title("Iniciar Sesión") + username = st.text_input("Usuario") + password = st.text_input("Contraseña", type='password') + if st.button("Iniciar Sesión"): + if authenticate_user(username, password): + st.success(f"Bienvenido, {username}!") + st.session_state.logged_in = True + st.session_state.username = username + st.session_state.role = get_user_role(username) + st.experimental_rerun() + else: + st.error("Usuario o contraseña incorrectos") + +########################################################################## +def register_page(): + st.title("Registrarse") + new_username = st.text_input("Nuevo Usuario") + new_password = st.text_input("Nueva Contraseña", type='password') + + additional_info = {} + additional_info['carrera'] = st.text_input("Carrera") + + if st.button("Registrarse"): + if register_user(new_username, new_password, additional_info): + st.success("Registro exitoso. Por favor, inicia sesión.") + else: + st.error("El usuario ya existe o ocurrió un error durante el registro") + +########################################################################## +def get_chatbot_response(input_text): + # Esta función debe ser implementada o importada de otro módulo + # Por ahora, retornamos un mensaje genérico + return "Lo siento, el chatbot no está disponible en este momento." + +########################################################################## +def display_chat_interface(): + st.markdown("### Chat con AIdeaText") + + if 'chat_history' not in st.session_state: + st.session_state.chat_history = [] + + for i, (role, text) in enumerate(st.session_state.chat_history): + if role == "user": + st.text_area(f"Tú:", value=text, height=50, key=f"user_message_{i}", disabled=True) + else: + st.text_area(f"AIdeaText:", value=text, height=50, key=f"bot_message_{i}", disabled=True) + + user_input = st.text_input("Escribe tu mensaje aquí:") + + if st.button("Enviar"): + if user_input: + st.session_state.chat_history.append(("user", user_input)) + response = get_chatbot_response(user_input) + st.session_state.chat_history.append(("bot", response)) + st.experimental_rerun() + +########################################################################## + +def display_student_progress(username, lang_code='es'): + print("lang_code:", lang_code) + student_data = get_student_data(username) + + if student_data is None: + st.warning("No se encontraron datos para este estudiante.") + st.info("Intenta realizar algunos análisis de texto primero.") + return + + st.title(f"Progreso de {username}") + + if student_data['entries_count'] > 0: + if 'word_count' in student_data and student_data['word_count']: + st.subheader("Total de palabras por categoría gramatical") + + df = pd.DataFrame(list(student_data['word_count'].items()), columns=['category', 'count']) + df['label'] = df.apply(lambda x: f"{POS_TRANSLATIONS[lang_code].get(x['category'], x['category'])}", axis=1) + + # Ordenar el DataFrame por conteo de palabras, de mayor a menor + df = df.sort_values('count', ascending=False) + + fig, ax = plt.subplots(figsize=(12, 6)) + bars = ax.bar(df['label'], df['count'], color=[POS_COLORS.get(cat, '#CCCCCC') for cat in df['category']]) + + ax.set_xlabel('Categoría Gramatical') + ax.set_ylabel('Cantidad de Palabras') + ax.set_title('Total de palabras por categoría gramatical') + plt.xticks(rotation=45, ha='right') + + # Añadir etiquetas de valor en las barras + for bar in bars: + height = bar.get_height() + ax.text(bar.get_x() + bar.get_width()/2., height, + f'{height}', + ha='center', va='bottom') + + plt.tight_layout() + + buf = io.BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + st.image(buf, use_column_width=True) + else: + st.info("No hay datos de conteo de palabras disponibles.") + + # Diagramas de Arco (consolidados) + st.header("Diagramas de Arco") + with st.expander("Ver todos los Diagramas de Arco"): + for i, entry in enumerate(student_data['entries']): + if 'arc_diagrams' in entry and entry['arc_diagrams']: + st.subheader(f"Entrada {i+1} - {entry['timestamp']}") + st.write(entry['arc_diagrams'][0], unsafe_allow_html=True) + + # Diagramas de Red (consolidados) + st.header("Diagramas de Red") + with st.expander("Ver todos los Diagramas de Red"): + for i, entry in enumerate(student_data['entries']): + if 'network_diagram' in entry and entry['network_diagram']: + st.subheader(f"Entrada {i+1} - {entry['timestamp']}") + try: + # Decodificar la imagen base64 + image_bytes = base64.b64decode(entry['network_diagram']) + st.image(image_bytes) + except Exception as e: + st.error(f"Error al mostrar el diagrama de red: {str(e)}") + else: + st.warning("No se encontraron entradas para este estudiante.") + st.info("Intenta realizar algunos análisis de texto primero.") + +##############################################################Mostrar entradas recientes###################################################################### + #st.header("Entradas Recientes") + #for i, entry in enumerate(student_data['entries'][:5]): # Mostrar las 5 entradas más recientes + #with st.expander(f"Entrada {i+1} - {entry['timestamp']}"): + #st.write(entry['text']) + #else: + #st.warning("No se encontraron entradas para este estudiante.") + #st.info("Intenta realizar algunos análisis de texto primero.") + +########################################################################## +def display_text_analysis_interface(nlp_models, lang_code): + translations = { + 'es': { + 'title': "AIdeaText - Análisis morfológico y sintáctico", + 'input_label': "Ingrese un texto para analizar (máx. 5,000 palabras):", + 'input_placeholder': "El objetivo de esta aplicación es que mejore sus habilidades de redacción. Para ello, después de ingresar su texto y presionar el botón obtendrá tres vistas horizontales. La primera, le indicará las palabras que se repiten por categoría gramátical; la segunda, un diagrama de arco le indicara las conexiones sintácticas en cada oración; y la tercera, es un grafo en el cual visualizara la configuración de su texto.", + 'analyze_button': "Analizar texto", + 'repeated_words': "Palabras repetidas", + 'legend': "Leyenda: Categorías gramaticales", + 'arc_diagram': "Análisis sintáctico: Diagrama de arco", + 'network_diagram': "Análisis sintáctico: Diagrama de red", + 'sentence': "Oración" + }, + 'en': { + 'title': "AIdeaText - Morphological and Syntactic Analysis", + 'input_label': "Enter a text to analyze (max 5,000 words):", + 'input_placeholder': "The goal of this app is for you to improve your writing skills. To do this, after entering your text and pressing the button you will get three horizontal views. The first will indicate the words that are repeated by grammatical category; second, an arc diagram will indicate the syntactic connections in each sentence; and the third is a graph in which you will visualize the configuration of your text.", + 'analyze_button': "Analyze text", + 'repeated_words': "Repeated words", + 'legend': "Legend: Grammatical categories", + 'arc_diagram': "Syntactic analysis: Arc diagram", + 'network_diagram': "Syntactic analysis: Network diagram", + 'sentence': "Sentence" + }, + 'fr': { + 'title': "AIdeaText - Analyse morphologique et syntaxique", + 'input_label': "Entrez un texte à analyser (max 5 000 mots) :", + 'input_placeholder': "Le but de cette application est d'améliorer vos compétences en rédaction. Pour ce faire, après avoir saisi votre texte et appuyé sur le bouton vous obtiendrez trois vues horizontales. Le premier indiquera les mots répétés par catégorie grammaticale; deuxièmement, un diagramme en arcs indiquera les connexions syntaxiques dans chaque phrase; et le troisième est un graphique dans lequel vous visualiserez la configuration de votre texte.", + 'analyze_button': "Analyser le texte", + 'repeated_words': "Mots répétés", + 'legend': "Légende : Catégories grammaticales", + 'arc_diagram': "Analyse syntaxique : Diagramme en arc", + 'network_diagram': "Analyse syntaxique : Diagramme de réseau", + 'sentence': "Phrase" + } + } + + t = translations[lang_code] + + if 'input_text' not in st.session_state: + st.session_state.input_text = "" + + # Añadimos una clave única basada en el idioma seleccionado + sentence_input = st.text_area( + t['input_label'], + height=150, + placeholder=t['input_placeholder'], + value=st.session_state.input_text, + key=f"text_input_{lang_code}" # Clave única basada en el idioma + ) + st.session_state.input_text = sentence_input + +# sentence_input = st.text_area(t['input_label'], height=150, placeholder=t['input_placeholder'], value=st.session_state.input_text) +# st.session_state.input_text = sentence_input + + if st.button(t['analyze_button'], key=f"analyze_button_{lang_code}"): + if sentence_input: + doc = nlp_models[lang_code](sentence_input) + + with st.expander(t['repeated_words'], expanded=True): + word_colors = get_repeated_words_colors(doc) + highlighted_text = highlight_repeated_words(doc, word_colors) + st.markdown(highlighted_text, unsafe_allow_html=True) + + st.markdown(f"##### {t['legend']}") + legend_html = "
" + for pos, color in POS_COLORS.items(): + if pos in POS_TRANSLATIONS: + legend_html += f"
{POS_TRANSLATIONS[pos]}
" + legend_html += "
" + st.markdown(legend_html, unsafe_allow_html=True) + + with st.expander(t['arc_diagram'], expanded=True): + sentences = list(doc.sents) + arc_diagrams = [] + for i, sent in enumerate(sentences): + st.subheader(f"{t['sentence']} {i+1}") + html = displacy.render(sent, style="dep", options={"distance": 100}) + html = html.replace('height="375"', 'height="200"') + html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', lambda m: f' str: + """ + Procesa el mensaje del usuario y genera una respuesta + """ + try: + # Actualizar contexto + if context: + self.context.update(context) + + # Analizar intención del mensaje + intent = self._analyze_intent(message) + + # Generar respuesta basada en la intención + response = self._generate_response(intent, message) + + # Actualizar historial + self._update_history(message, response) + + return response + + except Exception as e: + logger.error(f"Error procesando mensaje: {str(e)}") + return self._get_fallback_response() + + def _analyze_intent(self, message: str) -> str: + """ + Analiza la intención del mensaje del usuario + """ + # Implementar análisis de intención + pass + + def _generate_response(self, intent: str, message: str) -> str: + """ + Genera una respuesta basada en la intención + """ + # Implementar generación de respuesta + pass + + def get_conversation_history(self) -> List[Tuple[str, str]]: + """ + Retorna el historial de conversación + """ + return self.conversation_history \ No newline at end of file diff --git a/src/modules/chatbot/chat_interface.py b/src/modules/chatbot/chat_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..0f998af5cee7f03c5cdcf410b9689f0222da07eb --- /dev/null +++ b/src/modules/chatbot/chat_interface.py @@ -0,0 +1,25 @@ +# chatbot/chat_interface.py +import streamlit as st +from .chatbot import AIdeaTextChatbot + +def display_chat_interface(lang_code: str, chat_translations: Dict): + """ + Muestra la interfaz del chat + """ + # Inicializar chatbot si no existe + if 'chatbot' not in st.session_state: + st.session_state.chatbot = AIdeaTextChatbot(lang_code) + + # Mostrar historial + for msg in st.session_state.chatbot.get_conversation_history(): + with st.chat_message(msg[0]): + st.write(msg[1]) + + # Input del usuario + if prompt := st.chat_input(chat_translations.get('chat_placeholder', 'Escribe tu mensaje...')): + # Procesar mensaje + response = st.session_state.chatbot.process_message(prompt) + + # Mostrar respuesta + with st.chat_message("assistant"): + st.write(response) \ No newline at end of file diff --git a/src/modules/chatbot/chat_process.py b/src/modules/chatbot/chat_process.py new file mode 100644 index 0000000000000000000000000000000000000000..edc2b18cd48c0707694146000fe8461a5b20a9ca --- /dev/null +++ b/src/modules/chatbot/chat_process.py @@ -0,0 +1,129 @@ +# modules/chatbot/chat_process.py +import os +import anthropic +import logging +from typing import Generator + +logger = logging.getLogger(__name__) + +class ChatProcessor: + def __init__(self): + """Inicializa el procesador de chat con la API de Claude""" + self.client = anthropic.Anthropic( + api_key=os.environ.get("ANTHROPIC_API_KEY") + ) + self.conversation_history = [] + self.semantic_context = None + self.current_lang = 'en' + + def set_semantic_context(self, text, metrics, graph_data, lang_code='en'): + """Configura el contexto semántico completo para el chat""" + if not text or not metrics: + logger.error("Faltan datos esenciales para el contexto semántico") + raise ValueError("Texto y métricas son requeridos") + + self.semantic_context = { + 'full_text': text, # Texto completo del documento + 'key_concepts': metrics.get('key_concepts', []), + 'concept_centrality': metrics.get('concept_centrality', {}), + 'graph_available': graph_data is not None, + 'language': lang_code + } + self.current_lang = lang_code + self.conversation_history = [] + logger.info("Contexto semántico configurado correctamente") + + def _get_system_prompt(self): + """Genera el prompt del sistema con todo el contexto necesario""" + if not self.semantic_context: + return "You are a helpful assistant." + + concepts = self.semantic_context['key_concepts'] + top_concepts = ", ".join([f"{c[0]} ({c[1]:.2f})" for c in concepts[:5]]) + + prompts = { + 'en': f"""You are a semantic analysis expert. The user analyzed a research article. + Full text available (abbreviated for context). + Key concepts: {top_concepts} + Graph available: {self.semantic_context['graph_available']} + + Your tasks: + 1. Answer questions about concepts and their relationships + 2. Explain the semantic network structure + 3. Suggest text improvements + 4. Provide insights based on concept centrality""", + + 'es': f"""Eres un experto en análisis semántico. El usuario analizó un artículo de investigación. + Texto completo disponible (abreviado para contexto). + Conceptos clave: {top_concepts} + Gráfico disponible: {self.semantic_context['graph_available']} + + Tus tareas: + 1. Responder preguntas sobre conceptos y sus relaciones + 2. Explicar la estructura de la red semántica + 3. Sugerir mejoras al texto + 4. Proporcionar insights basados en centralidad de conceptos""", + + 'pt': f"""Você é um especialista em análise semântica. O usuário analisou um artigo de pesquisa. + Texto completo disponível (abreviado para contexto). + Conceitos-chave: {top_concepts} + Gráfico disponível: {self.semantic_context['graph_available']} + + Suas tarefas: + 1. Responder perguntas sobre conceitos e suas relações + 2. Explicar a estrutura da rede semântica + 3. Sugerir melhorias no texto + 4. Fornecer insights com base na centralidade dos conceitos""" + } + + return prompts.get(self.current_lang, prompts['en']) + + def process_chat_input(self, message: str, lang_code: str) -> Generator[str, None, None]: + """Procesa el mensaje con todo el contexto disponible""" + try: + if not self.semantic_context: + yield "Error: Contexto semántico no configurado. Recargue el análisis." + return + + # Actualizar idioma si es diferente + if lang_code != self.current_lang: + self.current_lang = lang_code + logger.info(f"Idioma cambiado a: {lang_code}") + + # Construir historial de mensajes + messages = [ + { + "role": "user", + "content": f"Documento analizado (extracto):\n{self.semantic_context['full_text'][:2000]}..." + }, + *self.conversation_history, + {"role": "user", "content": message} + ] + + # Llamar a Claude con streaming + with self.client.messages.stream( + model="claude-3-sonnet-20240229", + max_tokens=4000, + temperature=0.7, + system=self._get_system_prompt(), + messages=messages + ) as stream: + full_response = "" + for chunk in stream.text_stream: + full_response += chunk + yield chunk + "▌" + + # Guardar respuesta en historial + self.conversation_history.extend([ + {"role": "user", "content": message}, + {"role": "assistant", "content": full_response} + ]) + logger.info("Respuesta generada y guardada en historial") + + except Exception as e: + logger.error(f"Error en process_chat_input: {str(e)}", exc_info=True) + yield { + 'en': "Error processing message. Please reload the analysis.", + 'es': "Error al procesar mensaje. Recargue el análisis.", + 'pt': "Erro ao processar mensagem. Recarregue a análise." + }.get(self.current_lang, "Processing error") \ No newline at end of file diff --git a/src/modules/chatbot/chatbot-Old.py b/src/modules/chatbot/chatbot-Old.py new file mode 100644 index 0000000000000000000000000000000000000000..3e25b66c9473820add75e7dcedfe3c02326b543b --- /dev/null +++ b/src/modules/chatbot/chatbot-Old.py @@ -0,0 +1,46 @@ +import streamlit as st +from ..text_analysis.morpho_analysis import perform_advanced_morphosyntactic_analysis +from ..text_analysis.semantic_analysis import perform_semantic_analysis +from ..text_analysis.discourse_analysis import perform_discourse_analysis + +class AIdeaTextChatbot: + def __init__(self): + self.conversation_history = [] + + def handle_morphosyntactic_input(self, user_input, lang_code, nlp_models, t): + if user_input.startswith('/analisis_morfosintactico'): + text_to_analyze = user_input.split('[', 1)[1].rsplit(']', 1)[0] + result = perform_advanced_morphosyntactic_analysis(text_to_analyze, nlp_models[lang_code]) + if result is None or 'arc_diagrams' not in result: + return t.get('morphosyntactic_analysis_error', 'Error en el análisis morfosintáctico'), None, None + return t.get('morphosyntactic_analysis_completed', 'Análisis morfosintáctico completado'), result['arc_diagrams'], result + else: + # Aquí puedes manejar otras interacciones relacionadas con el análisis morfosintáctico + return self.generate_response(user_input, lang_code), None, None + + + def handle_semantic_input(self, user_input, lang_code, nlp_models, t): + # Implementar lógica para análisis semántico + pass + + def handle_discourse_input(self, user_input, lang_code, nlp_models, t): + # Implementar lógica para análisis de discurso + pass + + def handle_generate_response(self, prompt, lang_code): + # Aquí iría la lógica para generar respuestas generales del chatbot + # Puedes usar la API de Claude aquí si lo deseas + pass + +def initialize_chatbot(): + return AIdeaTextChatbot() + +def process_chat_input(user_input, lang_code, nlp_models, analysis_type, t, file_contents=None): + chatbot = st.session_state.get('aideatext_chatbot') + if not chatbot: + chatbot = initialize_chatbot() + st.session_state.aideatext_chatbot = chatbot + + if analysis_type == 'morphosyntactic': + return chatbot.handle_morphosyntactic_input(user_input, lang_code, nlp_models, t) + # ... manejar otros tipos de análisis ... \ No newline at end of file diff --git a/src/modules/chatbot/chatbot_open_Source_Model-test.py b/src/modules/chatbot/chatbot_open_Source_Model-test.py new file mode 100644 index 0000000000000000000000000000000000000000..63df12bc2dea0a7229e5934d961dffeb8f511ebb --- /dev/null +++ b/src/modules/chatbot/chatbot_open_Source_Model-test.py @@ -0,0 +1,124 @@ +from transformers import GPT2LMHeadModel, GPT2Tokenizer +import torch +from torch.optim import Adam +from torch.utils.data import DataLoader, Dataset +import json +import tqdm + +tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") +model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2") + +class MultilingualChatData(Dataset): + def __init__(self, file_path, tokenizer, max_length=512): + with open(file_path, 'r', encoding='utf-8') as f: + self.data = json.load(f) + self.tokenizer = tokenizer + self.max_length = max_length + + def __len__(self): + return len(self.data) + + def __getitem__(self, idx): + item = self.data[idx] + input_text = f" {item['input']} : {item['output']} " + encoding = self.tokenizer(input_text, truncation=True, padding='max_length', max_length=self.max_length, return_tensors="pt") + return encoding['input_ids'].squeeze(), encoding['attention_mask'].squeeze() + +class MultilingualChatbot: + def __init__(self): + self.models = { + 'en': GPT2LMHeadModel.from_pretrained("microsoft/DialoGPT-medium"), + 'es': GPT2LMHeadModel.from_pretrained("DeepESP/gpt2-spanish"), + 'fr': GPT2LMHeadModel.from_pretrained("asi/gpt-fr-cased-small") + } + self.tokenizers = { + 'en': GPT2Tokenizer.from_pretrained("microsoft/DialoGPT-medium"), + 'es': GPT2Tokenizer.from_pretrained("DeepESP/gpt2-spanish"), + 'fr': GPT2Tokenizer.from_pretrained("asi/gpt-fr-cased-small") + } + for tokenizer in self.tokenizers.values(): + tokenizer.pad_token = tokenizer.eos_token + tokenizer.add_special_tokens({ + "bos_token": "", + "eos_token": "" + }) + tokenizer.add_tokens([":"]) + + for model in self.models.values(): + model.resize_token_embeddings(len(self.tokenizers['en'])) # Assuming all tokenizers have the same vocabulary size + + self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" + for model in self.models.values(): + model.to(self.device) + + def train(self, lang, data_file, epochs=5, batch_size=32, learning_rate=1e-4): + model = self.models[lang] + tokenizer = self.tokenizers[lang] + + chat_data = MultilingualChatData(data_file, tokenizer) + data_loader = DataLoader(chat_data, batch_size=batch_size, shuffle=True) + + optimizer = Adam(model.parameters(), lr=learning_rate) + + model.train() + for epoch in range(epochs): + total_loss = 0 + for batch in tqdm.tqdm(data_loader, desc=f"Epoch {epoch+1}/{epochs}"): + input_ids, attention_mask = [b.to(self.device) for b in batch] + + optimizer.zero_grad() + outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids) + loss = outputs.loss + loss.backward() + optimizer.step() + + total_loss += loss.item() + + print(f"Epoch {epoch+1}/{epochs}, Loss: {total_loss/len(data_loader):.4f}") + + torch.save(model.state_dict(), f"model_state_{lang}.pt") + + def generate_response(self, prompt, src_lang): + model = self.models.get(src_lang, self.models['en']) + tokenizer = self.tokenizers.get(src_lang, self.tokenizers['en']) + + input_text = f" {prompt} : " + input_ids = tokenizer.encode(input_text, return_tensors='pt').to(self.device) + + attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=self.device) + + output = model.generate( + input_ids, + attention_mask=attention_mask, + max_length=1000, + pad_token_id=tokenizer.eos_token_id, + no_repeat_ngram_size=3, + do_sample=True, + top_k=50, + top_p=0.95, + temperature=0.7, + num_return_sequences=1, + length_penalty=1.0, + repetition_penalty=1.2 + ) + + decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) + return decoded_output.split(":")[-1].strip() + +def initialize_chatbot(): + return MultilingualChatbot() + +def get_chatbot_response(chatbot, prompt, src_lang): + return chatbot.generate_response(prompt, src_lang) + +# Ejemplo de uso +if __name__ == "__main__": + chatbot = initialize_chatbot() + + # Entrenar el modelo en español (asumiendo que tienes un archivo de datos en español) + chatbot.train('es', './spanish_chat_data.json', epochs=3) + + # Generar respuestas + print(get_chatbot_response(chatbot, "Hola, ¿cómo estás?", 'es')) + print(get_chatbot_response(chatbot, "Hello, how are you?", 'en')) + print(get_chatbot_response(chatbot, "Bonjour, comment allez-vous?", 'fr')) \ No newline at end of file diff --git a/src/modules/chatbot/sidebar_chat.py b/src/modules/chatbot/sidebar_chat.py new file mode 100644 index 0000000000000000000000000000000000000000..e6c79108b1048f8b8eaaad1512b97aece8318b83 --- /dev/null +++ b/src/modules/chatbot/sidebar_chat.py @@ -0,0 +1,123 @@ +# modules/chatbot/sidebar_chat.py +import streamlit as st +from .chat_process import ChatProcessor +from ..database.chat_mongo_db import store_chat_history +import logging + +logger = logging.getLogger(__name__) + +def display_sidebar_chat(lang_code: str, chatbot_t: dict): + """Chatbot mejorado con manejo completo del contexto semántico""" + with st.sidebar: + # Configuración de estilos + st.markdown(""" + + """, unsafe_allow_html=True) + + try: + # Inicialización del procesador + if 'chat_processor' not in st.session_state: + st.session_state.chat_processor = ChatProcessor() + logger.info("Nuevo ChatProcessor inicializado") + + # Configurar contexto semántico si está activo + if st.session_state.get('semantic_agent_active', False): + semantic_data = st.session_state.get('semantic_agent_data') + if semantic_data and all(k in semantic_data for k in ['text', 'metrics']): + try: + st.session_state.chat_processor.set_semantic_context( + text=semantic_data['text'], + metrics=semantic_data['metrics'], + graph_data=semantic_data.get('graph_data'), + lang_code=lang_code + ) + logger.info("Contexto semántico configurado en el chat") + except Exception as e: + logger.error(f"Error configurando contexto: {str(e)}") + st.error("Error al configurar el análisis. Recargue el documento.") + return + + # Interfaz del chat + with st.expander("💬 Asistente de Análisis", expanded=True): + # Inicializar historial si no existe + if 'sidebar_messages' not in st.session_state: + initial_msg = { + 'en': "Hello! Ask me about the semantic analysis.", + 'es': "¡Hola! Pregúntame sobre el análisis semántico.", + 'pt': "Olá! Pergunte-me sobre a análise semântica." + }.get(lang_code, "Hello!") + + st.session_state.sidebar_messages = [ + {"role": "assistant", "content": initial_msg} + ] + + # Mostrar historial + chat_container = st.container() + with chat_container: + for msg in st.session_state.sidebar_messages: + st.chat_message(msg["role"]).write(msg["content"]) + + # Manejo de mensajes nuevos + user_input = st.chat_input( + { + 'en': "Ask about the analysis...", + 'es': "Pregunta sobre el análisis...", + 'pt': "Pergunte sobre a análise..." + }.get(lang_code, "Message...") + ) + + if user_input: + try: + # Mostrar mensaje del usuario + with chat_container: + st.chat_message("user").write(user_input) + st.session_state.sidebar_messages.append( + {"role": "user", "content": user_input} + ) + + # Obtener y mostrar respuesta + with st.chat_message("assistant"): + response = st.write_stream( + st.session_state.chat_processor.process_chat_input( + user_input, lang_code + ) + ) + st.session_state.sidebar_messages.append( + {"role": "assistant", "content": response.replace("▌", "")} + ) + + # Guardar en base de datos + if 'username' in st.session_state: + store_chat_history( + username=st.session_state.username, + messages=st.session_state.sidebar_messages, + chat_type='semantic_analysis', + metadata={ + 'text_sample': st.session_state.semantic_agent_data['text'][:500], + 'concepts': st.session_state.semantic_agent_data['metrics']['key_concepts'][:5] + } + ) + + except Exception as e: + logger.error(f"Error en conversación: {str(e)}", exc_info=True) + st.error({ + 'en': "Error processing request. Try again.", + 'es': "Error al procesar. Intente nuevamente.", + 'pt': "Erro ao processar. Tente novamente." + }.get(lang_code, "Error")) + + # Botón para reiniciar + if st.button("🔄 Reiniciar Chat"): + st.session_state.sidebar_messages = [] + st.rerun() + + except Exception as e: + logger.error(f"Error fatal en sidebar_chat: {str(e)}", exc_info=True) + st.error("System error. Please refresh the page.") \ No newline at end of file diff --git a/src/modules/chatbot/txt.txt b/src/modules/chatbot/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/database/__init__.py b/src/modules/database/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/database/__pycache__/__init__.cpython-311.pyc b/src/modules/database/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a266f255fb26d3b8986ad11380482db97782fef5 Binary files /dev/null and b/src/modules/database/__pycache__/__init__.cpython-311.pyc differ diff --git a/src/modules/database/__pycache__/chat_db.cpython-311.pyc b/src/modules/database/__pycache__/chat_db.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..413b6362739b3e87d44aeb8e62de940cf479251d Binary files /dev/null and b/src/modules/database/__pycache__/chat_db.cpython-311.pyc differ diff --git a/src/modules/database/__pycache__/database.cpython-311.pyc b/src/modules/database/__pycache__/database.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1e5def232078ecafa2282ef270d37dad5354fb59 Binary files /dev/null and b/src/modules/database/__pycache__/database.cpython-311.pyc differ diff --git a/src/modules/database/__pycache__/database_init.cpython-311.pyc b/src/modules/database/__pycache__/database_init.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3550252ef5e3d35d443b6bf7890c9ce889291acd Binary files /dev/null and b/src/modules/database/__pycache__/database_init.cpython-311.pyc differ diff --git a/src/modules/database/__pycache__/database_oldFromV2.cpython-311.pyc b/src/modules/database/__pycache__/database_oldFromV2.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5e69d036d220327e2b5e732414cde1f1683c4eb3 Binary files /dev/null and b/src/modules/database/__pycache__/database_oldFromV2.cpython-311.pyc differ diff --git a/src/modules/database/__pycache__/mongo_db.cpython-311.pyc b/src/modules/database/__pycache__/mongo_db.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9441dcab4ec067bdaa9a84c04b10f4721e8de110 Binary files /dev/null and b/src/modules/database/__pycache__/mongo_db.cpython-311.pyc differ diff --git a/src/modules/database/__pycache__/morphosintax_db.cpython-311.pyc b/src/modules/database/__pycache__/morphosintax_db.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..872f610f9e83a0c5908c59a59219ca6790c19be1 Binary files /dev/null and b/src/modules/database/__pycache__/morphosintax_db.cpython-311.pyc differ diff --git a/src/modules/database/__pycache__/morphosintax_mongo_db.cpython-311.pyc b/src/modules/database/__pycache__/morphosintax_mongo_db.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..af12c9eeb005d74337f9d11c2c3cd088923d7c97 Binary files /dev/null and b/src/modules/database/__pycache__/morphosintax_mongo_db.cpython-311.pyc differ diff --git a/src/modules/database/__pycache__/morphosintaxis_export.cpython-311.pyc b/src/modules/database/__pycache__/morphosintaxis_export.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9fac44e14d0770679a1a04702fe53c9e61ba9643 Binary files /dev/null and b/src/modules/database/__pycache__/morphosintaxis_export.cpython-311.pyc differ diff --git a/src/modules/database/__pycache__/sql_db.cpython-311.pyc b/src/modules/database/__pycache__/sql_db.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ee69efedc1189015b7c5ef5b5f79bff84a17b0cb Binary files /dev/null and b/src/modules/database/__pycache__/sql_db.cpython-311.pyc differ diff --git a/src/modules/database/backUp/database.py b/src/modules/database/backUp/database.py new file mode 100644 index 0000000000000000000000000000000000000000..1676ee58c4527c524fa4f6eb4dbe94f28b4ca8b2 --- /dev/null +++ b/src/modules/database/backUp/database.py @@ -0,0 +1,216 @@ +# database.py +# Versión 3 actualizada para manejar chat_history_v3 + +import streamlit as st +import logging +import os +from pymongo import MongoClient +import certifi +from datetime import datetime, timezone +import uuid + +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +# Variables globales para Cosmos DB MongoDB API +mongo_client = None +mongo_db = None +analysis_collection = None +chat_collection_v3 = None # Nueva variable global para chat_history_v3 + +def initialize_mongodb_connection(): + global mongo_client, mongo_db, analysis_collection, chat_collection_v3 + try: + cosmos_mongodb_connection_string = os.getenv("MONGODB_CONNECTION_STRING") + if not cosmos_mongodb_connection_string: + logger.error("La variable de entorno MONGODB_CONNECTION_STRING no está configurada") + return False + + mongo_client = MongoClient(cosmos_mongodb_connection_string, + tls=True, + tlsCAFile=certifi.where(), + retryWrites=False, + serverSelectionTimeoutMS=5000, + connectTimeoutMS=10000, + socketTimeoutMS=10000) + + mongo_client.admin.command('ping') + + mongo_db = mongo_client['aideatext_db'] + analysis_collection = mongo_db['text_analysis'] + chat_collection_v3 = mongo_db['chat_history_v3'] # Inicializar la nueva colección + + # Crear índices para chat_history_v3 + chat_collection_v3.create_index([("username", 1), ("timestamp", -1)]) + chat_collection_v3.create_index([("username", 1), ("analysis_type", 1), ("timestamp", -1)]) + + logger.info("Conexión a Cosmos DB MongoDB API exitosa") + return True + except Exception as e: + logger.error(f"Error al conectar con Cosmos DB MongoDB API: {str(e)}", exc_info=True) + return False + +def store_chat_history_v3(username, messages, analysis_type): + try: + logger.info(f"Guardando historial de chat para el usuario: {username}, tipo de análisis: {analysis_type}") + logger.debug(f"Mensajes a guardar: {messages}") + + chat_document = { + 'username': username, + 'timestamp': datetime.now(timezone.utc).isoformat(), + 'analysis_type': analysis_type, + 'messages': messages + } + result = chat_collection_v3.insert_one(chat_document) + logger.info(f"Historial de chat guardado con ID: {result.inserted_id} para el usuario: {username}") + return True + except Exception as e: + logger.error(f"Error al guardar el historial de chat para el usuario {username}: {str(e)}") + return False + +def get_chat_history_v3(username, analysis_type=None, limit=10): + try: + logger.info(f"Obteniendo historial de chat para el usuario: {username}, tipo de análisis: {analysis_type}") + + query = {"username": username} + if analysis_type: + query["analysis_type"] = analysis_type + + cursor = chat_collection_v3.find(query).sort("timestamp", -1).limit(limit) + + chat_history = [] + for chat in cursor: + chat_history.append({ + "timestamp": chat["timestamp"], + "analysis_type": chat["analysis_type"], + "messages": chat["messages"] + }) + + logger.info(f"Se obtuvieron {len(chat_history)} entradas de chat para el usuario: {username}") + return chat_history + except Exception as e: + logger.error(f"Error al obtener el historial de chat para el usuario {username}: {str(e)}") + return [] + +def delete_chat_history_v3(username, analysis_type=None): + try: + logger.info(f"Eliminando historial de chat para el usuario: {username}, tipo de análisis: {analysis_type}") + + query = {"username": username} + if analysis_type: + query["analysis_type"] = analysis_type + + result = chat_collection_v3.delete_many(query) + + logger.info(f"Se eliminaron {result.deleted_count} entradas de chat para el usuario: {username}") + return True + except Exception as e: + logger.error(f"Error al eliminar el historial de chat para el usuario {username}: {str(e)}") + return False + +def export_chat_history_v3(username, analysis_type=None): + try: + logger.info(f"Exportando historial de chat para el usuario: {username}, tipo de análisis: {analysis_type}") + + query = {"username": username} + if analysis_type: + query["analysis_type"] = analysis_type + + cursor = chat_collection_v3.find(query).sort("timestamp", -1) + + export_data = list(cursor) + + logger.info(f"Se exportaron {len(export_data)} entradas de chat para el usuario: {username}") + return export_data + except Exception as e: + logger.error(f"Error al exportar el historial de chat para el usuario {username}: {str(e)}") + return [] + +# Funciones específicas para cada tipo de análisis + +def store_morphosyntax_result(username, text, repeated_words, arc_diagrams, pos_analysis, morphological_analysis, sentence_structure): + if analysis_collection is None: + logger.error("La conexión a MongoDB no está inicializada") + return False + + try: + word_count = {} + for word, color in repeated_words.items(): + category = color # Asumiendo que 'color' es la categoría gramatical + word_count[category] = word_count.get(category, 0) + 1 + + analysis_document = { + 'username': username, + 'timestamp': datetime.now(timezone.utc).isoformat(), + 'text': text, + 'repeated_words': repeated_words, + 'word_count': word_count, + 'arc_diagrams': arc_diagrams, + 'pos_analysis': pos_analysis, + 'morphological_analysis': morphological_analysis, + 'sentence_structure': sentence_structure, + 'analysis_type': 'morphosyntax' + } + + result = analysis_collection.insert_one(analysis_document) + logger.info(f"Análisis morfosintáctico guardado con ID: {result.inserted_id} para el usuario: {username}") + return True + except Exception as e: + logger.error(f"Error al guardar el análisis morfosintáctico para el usuario {username}: {str(e)}") + return False + +# Aquí puedes agregar funciones similares para análisis semántico y de discurso + +def get_student_data(username): + if analysis_collection is None or chat_collection_v3 is None: + logger.error("La conexión a MongoDB no está inicializada") + return None + + formatted_data = { + "username": username, + "entries": [], + "entries_count": 0, + "word_count": {}, + "chat_history": { + "morphosyntax": [], + "semantic": [], + "discourse": [] + } + } + + try: + logger.info(f"Buscando datos de análisis para el usuario: {username}") + cursor = analysis_collection.find({"username": username}) + + for entry in cursor: + formatted_entry = { + 'timestamp': entry.get("timestamp"), + "analysis_type": entry.get("analysis_type", "morphosyntax") + } + + if formatted_entry["analysis_type"] == "morphosyntax": + formatted_entry.update({ + "text": entry.get("text", ""), + "word_count": entry.get("word_count", {}), + "arc_diagrams": entry.get("arc_diagrams", []) + }) + for category, count in formatted_entry["word_count"].items(): + formatted_data["word_count"][category] = formatted_data["word_count"].get(category, 0) + count + + formatted_data["entries"].append(formatted_entry) + + formatted_data["entries_count"] = len(formatted_data["entries"]) + formatted_data["entries"].sort(key=lambda x: x["timestamp"], reverse=True) + + # Obtener historial de chat para cada tipo de análisis + for analysis_type in ["morphosyntax", "semantic", "discourse"]: + chat_history = get_chat_history_v3(username, analysis_type) + formatted_data["chat_history"][analysis_type] = chat_history + + except Exception as e: + logger.error(f"Error al obtener datos del estudiante {username}: {str(e)}") + + logger.info(f"Datos formateados para {username}: {formatted_data}") + return formatted_data + +# Puedes agregar más funciones según sea necesario para manejar otros tipos de datos o análisis \ No newline at end of file diff --git a/src/modules/database/backUp/databaseBackUp23-9-24.py b/src/modules/database/backUp/databaseBackUp23-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..bece010876634b24e9f01e26a9e2429f04ba88f7 --- /dev/null +++ b/src/modules/database/backUp/databaseBackUp23-9-24.py @@ -0,0 +1,581 @@ +# database.py +import logging +import os +from azure.cosmos import CosmosClient +from azure.cosmos.exceptions import CosmosHttpResponseError +from pymongo import MongoClient +import certifi +from datetime import datetime +import io +from io import BytesIO +import base64 +import matplotlib.pyplot as plt +from matplotlib.figure import Figure +import bcrypt +print(f"Bcrypt version: {bcrypt.__version__}") +import uuid +import plotly.graph_objects as go # Para manejar el diagrama de Sankey +import numpy as np # Puede ser necesario para algunas operaciones +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +# Variables globales para Cosmos DB SQL API +application_requests_container = None +cosmos_client = None +user_database = None +user_container = None +user_feedback_container = None + +# Variables globales para Cosmos DB MongoDB API +mongo_client = None +mongo_db = None +analysis_collection = None +chat_collection = None # Nueva variable global + + +##############################################################################--- INICIO DE LAS BASES DE DATOS --- ############################### +def initialize_database_connections(): + try: + print("Iniciando conexión a MongoDB") + mongodb_success = initialize_mongodb_connection() + print(f"Conexión a MongoDB: {'exitosa' if mongodb_success else 'fallida'}") + except Exception as e: + print(f"Error al conectar con MongoDB: {str(e)}") + mongodb_success = False + + try: + print("Iniciando conexión a Cosmos DB SQL API") + sql_success = initialize_cosmos_sql_connection() + print(f"Conexión a Cosmos DB SQL API: {'exitosa' if sql_success else 'fallida'}") + except Exception as e: + print(f"Error al conectar con Cosmos DB SQL API: {str(e)}") + sql_success = False + + return { + "mongodb": mongodb_success, + "cosmos_sql": sql_success + } + +#####################################################################################33 +def initialize_cosmos_sql_connection(): + global cosmos_client, user_database, user_container, application_requests_container, user_feedback_container + logger.info("Initializing Cosmos DB SQL API connection") + try: + cosmos_endpoint = os.environ.get("COSMOS_ENDPOINT") + cosmos_key = os.environ.get("COSMOS_KEY") + logger.info(f"Cosmos Endpoint: {cosmos_endpoint}") + logger.info(f"Cosmos Key: {'*' * len(cosmos_key) if cosmos_key else 'Not set'}") + + if not cosmos_endpoint or not cosmos_key: + logger.error("COSMOS_ENDPOINT or COSMOS_KEY environment variables are not set") + raise ValueError("Las variables de entorno COSMOS_ENDPOINT y COSMOS_KEY deben estar configuradas") + + cosmos_client = CosmosClient(cosmos_endpoint, cosmos_key) + user_database = cosmos_client.get_database_client("user_database") + user_container = user_database.get_container_client("users") + application_requests_container = user_database.get_container_client("application_requests") + user_feedback_container = user_database.get_container_client("user_feedback") + + logger.info(f"user_container initialized: {user_container is not None}") + logger.info(f"application_requests_container initialized: {application_requests_container is not None}") + logger.info(f"user_feedback_container initialized: {user_feedback_container is not None}") + + logger.info("Conexión a Cosmos DB SQL API exitosa") + return True + except Exception as e: + logger.error(f"Error al conectar con Cosmos DB SQL API: {str(e)}", exc_info=True) + return False + +############################################################################################3 +def initialize_mongodb_connection(): + global mongo_client, mongo_db, analysis_collection, chat_collection + try: + cosmos_mongodb_connection_string = os.getenv("MONGODB_CONNECTION_STRING") + if not cosmos_mongodb_connection_string: + logger.error("La variable de entorno MONGODB_CONNECTION_STRING no está configurada") + return False + + mongo_client = MongoClient(cosmos_mongodb_connection_string, + tls=True, + tlsCAFile=certifi.where(), + retryWrites=False, + serverSelectionTimeoutMS=5000, + connectTimeoutMS=10000, + socketTimeoutMS=10000) + + mongo_client.admin.command('ping') + + mongo_db = mongo_client['aideatext_db'] + analysis_collection = mongo_db['text_analysis'] + chat_collection = mongo_db['chat_history'] # Inicializar la nueva colección + + # Verificar la conexión + mongo_client.admin.command('ping') + + logger.info("Conexión a Cosmos DB MongoDB API exitosa") + return True + except Exception as e: + logger.error(f"Error al conectar con Cosmos DB MongoDB API: {str(e)}", exc_info=True) + return False + +##############################################################################--- FIN DEL INICIO DE LAS BASES DE DATOS --- ################################################################################################################################ +########################################################## -- INICIO DE GESTION DE USUARIOS ---########################################################## +def create_user(username, password, role): + global user_container + try: + print(f"Attempting to create user: {username} with role: {role}") + if user_container is None: + print("Error: user_container is None. Attempting to reinitialize connection.") + if not initialize_cosmos_sql_connection(): + raise Exception("Failed to initialize SQL connection") + + hashed_password = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8') + print(f"Password hashed successfully for user: {username}") + user_data = { + 'id': username, + 'password': hashed_password, + 'role': role, + 'created_at': datetime.utcnow().isoformat() + } + user_container.create_item(body=user_data) + print(f"Usuario {role} creado: {username}") # Log para depuración + return True + except Exception as e: + print(f"Detailed error in create_user: {str(e)}") + return False + +####################################################################################################### +def create_admin_user(username, password): + return create_user(username, password, 'Administrador') + +####################################################################################################### +def create_student_user(username, password): + return create_user(username, password, 'Estudiante') + +####################################################################################################### +# Funciones para Cosmos DB SQL API (manejo de usuarios) +def get_user(username): + try: + query = f"SELECT * FROM c WHERE c.id = '{username}'" + items = list(user_container.query_items(query=query, enable_cross_partition_query=True)) + user = items[0] if items else None + if user: + print(f"Usuario encontrado: {username}, Rol: {user.get('role')}") # Log añadido + else: + print(f"Usuario no encontrado: {username}") # Log añadido + return user + except Exception as e: + print(f"Error al obtener usuario {username}: {str(e)}") + return None + +########################################################## -- FIN DE GESTION DE USUARIOS ---########################################################## + +########################################################## -- INICIO GESTION DE ARCHIVOS ---########################################################## + +def store_file_contents(username, file_name, file_contents, analysis_type): + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return False + try: + document = { + 'id': f"{username}_{analysis_type}_{file_name}", + 'username': username, + 'file_name': file_name, + 'analysis_type': analysis_type, + 'file_contents': file_contents, + 'timestamp': datetime.utcnow().isoformat() + } + user_container.upsert_item(body=document) + logger.info(f"Contenido del archivo guardado para el usuario: {username}, tipo de análisis: {analysis_type}") + return True + except Exception as e: + logger.error(f"Error al guardar el contenido del archivo para el usuario {username}: {str(e)}") + return False + +def retrieve_file_contents(username, file_name, analysis_type): + print(f"Attempting to retrieve file: {file_name} for user: {username}") + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return None + try: + query = f"SELECT * FROM c WHERE c.id = '{username}_{analysis_type}_{file_name}'" + items = list(user_container.query_items(query=query, enable_cross_partition_query=True)) + if items: + return items[0]['file_contents'] + else: + logger.info(f"No se encontró contenido de archivo para el usuario: {username}, tipo de análisis: {analysis_type}") + return None + except Exception as e: + logger.error(f"Error al recuperar el contenido del archivo para el usuario {username}: {str(e)}") + return None + +def get_user_files(username, analysis_type=None): + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return [] + try: + if analysis_type: + query = f"SELECT c.file_name, c.analysis_type, c.timestamp FROM c WHERE c.username = '{username}' AND c.analysis_type = '{analysis_type}'" + else: + query = f"SELECT c.file_name, c.analysis_type, c.timestamp FROM c WHERE c.username = '{username}'" + + items = list(user_container.query_items(query=query, enable_cross_partition_query=True)) + return items + except Exception as e: + logger.error(f"Error al obtener la lista de archivos del usuario {username}: {str(e)}") + return [] + +def delete_file(username, file_name, analysis_type): + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return False + try: + user_container.delete_item(item=f"{username}_{analysis_type}_{file_name}", partition_key=username) + logger.info(f"Archivo eliminado para el usuario: {username}, tipo de análisis: {analysis_type}") + return True + except Exception as e: + logger.error(f"Error al eliminar el archivo para el usuario {username}: {str(e)}") + return False + +########################################################## -- FIN GESTION DE ARCHIVOS ---########################################################## + +########################################################## -- INICIO GESTION DE FORMULARIOS ---########################################################## +def store_application_request(name, email, institution, role, reason): + global application_requests_container + logger.info("Entering store_application_request function") + try: + logger.info("Checking application_requests_container") + if application_requests_container is None: + logger.error("application_requests_container is not initialized") + return False + + logger.info("Creating application request document") + application_request = { + "id": str(uuid.uuid4()), + "name": name, + "email": email, + "institution": institution, + "role": role, + "reason": reason, + "requestDate": datetime.utcnow().isoformat() + } + + logger.info(f"Attempting to store document: {application_request}") + application_requests_container.create_item(body=application_request) + logger.info(f"Application request stored for email: {email}") + return True + except Exception as e: + logger.error(f"Error storing application request: {str(e)}") + return False + +####################################################################################################### +def store_user_feedback(username, name, email, feedback): + global user_feedback_container + logger.info(f"Attempting to store user feedback for user: {username}") + try: + if user_feedback_container is None: + logger.error("user_feedback_container is not initialized") + return False + + feedback_item = { + "id": str(uuid.uuid4()), + "username": username, + "name": name, + "email": email, + "feedback": feedback, + "timestamp": datetime.utcnow().isoformat() + } + + result = user_feedback_container.create_item(body=feedback_item) + logger.info(f"User feedback stored with ID: {result['id']} for user: {username}") + return True + except Exception as e: + logger.error(f"Error storing user feedback for user {username}: {str(e)}") + return False + + +########################################################## -- FIN GESTION DE FORMULARIOS ---########################################################## + +########################################################## -- INICIO ALMACENAMIENTO ANÁLISIS MORFOSINTÁCTICO ---########################################################## + +def store_morphosyntax_result(username, text, repeated_words, arc_diagrams, pos_analysis, morphological_analysis, sentence_structure): + if analysis_collection is None: + logger.error("La conexión a MongoDB no está inicializada") + return False + + try: + word_count = {} + for word, color in repeated_words.items(): + category = color # Asumiendo que 'color' es la categoría gramatical + word_count[category] = word_count.get(category, 0) + 1 + + analysis_document = { + 'username': username, + 'timestamp': datetime.utcnow(), + 'text': text, + 'word_count': word_count, + 'arc_diagrams': arc_diagrams, + 'pos_analysis': pos_analysis, + 'morphological_analysis': morphological_analysis, + 'sentence_structure': sentence_structure + } + + result = analysis_collection.insert_one(analysis_document) + logger.info(f"Análisis guardado con ID: {result.inserted_id} para el usuario: {username}") + return True + except Exception as e: + logger.error(f"Error al guardar el análisis para el usuario {username}: {str(e)}") + return False + +########################################################## -- FIN ALMACENAMIENTO ANÁLISIS MORFOSINTÁCTICO ---########################################################## + + +##########################################--- INICIO SECCIÓN DEL ANÁLISIS SEMÁNTICO ---############################################### + +def store_file_semantic_contents(username, file_name, file_contents): + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return False + try: + document = { + 'id': f"{username}_semantic_{file_name}", + 'username': username, + 'file_name': file_name, + 'file_contents': file_contents, + 'analysis_type': 'semantic', + 'timestamp': datetime.utcnow().isoformat() + } + user_container.upsert_item(body=document) + logger.info(f"Contenido del archivo semántico guardado para el usuario: {username}") + return True + except Exception as e: + logger.error(f"Error al guardar el contenido del archivo semántico para el usuario {username}: {str(e)}") + return False + +def store_semantic_result(username, text, analysis_result): + if analysis_collection is None: + print("La conexión a MongoDB no está inicializada") + return False + try: + # Convertir los conceptos clave a una lista de tuplas + key_concepts = [(concept, float(frequency)) for concept, frequency in analysis_result['key_concepts']] + + # Convertir los gráficos a imágenes base64 + graphs = {} + for graph_name in ['relations_graph', 'entity_graph', 'topic_graph']: + if graph_name in analysis_result: + buf = BytesIO() + analysis_result[graph_name].savefig(buf, format='png') + buf.seek(0) + graphs[graph_name] = base64.b64encode(buf.getvalue()).decode('utf-8') + + analysis_document = { + 'username': username, + 'timestamp': datetime.utcnow(), + 'text': text, + 'key_concepts': key_concepts, + 'graphs': graphs, + 'summary': analysis_result.get('summary', ''), + 'entities': analysis_result.get('entities', {}), + 'sentiment': analysis_result.get('sentiment', ''), + 'topics': analysis_result.get('topics', []), + 'analysis_type': 'semantic' + } + + result = analysis_collection.insert_one(analysis_document) + print(f"Análisis semántico guardado con ID: {result.inserted_id} para el usuario: {username}") + return True + except Exception as e: + print(f"Error al guardar el análisis semántico para el usuario {username}: {str(e)}") + return False + +##########################################--- FIN DE LA SECCIÓN DEL ANÁLISIS SEMÁNTICO ---############################################### + +############################################--- INICIO DE LA SECCIÓN DEL ANÁLISIS DEL DISCURSO ################################################################### + +def store_discourse_analysis_result(username, text1, text2, analysis_result): + if analysis_collection is None: + print("La conexión a MongoDB no está inicializada") + return False + + try: + # Convertir los grafos individuales a imágenes base64 + buf1 = BytesIO() + analysis_result['graph1'].savefig(buf1, format='png') + buf1.seek(0) + img_str1 = base64.b64encode(buf1.getvalue()).decode('utf-8') + + buf2 = BytesIO() + analysis_result['graph2'].savefig(buf2, format='png') + buf2.seek(0) + img_str2 = base64.b64encode(buf2.getvalue()).decode('utf-8') + + # Crear una imagen combinada + fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10)) + ax1.imshow(plt.imread(BytesIO(base64.b64decode(img_str1)))) + ax1.axis('off') + ax1.set_title("Documento 1: Relaciones Conceptuales") + ax2.imshow(plt.imread(BytesIO(base64.b64decode(img_str2)))) + ax2.axis('off') + ax2.set_title("Documento 2: Relaciones Conceptuales") + + buf_combined = BytesIO() + fig.savefig(buf_combined, format='png') + buf_combined.seek(0) + img_str_combined = base64.b64encode(buf_combined.getvalue()).decode('utf-8') + plt.close(fig) + + # Convertir los conceptos clave a listas de tuplas + key_concepts1 = [(concept, float(frequency)) for concept, frequency in analysis_result['key_concepts1']] + key_concepts2 = [(concept, float(frequency)) for concept, frequency in analysis_result['key_concepts2']] + + # Crear el documento para guardar + analysis_document = { + 'username': username, + 'timestamp': datetime.utcnow(), + #'text1': text1, + #'text2': text2, + 'graph1': img_str1, + 'graph2': img_str2, + 'combined_graph': img_str_combined, + 'key_concepts1': key_concepts1, + 'key_concepts2': key_concepts2, + 'analysis_type': 'discourse' + } + + # Insertar el documento en la base de datos + result = analysis_collection.insert_one(analysis_document) + print(f"Análisis discursivo guardado con ID: {result.inserted_id} para el usuario: {username}") + return True + except Exception as e: + print(f"Error al guardar el análisis discursivo para el usuario {username}: {str(e)}") + print(f"Tipo de excepción: {type(e).__name__}") + print(f"Detalles de la excepción: {e.args}") + return False + +############################################--- FIN DE LA SECCIÓN DEL ANÁLISIS DEL DISCURSO ################################################################### + + +################################################-- INICIO DE LA SECCIÓN DEL CHATBOT --- ############################################################### +def store_chat_history(username, messages): + try: + logger.info(f"Attempting to save chat history for user: {username}") + logger.debug(f"Messages to save: {messages}") + + chat_document = { + 'username': username, + 'timestamp': datetime.utcnow(), + 'messages': messages + } + result = chat_collection.insert_one(chat_document) + logger.info(f"Chat history saved with ID: {result.inserted_id} for user: {username}") + logger.debug(f"Chat content: {messages}") + return True + except Exception as e: + logger.error(f"Error saving chat history for user {username}: {str(e)}") + return False + +####################################################################################################### +def export_analysis_and_chat(username, analysis_data, chat_data): + try: + export_data = { + "username": username, + "timestamp": datetime.utcnow(), + "analysis": analysis_data, + "chat": chat_data + } + + # Aquí puedes decidir cómo quieres exportar los datos + # Por ejemplo, podrías guardarlos en una nueva colección en MongoDB + export_collection = mongo_db['exports'] + result = export_collection.insert_one(export_data) + + # También podrías generar un archivo JSON o CSV y guardarlo en Azure Blob Storage + + return True + except Exception as e: + logger.error(f"Error al exportar análisis y chat para {username}: {str(e)}") + return False + +################################################-- FIN DE LA SECCIÓN DEL CHATBOT --- ############################################################### + +####################################################################################################################################################### + +def get_student_data(username): + if analysis_collection is None or chat_collection is None: + logger.error("La conexión a MongoDB no está inicializada") + return None + formatted_data = { + "username": username, + "entries": [], + "entries_count": 0, + "word_count": {}, + "semantic_analyses": [], + "discourse_analyses": [], + "chat_history": [] + } + try: + logger.info(f"Buscando datos de análisis para el usuario: {username}") + cursor = analysis_collection.find({"username": username}) + + for entry in cursor: + formatted_entry = { + "timestamp": entry.get("timestamp", datetime.utcnow()), + "analysis_type": entry.get("analysis_type", "morphosyntax") + } + + if formatted_entry["analysis_type"] == "morphosyntax": + formatted_entry.update({ + "text": entry.get("text", ""), + "word_count": entry.get("word_count", {}), + "arc_diagrams": entry.get("arc_diagrams", []) + }) + for category, count in formatted_entry["word_count"].items(): + formatted_data["word_count"][category] = formatted_data["word_count"].get(category, 0) + count + + elif formatted_entry["analysis_type"] == "semantic": + formatted_entry.update({ + "key_concepts": entry.get("key_concepts", []), + "graph": entry.get("graph", "") + }) + formatted_data["semantic_analyses"].append(formatted_entry) + + elif formatted_entry["analysis_type"] == "discourse": + formatted_entry.update({ + "text1": entry.get("text1", ""), + "text2": entry.get("text2", ""), + "key_concepts1": entry.get("key_concepts1", []), + "key_concepts2": entry.get("key_concepts2", []), + "graph1": entry.get("graph1", ""), + "graph2": entry.get("graph2", ""), + "combined_graph": entry.get("combined_graph", "") + }) + formatted_data["discourse_analyses"].append(formatted_entry) + + formatted_data["entries"].append(formatted_entry) + + formatted_data["entries_count"] = len(formatted_data["entries"]) + formatted_data["entries"].sort(key=lambda x: x["timestamp"], reverse=True) + + for entry in formatted_data["entries"]: + entry["timestamp"] = entry["timestamp"].isoformat() + + except Exception as e: + logger.error(f"Error al obtener datos de análisis del estudiante {username}: {str(e)}") + + try: + logger.info(f"Buscando historial de chat para el usuario: {username}") + chat_cursor = chat_collection.find({"username": username}) + for chat in chat_cursor: + formatted_chat = { + "timestamp": chat["timestamp"].isoformat(), + "messages": chat["messages"] + } + formatted_data["chat_history"].append(formatted_chat) + + formatted_data["chat_history"].sort(key=lambda x: x["timestamp"], reverse=True) + + except Exception as e: + logger.error(f"Error al obtener historial de chat del estudiante {username}: {str(e)}") + logger.info(f"Datos formateados para {username}: {formatted_data}") + return formatted_data diff --git a/src/modules/database/backUp/database_oldFromV2.py b/src/modules/database/backUp/database_oldFromV2.py new file mode 100644 index 0000000000000000000000000000000000000000..7f3f816151bafad692d16a1dbbc4b78bdd7f7ed9 --- /dev/null +++ b/src/modules/database/backUp/database_oldFromV2.py @@ -0,0 +1,473 @@ +# database.py +# database.py de la versión 3 al 26-9-2024 +import streamlit as st +import logging +import os +import pandas as pd +from azure.cosmos import CosmosClient +from azure.cosmos.exceptions import CosmosHttpResponseError +from pymongo import MongoClient +import certifi +from datetime import datetime, timezone +from io import BytesIO +import base64 +import matplotlib.pyplot as plt +from matplotlib.figure import Figure +import bcrypt +print(f"Bcrypt version: {bcrypt.__version__}") +import uuid +import plotly.graph_objects as go # Para manejar el diagrama de Sankey +import numpy as np # Puede ser necesario para algunas operaciones +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +# Variables globales para Cosmos DB SQL API +application_requests_container = None +cosmos_client = None +user_database = None +user_container = None +user_feedback_container = None + +# Variables globales para Cosmos DB MongoDB API +mongo_client = None +mongo_db = None +analysis_collection = None +chat_collection = None # Nueva variable global + + +##############################################################################--- INICIO DE LAS BASES DE DATOS --- ############################### +def initialize_database_connections(): + try: + print("Iniciando conexión a MongoDB") + mongodb_success = initialize_mongodb_connection() + print(f"Conexión a MongoDB: {'exitosa' if mongodb_success else 'fallida'}") + except Exception as e: + print(f"Error al conectar con MongoDB: {str(e)}") + mongodb_success = False + + try: + print("Iniciando conexión a Cosmos DB SQL API") + sql_success = initialize_cosmos_sql_connection() + print(f"Conexión a Cosmos DB SQL API: {'exitosa' if sql_success else 'fallida'}") + except Exception as e: + print(f"Error al conectar con Cosmos DB SQL API: {str(e)}") + sql_success = False + + return { + "mongodb": mongodb_success, + "cosmos_sql": sql_success + } + +#####################################################################################33 +def initialize_cosmos_sql_connection(): + global cosmos_client, user_database, user_container, application_requests_container, user_feedback_container + logger.info("Initializing Cosmos DB SQL API connection") + try: + cosmos_endpoint = os.environ.get("COSMOS_ENDPOINT") + cosmos_key = os.environ.get("COSMOS_KEY") + logger.info(f"Cosmos Endpoint: {cosmos_endpoint}") + logger.info(f"Cosmos Key: {'*' * len(cosmos_key) if cosmos_key else 'Not set'}") + + if not cosmos_endpoint or not cosmos_key: + logger.error("COSMOS_ENDPOINT or COSMOS_KEY environment variables are not set") + raise ValueError("Las variables de entorno COSMOS_ENDPOINT y COSMOS_KEY deben estar configuradas") + + cosmos_client = CosmosClient(cosmos_endpoint, cosmos_key) + user_database = cosmos_client.get_database_client("user_database") + user_container = user_database.get_container_client("users") + application_requests_container = user_database.get_container_client("application_requests") + user_feedback_container = user_database.get_container_client("user_feedback") + + logger.info(f"user_container initialized: {user_container is not None}") + logger.info(f"application_requests_container initialized: {application_requests_container is not None}") + logger.info(f"user_feedback_container initialized: {user_feedback_container is not None}") + + logger.info("Conexión a Cosmos DB SQL API exitosa") + return True + except Exception as e: + logger.error(f"Error al conectar con Cosmos DB SQL API: {str(e)}", exc_info=True) + return False + +############################################################################################3 +def initialize_mongodb_connection(): + global mongo_client, mongo_db, analysis_collection, chat_collection + try: + cosmos_mongodb_connection_string = os.getenv("MONGODB_CONNECTION_STRING") + if not cosmos_mongodb_connection_string: + logger.error("La variable de entorno MONGODB_CONNECTION_STRING no está configurada") + return False + + mongo_client = MongoClient(cosmos_mongodb_connection_string, + tls=True, + tlsCAFile=certifi.where(), + retryWrites=False, + serverSelectionTimeoutMS=5000, + connectTimeoutMS=10000, + socketTimeoutMS=10000) + + mongo_client.admin.command('ping') + + mongo_db = mongo_client['aideatext_db'] + # export = mongo_db['export'] + analysis_collection = mongo_db['text_analysis'] + chat_collection = mongo_db['chat_history'] # Inicializar la nueva colección + + # Verificar la conexión + mongo_client.admin.command('ping') + + logger.info("Conexión a Cosmos DB MongoDB API exitosa") + return True + except Exception as e: + logger.error(f"Error al conectar con Cosmos DB MongoDB API: {str(e)}", exc_info=True) + return False + +##############################################################################--- FIN DEL INICIO DE LAS BASES DE DATOS --- ################################################################################################################################ +########################################################## -- INICIO DE GESTION DE USUARIOS ---########################################################## +def create_user(username, password, role): + global user_container + try: + print(f"Attempting to create user: {username} with role: {role}") + if user_container is None: + print("Error: user_container is None. Attempting to reinitialize connection.") + if not initialize_cosmos_sql_connection(): + raise Exception("Failed to initialize SQL connection") + + hashed_password = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8') + print(f"Password hashed successfully for user: {username}") + user_data = { + 'id': username, + 'password': hashed_password, + 'role': role, + 'timestamp':datetime.now(timezone.utc).isoformat(), + } + user_container.create_item(body=user_data) + print(f"Usuario {role} creado: {username}") # Log para depuración + return True + except Exception as e: + print(f"Detailed error in create_user: {str(e)}") + return False + +####################################################################################################### +def create_admin_user(username, password): + return create_user(username, password, 'Administrador') + +####################################################################################################### +def create_student_user(username, password): + return create_user(username, password, 'Estudiante') + +####################################################################################################### +# Funciones para Cosmos DB SQL API (manejo de usuarios) +def get_user(username): + try: + query = f"SELECT * FROM c WHERE c.id = '{username}'" + items = list(user_container.query_items(query=query, enable_cross_partition_query=True)) + user = items[0] if items else None + if user: + print(f"Usuario encontrado: {username}, Rol: {user.get('role')}") # Log añadido + else: + print(f"Usuario no encontrado: {username}") # Log añadido + return user + except Exception as e: + print(f"Error al obtener usuario {username}: {str(e)}") + return None + +########################################################## -- FIN DE GESTION DE USUARIOS ---########################################################## + +########################################################## -- INICIO GESTION DE ARCHIVOS ---########################################################## + +def manage_file_contents(username, file_name, analysis_type, file_contents=None): + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return None + + item_id = f"{analysis_type}_{file_name}" + + try: + if file_contents is not None: + # Storing or updating file + document = { + 'id': item_id, + 'username': username, + 'file_name': file_name, + 'analysis_type': analysis_type, + 'file_contents': file_contents, + 'timestamp': datetime.now(timezone.utc).isoformat() + } + user_container.upsert_item(body=document, partition_key=username) + logger.info(f"Contenido del archivo guardado/actualizado para el usuario: {username}, tipo de análisis: {analysis_type}") + return True + else: + # Retrieving file + item = user_container.read_item(item=item_id, partition_key=username) + return item['file_contents'] + except CosmosHttpResponseError as e: + if e.status_code == 404: + logger.info(f"No se encontró el archivo para el usuario: {username}, tipo de análisis: {analysis_type}") + return None + else: + logger.error(f"Error de Cosmos DB al manejar el archivo para el usuario {username}: {str(e)}") + return None + except Exception as e: + logger.error(f"Error al manejar el archivo para el usuario {username}: {str(e)}") + return None + + +def get_user_files(username, analysis_type=None): + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return [] + try: + if analysis_type: + query = f"SELECT c.file_name, c.analysis_type, c.timestamp FROM c WHERE c.username = '{username}' AND c.analysis_type = '{analysis_type}'" + else: + query = f"SELECT c.file_name, c.analysis_type, c.timestamp FROM c WHERE c.username = '{username}'" + + items = list(user_container.query_items(query=query, enable_cross_partition_query=True)) + return items + except Exception as e: + logger.error(f"Error al obtener la lista de archivos del usuario {username}: {str(e)}") + return [] + + + +def delete_file(username, file_name, analysis_type): + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return False + + try: + item_id = f"{analysis_type}_{file_name}" + user_container.delete_item(item=item_id, partition_key=username) + logger.info(f"Archivo eliminado para el usuario: {username}, tipo de análisis: {analysis_type}, nombre: {file_name}") + return True + + if success: + # Invalidar caché + cache_key = f"student_data_{username}" + if cache_key in st.session_state: + del st.session_state[cache_key] + + + + except CosmosHttpResponseError as e: + logger.error(f"Cosmos DB error al eliminar el archivo para el usuario {username}: {str(e)}") + return False + + except Exception as e: + logger.error(f"Error al eliminar el archivo para el usuario {username}: {str(e)}") + return False + +########################################################## -- FIN GESTION DE ARCHIVOS ---########################################################## + +########################################################## -- INICIO GESTION DE FORMULARIOS ---########################################################## +def store_application_request(name, email, institution, role, reason): + global application_requests_container + logger.info("Entering store_application_request function") + try: + logger.info("Checking application_requests_container") + if application_requests_container is None: + logger.error("application_requests_container is not initialized") + return False + + logger.info("Creating application request document") + application_request = { + "id": str(uuid.uuid4()), + "name": name, + "email": email, + "institution": institution, + "role": role, + "reason": reason, + "requestDate": datetime.utcnow().isoformat() + } + + logger.info(f"Attempting to store document: {application_request}") + application_requests_container.create_item(body=application_request) + logger.info(f"Application request stored for email: {email}") + return True + except Exception as e: + logger.error(f"Error storing application request: {str(e)}") + return False + +####################################################################################################### +def store_user_feedback(username, name, email, feedback): + global user_feedback_container + logger.info(f"Attempting to store user feedback for user: {username}") + try: + if user_feedback_container is None: + logger.error("user_feedback_container is not initialized") + return False + + feedback_item = { + "id": str(uuid.uuid4()), + "username": username, + "name": name, + "email": email, + "feedback": feedback, + 'timestamp':datetime.now(timezone.utc).isoformat(), + } + + result = user_feedback_container.create_item(body=feedback_item) + logger.info(f"User feedback stored with ID: {result['id']} for user: {username}") + return True + except Exception as e: + logger.error(f"Error storing user feedback for user {username}: {str(e)}") + return False + +########################################################## -- FIN GESTION DE FORMULARIOS ---########################################################## + +########################################################## -- INICIO ALMACENAMIENTO ANÁLISIS MORFOSINTÁCTICO ---########################################################## + +def store_morphosyntax_result(username, text, repeated_words, arc_diagrams, pos_analysis, morphological_analysis, sentence_structure): + if analysis_collection is None: + logger.error("La conexión a MongoDB no está inicializada") + return False + + try: + word_count = {} + for word, color in repeated_words.items(): + category = color # Asumiendo que 'color' es la categoría gramatical + word_count[category] = word_count.get(category, 0) + 1 + + analysis_document = { + 'username': username, + 'timestamp':datetime.now(timezone.utc).isoformat(), + 'text': text, + 'repeated_words': repeated_words, + 'word_count': word_count, + 'arc_diagrams': arc_diagrams, + 'pos_analysis': pos_analysis, + 'morphological_analysis': morphological_analysis, + 'sentence_structure': sentence_structure, + 'analysis_type': 'morphosyntax' + } + + result = analysis_collection.insert_one(analysis_document) + logger.info(f"Análisis guardado con ID: {result.inserted_id} para el usuario: {username}") + return True + except Exception as e: + logger.error(f"Error al guardar el análisis para el usuario {username}: {str(e)}") + return False + + +################################################-- INICIO DE LA SECCIÓN DEL CHATBOT --- ############################################################### +def store_chat_history(username, messages): + try: + logger.info(f"Attempting to save chat history for user: {username}") + logger.debug(f"Messages to save: {messages}") + + chat_document = { + 'username': username, + 'timestamp':datetime.now(timezone.utc).isoformat(), + 'messages': messages + } + result = chat_collection.insert_one(chat_document) + logger.info(f"Chat history saved with ID: {result.inserted_id} for user: {username}") + logger.debug(f"Chat content: {messages}") + return True + except Exception as e: + logger.error(f"Error saving chat history for user {username}: {str(e)}") + return False + +####################################################################################################### +def export_analysis_and_chat(username, analysis_data, chat_data): + try: + export_data = { + "username": username, + 'timestamp':datetime.now(timezone.utc).isoformat(), + "analysis": analysis_data, + "chat": chat_data + } + + # Aquí puedes decidir cómo quieres exportar los datos + # Por ejemplo, podrías guardarlos en una nueva colección en MongoDB + export_collection = mongo_db['exports'] + result = export_collection.insert_one(export_data) + + # También podrías generar un archivo JSON o CSV y guardarlo en Azure Blob Storage + + return True + except Exception as e: + logger.error(f"Error al exportar análisis y chat para {username}: {str(e)}") + return False + +################################################-- FIN DE LA SECCIÓN DEL CHATBOT --- ############################################################### +########--- STUDENT DATA ------- + +def get_student_data(username): + if analysis_collection is None or chat_collection is None: + logger.error("La conexión a MongoDB no está inicializada") + return None + formatted_data = { + "username": username, + "entries": [], + "entries_count": 0, + "word_count": {}, + "semantic_analyses": [], + "discourse_analyses": [], + "chat_history": [] + } + try: + logger.info(f"Buscando datos de análisis para el usuario: {username}") + cursor = analysis_collection.find({"username": username}) + + for entry in cursor: + formatted_entry = { + 'timestamp':datetime.now(timezone.utc).isoformat(), + "analysis_type": entry.get("analysis_type", "morphosyntax") + } + + if formatted_entry["analysis_type"] == "morphosyntax": + formatted_entry.update({ + "text": entry.get("text", ""), + "word_count": entry.get("word_count", {}), + "arc_diagrams": entry.get("arc_diagrams", []) + }) + for category, count in formatted_entry["word_count"].items(): + formatted_data["word_count"][category] = formatted_data["word_count"].get(category, 0) + count + + elif formatted_entry["analysis_type"] == "semantic": + formatted_entry.update({ + "key_concepts": entry.get("key_concepts", []), + "graph": entry.get("graph", "") + }) + formatted_data["semantic_analyses"].append(formatted_entry) + + elif formatted_entry["analysis_type"] == "discourse": + formatted_entry.update({ + "text1": entry.get("text1", ""), + "text2": entry.get("text2", ""), + "key_concepts1": entry.get("key_concepts1", []), + "key_concepts2": entry.get("key_concepts2", []), + "graph1": entry.get("graph1", ""), + "graph2": entry.get("graph2", ""), + "combined_graph": entry.get("combined_graph", "") + }) + formatted_data["discourse_analyses"].append(formatted_entry) + + formatted_data["entries"].append(formatted_entry) + + formatted_data["entries_count"] = len(formatted_data["entries"]) + formatted_data["entries"].sort(key=lambda x: x["timestamp"], reverse=True) + + for entry in formatted_data["entries"]: + entry["timestamp"] = entry["timestamp"].isoformat() + + except Exception as e: + logger.error(f"Error al obtener datos de análisis del estudiante {username}: {str(e)}") + + try: + logger.info(f"Buscando historial de chat para el usuario: {username}") + chat_cursor = chat_collection.find({"username": username}) + for chat in chat_cursor: + formatted_chat = { + "timestamp": chat["timestamp"].isoformat(), + "messages": chat["messages"] + } + formatted_data["chat_history"].append(formatted_chat) + + formatted_data["chat_history"].sort(key=lambda x: x["timestamp"], reverse=True) + + except Exception as e: + logger.error(f"Error al obtener historial de chat del estudiante {username}: {str(e)}") + logger.info(f"Datos formateados para {username}: {formatted_data}") + return formatted_data diff --git a/src/modules/database/backUp/database_v3-2ok.py b/src/modules/database/backUp/database_v3-2ok.py new file mode 100644 index 0000000000000000000000000000000000000000..ee15eb120bfe8092774a2f6a434538f5d3b3433d --- /dev/null +++ b/src/modules/database/backUp/database_v3-2ok.py @@ -0,0 +1,629 @@ +# database.py +import logging +import os +from azure.cosmos import CosmosClient +from azure.cosmos.exceptions import CosmosHttpResponseError +from pymongo import MongoClient +import certifi +from datetime import datetime, timezone +import io +from io import BytesIO +import base64 +import matplotlib.pyplot as plt +from matplotlib.figure import Figure +import bcrypt +print(f"Bcrypt version: {bcrypt.__version__}") +import uuid +import plotly.graph_objects as go # Para manejar el diagrama de Sankey +import numpy as np # Puede ser necesario para algunas operaciones +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +# Variables globales para Cosmos DB SQL API +application_requests_container = None +cosmos_client = None +user_database = None +user_container = None +user_feedback_container = None + +# Variables globales para Cosmos DB MongoDB API +mongo_client = None +mongo_db = None +analysis_collection = None +chat_collection = None # Nueva variable global + + +##############################################################################--- INICIO DE LAS BASES DE DATOS --- ############################### +def initialize_database_connections(): + try: + print("Iniciando conexión a MongoDB") + mongodb_success = initialize_mongodb_connection() + print(f"Conexión a MongoDB: {'exitosa' if mongodb_success else 'fallida'}") + except Exception as e: + print(f"Error al conectar con MongoDB: {str(e)}") + mongodb_success = False + + try: + print("Iniciando conexión a Cosmos DB SQL API") + sql_success = initialize_cosmos_sql_connection() + print(f"Conexión a Cosmos DB SQL API: {'exitosa' if sql_success else 'fallida'}") + except Exception as e: + print(f"Error al conectar con Cosmos DB SQL API: {str(e)}") + sql_success = False + + return { + "mongodb": mongodb_success, + "cosmos_sql": sql_success + } + +#####################################################################################33 +def initialize_cosmos_sql_connection(): + global cosmos_client, user_database, user_container, application_requests_container, user_feedback_container + logger.info("Initializing Cosmos DB SQL API connection") + try: + cosmos_endpoint = os.environ.get("COSMOS_ENDPOINT") + cosmos_key = os.environ.get("COSMOS_KEY") + logger.info(f"Cosmos Endpoint: {cosmos_endpoint}") + logger.info(f"Cosmos Key: {'*' * len(cosmos_key) if cosmos_key else 'Not set'}") + + if not cosmos_endpoint or not cosmos_key: + logger.error("COSMOS_ENDPOINT or COSMOS_KEY environment variables are not set") + raise ValueError("Las variables de entorno COSMOS_ENDPOINT y COSMOS_KEY deben estar configuradas") + + cosmos_client = CosmosClient(cosmos_endpoint, cosmos_key) + user_database = cosmos_client.get_database_client("user_database") + user_container = user_database.get_container_client("users") + application_requests_container = user_database.get_container_client("application_requests") + user_feedback_container = user_database.get_container_client("user_feedback") + + logger.info(f"user_container initialized: {user_container is not None}") + logger.info(f"application_requests_container initialized: {application_requests_container is not None}") + logger.info(f"user_feedback_container initialized: {user_feedback_container is not None}") + + logger.info("Conexión a Cosmos DB SQL API exitosa") + return True + except Exception as e: + logger.error(f"Error al conectar con Cosmos DB SQL API: {str(e)}", exc_info=True) + return False + +############################################################################################3 +def initialize_mongodb_connection(): + global mongo_client, mongo_db, analysis_collection, chat_collection + try: + cosmos_mongodb_connection_string = os.getenv("MONGODB_CONNECTION_STRING") + if not cosmos_mongodb_connection_string: + logger.error("La variable de entorno MONGODB_CONNECTION_STRING no está configurada") + return False + + mongo_client = MongoClient(cosmos_mongodb_connection_string, + tls=True, + tlsCAFile=certifi.where(), + retryWrites=False, + serverSelectionTimeoutMS=5000, + connectTimeoutMS=10000, + socketTimeoutMS=10000) + + mongo_client.admin.command('ping') + + mongo_db = mongo_client['aideatext_db'] + analysis_collection = mongo_db['text_analysis'] + chat_collection = mongo_db['chat_history'] # Inicializar la nueva colección + + # Verificar la conexión + mongo_client.admin.command('ping') + + logger.info("Conexión a Cosmos DB MongoDB API exitosa") + return True + except Exception as e: + logger.error(f"Error al conectar con Cosmos DB MongoDB API: {str(e)}", exc_info=True) + return False + +##############################################################################--- FIN DEL INICIO DE LAS BASES DE DATOS --- ################################################################################################################################ +########################################################## -- INICIO DE GESTION DE USUARIOS ---########################################################## +def create_user(username, password, role): + global user_container + try: + print(f"Attempting to create user: {username} with role: {role}") + if user_container is None: + print("Error: user_container is None. Attempting to reinitialize connection.") + if not initialize_cosmos_sql_connection(): + raise Exception("Failed to initialize SQL connection") + + hashed_password = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8') + print(f"Password hashed successfully for user: {username}") + user_data = { + 'id': username, + 'password': hashed_password, + 'role': role, + 'created_at': datetime.utcnow().isoformat() + } + user_container.create_item(body=user_data) + print(f"Usuario {role} creado: {username}") # Log para depuración + return True + except Exception as e: + print(f"Detailed error in create_user: {str(e)}") + return False + +####################################################################################################### +def create_admin_user(username, password): + return create_user(username, password, 'Administrador') + +####################################################################################################### +def create_student_user(username, password): + return create_user(username, password, 'Estudiante') + +####################################################################################################### +# Funciones para Cosmos DB SQL API (manejo de usuarios) +def get_user(username): + try: + query = f"SELECT * FROM c WHERE c.id = '{username}'" + items = list(user_container.query_items(query=query, enable_cross_partition_query=True)) + user = items[0] if items else None + if user: + print(f"Usuario encontrado: {username}, Rol: {user.get('role')}") # Log añadido + else: + print(f"Usuario no encontrado: {username}") # Log añadido + return user + except Exception as e: + print(f"Error al obtener usuario {username}: {str(e)}") + return None + +########################################################## -- FIN DE GESTION DE USUARIOS ---########################################################## + +########################################################## -- INICIO GESTION DE ARCHIVOS ---########################################################## + +def store_file_contents(username, file_name, file_contents, analysis_type): + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return False + try: + document = { + 'id': f"{username}_{analysis_type}_{file_name}", + 'username': username, + 'file_name': file_name, + 'analysis_type': analysis_type, + 'file_contents': file_contents, + 'timestamp':datetime.now(timezone.utc).isoformat(), + } + user_container.upsert_item(body=document) + logger.info(f"Contenido del archivo guardado para el usuario: {username}, tipo de análisis: {analysis_type}") + return True + except Exception as e: + logger.error(f"Error al guardar el contenido del archivo para el usuario {username}: {str(e)}") + return False + +def retrieve_file_contents(username, file_name, analysis_type): + print(f"Attempting to retrieve file: {file_name} for user: {username}") + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return None + try: + query = f"SELECT * FROM c WHERE c.id = '{username}_{analysis_type}_{file_name}'" + items = list(user_container.query_items(query=query, enable_cross_partition_query=True)) + if items: + return items[0]['file_contents'] + else: + logger.info(f"No se encontró contenido de archivo para el usuario: {username}, tipo de análisis: {analysis_type}") + return None + except Exception as e: + logger.error(f"Error al recuperar el contenido del archivo para el usuario {username}: {str(e)}") + return None + +def get_user_files(username, analysis_type=None): + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return [] + try: + if analysis_type: + query = f"SELECT c.file_name, c.analysis_type, c.timestamp FROM c WHERE c.username = '{username}' AND c.analysis_type = '{analysis_type}'" + else: + query = f"SELECT c.file_name, c.analysis_type, c.timestamp FROM c WHERE c.username = '{username}'" + + items = list(user_container.query_items(query=query, enable_cross_partition_query=True)) + return items + except Exception as e: + logger.error(f"Error al obtener la lista de archivos del usuario {username}: {str(e)}") + return [] + +def delete_file(username, file_name, analysis_type): + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return False + try: + user_container.delete_item(item=f"{username}_{analysis_type}_{file_name}", partition_key=username) + logger.info(f"Archivo eliminado para el usuario: {username}, tipo de análisis: {analysis_type}") + return True + except Exception as e: + logger.error(f"Error al eliminar el archivo para el usuario {username}: {str(e)}") + return False + +########################################################## -- FIN GESTION DE ARCHIVOS ---########################################################## + +########################################################## -- INICIO GESTION DE FORMULARIOS ---########################################################## +def store_application_request(name, email, institution, role, reason): + global application_requests_container + logger.info("Entering store_application_request function") + try: + logger.info("Checking application_requests_container") + if application_requests_container is None: + logger.error("application_requests_container is not initialized") + return False + + logger.info("Creating application request document") + application_request = { + "id": str(uuid.uuid4()), + "name": name, + "email": email, + "institution": institution, + "role": role, + "reason": reason, + "requestDate": datetime.utcnow().isoformat() + } + + logger.info(f"Attempting to store document: {application_request}") + application_requests_container.create_item(body=application_request) + logger.info(f"Application request stored for email: {email}") + return True + except Exception as e: + logger.error(f"Error storing application request: {str(e)}") + return False + +####################################################################################################### +def store_user_feedback(username, name, email, feedback): + global user_feedback_container + logger.info(f"Attempting to store user feedback for user: {username}") + try: + if user_feedback_container is None: + logger.error("user_feedback_container is not initialized") + return False + + feedback_item = { + "id": str(uuid.uuid4()), + "username": username, + "name": name, + "email": email, + "feedback": feedback, + "timestamp":datetime.now(timezone.utc).isoformat(), + } + + result = user_feedback_container.create_item(body=feedback_item) + logger.info(f"User feedback stored with ID: {result['id']} for user: {username}") + return True + except Exception as e: + logger.error(f"Error storing user feedback for user {username}: {str(e)}") + return False + + +########################################################## -- FIN GESTION DE FORMULARIOS ---########################################################## + +########################################################## -- INICIO ALMACENAMIENTO ANÁLISIS MORFOSINTÁCTICO ---########################################################## + +def store_morphosyntax_result(username, text, repeated_words, arc_diagrams, pos_analysis, morphological_analysis, sentence_structure): + if analysis_collection is None: + logger.error("La conexión a MongoDB no está inicializada") + return False + + try: + word_count = {} + for word, color in repeated_words.items(): + category = color # Asumiendo que 'color' es la categoría gramatical + word_count[category] = word_count.get(category, 0) + 1 + + analysis_document = { + 'username': username, + 'timestamp':datetime.now(timezone.utc).isoformat(), + 'text': text, + 'word_count': word_count, + 'arc_diagrams': arc_diagrams, + 'pos_analysis': pos_analysis, + 'morphological_analysis': morphological_analysis, + 'sentence_structure': sentence_structure + } + + result = analysis_collection.insert_one(analysis_document) + logger.info(f"Análisis guardado con ID: {result.inserted_id} para el usuario: {username}") + return True + except Exception as e: + logger.error(f"Error al guardar el análisis para el usuario {username}: {str(e)}") + return False + +########################################################## -- FIN ALMACENAMIENTO ANÁLISIS MORFOSINTÁCTICO ---########################################################## + + +##########################################--- INICIO SECCIÓN DEL ANÁLISIS SEMÁNTICO ---############################################### + +def store_file_semantic_contents(username, file_name, file_contents): + if user_container is None: + logger.error("La conexión a Cosmos DB SQL API no está inicializada") + return False + try: + document = { + 'id': f"{username}_semantic_{file_name}", + 'username': username, + 'file_name': file_name, + 'file_contents': file_contents, + 'analysis_type': 'semantic', + 'timestamp':datetime.now(timezone.utc).isoformat(), + } + user_container.upsert_item(body=document) + logger.info(f"Contenido del archivo semántico guardado para el usuario: {username}") + return True + except Exception as e: + logger.error(f"Error al guardar el contenido del archivo semántico para el usuario {username}: {str(e)}") + return False + +def store_semantic_result(username, text, analysis_result): + if analysis_collection is None: + print("La conexión a MongoDB no está inicializada") + return False + try: + # Convertir los conceptos clave a una lista de tuplas + key_concepts = [(concept, float(frequency)) for concept, frequency in analysis_result['key_concepts']] + + # Convertir los gráficos a imágenes base64 + graphs = {} + for graph_name in ['relations_graph', 'entity_graph', 'topic_graph']: + if graph_name in analysis_result: + buf = BytesIO() + analysis_result[graph_name].savefig(buf, format='png') + buf.seek(0) + graphs[graph_name] = base64.b64encode(buf.getvalue()).decode('utf-8') + + analysis_document = { + 'username': username, + 'timestamp':datetime.now(timezone.utc).isoformat(), + 'text': text, + 'key_concepts': key_concepts, + 'graphs': graphs, + 'summary': analysis_result.get('summary', ''), + 'entities': analysis_result.get('entities', {}), + 'sentiment': analysis_result.get('sentiment', ''), + 'topics': analysis_result.get('topics', []), + 'analysis_type': 'semantic' + } + + result = analysis_collection.insert_one(analysis_document) + print(f"Análisis semántico guardado con ID: {result.inserted_id} para el usuario: {username}") + return True + except Exception as e: + print(f"Error al guardar el análisis semántico para el usuario {username}: {str(e)}") + return False + +##########################################--- FIN DE LA SECCIÓN DEL ANÁLISIS SEMÁNTICO ---############################################### + +############################################--- INICIO DE LA SECCIÓN DEL ANÁLISIS DEL DISCURSO ################################################################### + +def store_discourse_analysis_result(username, text1, text2, analysis_result): + if analysis_collection is None: + print("La conexión a MongoDB no está inicializada") + return False + + try: + # Convertir los grafos individuales a imágenes base64 + buf1 = BytesIO() + analysis_result['graph1'].savefig(buf1, format='png') + buf1.seek(0) + img_str1 = base64.b64encode(buf1.getvalue()).decode('utf-8') + + buf2 = BytesIO() + analysis_result['graph2'].savefig(buf2, format='png') + buf2.seek(0) + img_str2 = base64.b64encode(buf2.getvalue()).decode('utf-8') + + # Crear una imagen combinada + fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10)) + ax1.imshow(plt.imread(BytesIO(base64.b64decode(img_str1)))) + ax1.axis('off') + ax1.set_title("Documento 1: Relaciones Conceptuales") + ax2.imshow(plt.imread(BytesIO(base64.b64decode(img_str2)))) + ax2.axis('off') + ax2.set_title("Documento 2: Relaciones Conceptuales") + + buf_combined = BytesIO() + fig.savefig(buf_combined, format='png') + buf_combined.seek(0) + img_str_combined = base64.b64encode(buf_combined.getvalue()).decode('utf-8') + plt.close(fig) + + # Convertir los conceptos clave a listas de tuplas + key_concepts1 = [(concept, float(frequency)) for concept, frequency in analysis_result['key_concepts1']] + key_concepts2 = [(concept, float(frequency)) for concept, frequency in analysis_result['key_concepts2']] + + # Crear el documento para guardar + analysis_document = { + 'username': username, + 'timestamp':datetime.now(timezone.utc).isoformat(), + #'text1': text1, + #'text2': text2, + 'graph1': img_str1, + 'graph2': img_str2, + 'combined_graph': img_str_combined, + 'key_concepts1': key_concepts1, + 'key_concepts2': key_concepts2, + 'analysis_type': 'discourse' + } + + # Insertar el documento en la base de datos + result = analysis_collection.insert_one(analysis_document) + print(f"Análisis discursivo guardado con ID: {result.inserted_id} para el usuario: {username}") + return True + except Exception as e: + print(f"Error al guardar el análisis discursivo para el usuario {username}: {str(e)}") + print(f"Tipo de excepción: {type(e).__name__}") + print(f"Detalles de la excepción: {e.args}") + return False + +############################################--- FIN DE LA SECCIÓN DEL ANÁLISIS DEL DISCURSO ################################################################### + + +################################################-- INICIO DE LA SECCIÓN DEL CHATBOT --- ############################################################### +def store_chat_history(username, messages): + try: + logger.info(f"Attempting to save chat history for user: {username}") + logger.debug(f"Messages to save: {messages}") + + chat_document = { + 'username': username, + 'timestamp':datetime.now(timezone.utc).isoformat(), + 'messages': messages + } + result = chat_collection.insert_one(chat_document) + logger.info(f"Chat history saved with ID: {result.inserted_id} for user: {username}") + logger.debug(f"Chat content: {messages}") + return True + except Exception as e: + logger.error(f"Error saving chat history for user {username}: {str(e)}") + return False + +####################################################################################################### +def export_analysis_and_chat(username, analysis_data, chat_data): + try: + export_data = { + "username": username, + 'timestamp':datetime.now(timezone.utc).isoformat(), + "analysis": analysis_data, + "chat": chat_data + } + + # Aquí puedes decidir cómo quieres exportar los datos + # Por ejemplo, podrías guardarlos en una nueva colección en MongoDB + export_collection = mongo_db['exports'] + result = export_collection.insert_one(export_data) + + # También podrías generar un archivo JSON o CSV y guardarlo en Azure Blob Storage + + return True + except Exception as e: + logger.error(f"Error al exportar análisis y chat para {username}: {str(e)}") + return False + +################################################-- FIN DE LA SECCIÓN DEL CHATBOT --- ############################################################### + +####################################################################################################################################################### + +def get_student_data(username): + if analysis_collection is None or chat_collection is None: + logger.error("La conexión a MongoDB no está inicializada") + return None + formatted_data = { + "username": username, + "entries": [], + "entries_count": 0, + "word_count": {}, + "semantic_analyses": [], + "discourse_analyses": [], + "chat_history": [] + } + try: + logger.info(f"Buscando datos de análisis para el usuario: {username}") + cursor = analysis_collection.find({"username": username}) + + for entry in cursor: + formatted_entry = { + "timestamp": entry.get("timestamp", datetime.now(timezone.utc).isoformat()), + "analysis_type": entry.get("analysis_type", "morphosyntax") + } + + if formatted_entry["analysis_type"] == "morphosyntax": + formatted_entry.update({ + "text": entry.get("text", ""), + "word_count": entry.get("word_count", {}), + "arc_diagrams": entry.get("arc_diagrams", []) + }) + for category, count in formatted_entry["word_count"].items(): + formatted_data["word_count"][category] = formatted_data["word_count"].get(category, 0) + count + + elif formatted_entry["analysis_type"] == "semantic": + formatted_entry.update({ + "key_concepts": entry.get("key_concepts", []), + "graph": entry.get("graph", "") + }) + formatted_data["semantic_analyses"].append(formatted_entry) + + elif formatted_entry["analysis_type"] == "discourse": + formatted_entry.update({ + "text1": entry.get("text1", ""), + "text2": entry.get("text2", ""), + "key_concepts1": entry.get("key_concepts1", []), + "key_concepts2": entry.get("key_concepts2", []), + "graph1": entry.get("graph1", ""), + "graph2": entry.get("graph2", ""), + "combined_graph": entry.get("combined_graph", "") + }) + formatted_data["discourse_analyses"].append(formatted_entry) + + formatted_data["entries"].append(formatted_entry) + + formatted_data["entries_count"] = len(formatted_data["entries"]) + formatted_data["entries"].sort(key=lambda x: x["timestamp"], reverse=True) + + for entry in formatted_data["entries"]: + entry["timestamp"] = entry["timestamp"].isoformat() + + except Exception as e: + logger.error(f"Error al obtener datos de análisis del estudiante {username}: {str(e)}") + + try: + logger.info(f"Buscando historial de chat para el usuario: {username}") + chat_cursor = chat_collection.find({"username": username}) + for chat in chat_cursor: + formatted_chat = { + "timestamp": chat["timestamp"].isoformat(), + "messages": chat["messages"] + } + formatted_data["chat_history"].append(formatted_chat) + + formatted_data["chat_history"].sort(key=lambda x: x["timestamp"], reverse=True) + + except Exception as e: + logger.error(f"Error al obtener historial de chat del estudiante {username}: {str(e)}") + logger.info(f"Datos formateados para {username}: {formatted_data}") + return formatted_data + +################################################################ +def get_user_analysis_summary(username): + if analysis_collection is None: + logger.error("La conexión a MongoDB no está inicializada") + return [] + try: + summary = analysis_collection.aggregate([ + {"$match": {"username": username}}, + {"$group": { + "_id": "$analysis_type", + "count": {"$sum": 1}, + "last_analysis": {"$max": "$timestamp"} + }} + ]) + return list(summary) + except Exception as e: + logger.error(f"Error al obtener el resumen de análisis para el usuario {username}: {str(e)}") + return [] + +####################################################################### +def get_user_recent_chats(username, limit=5): + if chat_collection is None: + logger.error("La conexión a MongoDB no está inicializada") + return [] + try: + recent_chats = chat_collection.find( + {"username": username}, + {"messages": {"$slice": -5}} + ).sort("timestamp", -1).limit(limit) + return list(recent_chats) + except Exception as e: + logger.error(f"Error al obtener chats recientes para el usuario {username}: {str(e)}") + return [] + +################################################# +def get_user_analysis_details(username, analysis_type, skip=0, limit=10): + if analysis_collection is None: + logger.error("La conexión a MongoDB no está inicializada") + return [] + try: + details = analysis_collection.find( + {"username": username, "analysis_type": analysis_type} + ).sort("timestamp", -1).skip(skip).limit(limit) + return list(details) + except Exception as e: + logger.error(f"Error al obtener detalles de análisis para el usuario {username}: {str(e)}") + return [] diff --git a/src/modules/database/chat_mongo_db.py b/src/modules/database/chat_mongo_db.py new file mode 100644 index 0000000000000000000000000000000000000000..7d1aacc6fe266cdc069ea5ae7506526f43b99f30 --- /dev/null +++ b/src/modules/database/chat_mongo_db.py @@ -0,0 +1,117 @@ +# /modules/database/chat_mongo_db.py +from .mongo_db import insert_document, find_documents, get_collection +from datetime import datetime, timezone +import logging + +logger = logging.getLogger(__name__) +COLLECTION_NAME = 'chat_history-v3' + +def get_chat_history(username: str, analysis_type: str = 'sidebar', limit: int = None) -> list: + """ + Recupera el historial del chat. + + Args: + username: Nombre del usuario + analysis_type: Tipo de análisis ('sidebar' por defecto) + limit: Límite de conversaciones a recuperar + + Returns: + list: Lista de conversaciones con formato + """ + try: + query = { + "username": username, + "analysis_type": analysis_type + } + + collection = get_collection(COLLECTION_NAME) + if collection is None: + logger.error("No se pudo obtener la colección de chat") + return [] + + # Obtener y formatear conversaciones + cursor = collection.find(query).sort("timestamp", -1) + if limit: + cursor = cursor.limit(limit) + + conversations = [] + for chat in cursor: + try: + formatted_chat = { + 'timestamp': chat['timestamp'], + 'messages': [ + { + 'role': msg.get('role', 'unknown'), + 'content': msg.get('content', '') + } + for msg in chat.get('messages', []) + ] + } + conversations.append(formatted_chat) + except Exception as e: + logger.error(f"Error formateando chat: {str(e)}") + continue + + return conversations + + except Exception as e: + logger.error(f"Error al recuperar historial de chat: {str(e)}") + return [] + +def store_chat_history(username: str, messages: list, analysis_type: str = 'sidebar') -> bool: + """ + Guarda el historial del chat. + + Args: + username: Nombre del usuario + messages: Lista de mensajes a guardar + analysis_type: Tipo de análisis + + Returns: + bool: True si se guardó correctamente + """ + try: + collection = get_collection(COLLECTION_NAME) + if collection is None: + logger.error("No se pudo obtener la colección de chat") + return False + + # Formatear mensajes antes de guardar + formatted_messages = [ + { + 'role': msg.get('role', 'unknown'), + 'content': msg.get('content', ''), + 'timestamp': datetime.now(timezone.utc).isoformat() + } + for msg in messages + ] + + chat_document = { + 'username': username, + 'timestamp': datetime.now(timezone.utc).isoformat(), + 'messages': formatted_messages, + 'analysis_type': analysis_type, + 'metadata': metadata or {} # Nuevo campo 18-5-2025 + } + + result = collection.insert_one(chat_document) + if result.inserted_id: + logger.info(f"Historial de chat guardado con ID: {result.inserted_id} para el usuario: {username}") + return True + + logger.error("No se pudo insertar el documento") + return False + + except Exception as e: + logger.error(f"Error al guardar historial de chat: {str(e)}") + return False + + + #def get_chat_history(username, analysis_type=None, limit=10): +# query = {"username": username} +# if analysis_type: +# query["analysis_type"] = analysis_type + +# return find_documents(COLLECTION_NAME, query, sort=[("timestamp", -1)], limit=limit) + +# Agregar funciones para actualizar y eliminar chat si es necesario \ No newline at end of file diff --git a/src/modules/database/claude_recommendations_mongo_db.py b/src/modules/database/claude_recommendations_mongo_db.py new file mode 100644 index 0000000000000000000000000000000000000000..0ecbe5a559c793fdb1a8b17104beaccaa933fd83 --- /dev/null +++ b/src/modules/database/claude_recommendations_mongo_db.py @@ -0,0 +1,137 @@ +# modules/database/claude_recommendations_mongo_db.py +from datetime import datetime, timezone, timedelta +import logging +from .mongo_db import get_collection + +logger = logging.getLogger(__name__) +COLLECTION_NAME = 'student_claude_recommendations' + +def store_claude_recommendation(username, text, metrics, text_type, recommendations): + """ + Guarda las recomendaciones generadas por Claude AI. + + Args: + username: Nombre del usuario + text: Texto analizado + metrics: Métricas del análisis + text_type: Tipo de texto (academic_article, university_work, general_communication) + recommendations: Recomendaciones generadas por Claude + + Returns: + bool: True si se guardó correctamente, False en caso contrario + """ + try: + # Verificar parámetros + if not all([username, text, recommendations]): + logger.error("Faltan parámetros requeridos para guardar recomendaciones de Claude") + return False + + collection = get_collection(COLLECTION_NAME) + if collection is None: + logger.error("No se pudo obtener la colección de recomendaciones de Claude") + return False + + # Crear documento + document = { + 'username': username, + 'timestamp': datetime.now(timezone.utc).isoformat(), + 'text': text, + 'metrics': metrics or {}, + 'text_type': text_type, + 'recommendations': recommendations, + 'analysis_type': 'claude_recommendation' + } + + # Insertar documento + result = collection.insert_one(document) + if result.inserted_id: + logger.info(f""" + Recomendaciones de Claude guardadas: + - Usuario: {username} + - ID: {result.inserted_id} + - Tipo de texto: {text_type} + - Longitud del texto: {len(text)} + """) + + # Verificar almacenamiento + storage_verified = verify_recommendation_storage(username) + if not storage_verified: + logger.warning("Verificación de almacenamiento de recomendaciones falló") + + return True + + logger.error("No se pudo insertar el documento de recomendaciones") + return False + + except Exception as e: + logger.error(f"Error guardando recomendaciones de Claude: {str(e)}") + return False + +def verify_recommendation_storage(username): + """ + Verifica que las recomendaciones se están guardando correctamente. + + Args: + username: Nombre del usuario + + Returns: + bool: True si la verificación es exitosa, False en caso contrario + """ + try: + collection = get_collection(COLLECTION_NAME) + if collection is None: + logger.error("No se pudo obtener la colección para verificación de recomendaciones") + return False + + # Buscar documentos recientes del usuario + timestamp_threshold = (datetime.now(timezone.utc) - timedelta(minutes=5)).isoformat() + recent_docs = collection.find({ + 'username': username, + 'timestamp': {'$gte': timestamp_threshold} + }).sort('timestamp', -1).limit(1) + + docs = list(recent_docs) + if docs: + logger.info(f""" + Último documento de recomendaciones guardado: + - ID: {docs[0]['_id']} + - Timestamp: {docs[0]['timestamp']} + - Tipo de texto: {docs[0].get('text_type', 'N/A')} + """) + return True + + logger.warning(f"No se encontraron documentos recientes de recomendaciones para {username}") + return False + + except Exception as e: + logger.error(f"Error verificando almacenamiento de recomendaciones: {str(e)}") + return False + +def get_claude_recommendations(username, limit=10): + """ + Obtiene las recomendaciones más recientes de Claude para un usuario. + + Args: + username: Nombre del usuario + limit: Número máximo de recomendaciones a recuperar + + Returns: + list: Lista de recomendaciones + """ + try: + collection = get_collection(COLLECTION_NAME) + if collection is None: + logger.error("No se pudo obtener la colección de recomendaciones") + return [] + + results = collection.find( + {'username': username} + ).sort('timestamp', -1).limit(limit) + + recommendations = list(results) + logger.info(f"Recuperadas {len(recommendations)} recomendaciones de Claude para {username}") + return recommendations + + except Exception as e: + logger.error(f"Error obteniendo recomendaciones de Claude: {str(e)}") + return [] \ No newline at end of file diff --git a/src/modules/database/current_situation_mongo_db.py b/src/modules/database/current_situation_mongo_db.py new file mode 100644 index 0000000000000000000000000000000000000000..6fa7159e69bfec424add82c0f553acec4fa26a94 --- /dev/null +++ b/src/modules/database/current_situation_mongo_db.py @@ -0,0 +1,137 @@ +# modules/database/current_situation_mongo_db.py +from datetime import datetime, timezone, timedelta +import logging +from .mongo_db import get_collection + +logger = logging.getLogger(__name__) +COLLECTION_NAME = 'student_current_situation' + +# En modules/database/current_situation_mongo_db.py + +def store_current_situation_result(username, text, metrics, feedback): + """ + Guarda los resultados del análisis de situación actual. + """ + try: + # Verificar parámetros + if not all([username, text, metrics]): + logger.error("Faltan parámetros requeridos") + return False + + collection = get_collection(COLLECTION_NAME) + if collection is None: + logger.error("No se pudo obtener la colección") + return False + + # Crear documento + document = { + 'username': username, + 'timestamp': datetime.now(timezone.utc).isoformat(), + 'text': text, + 'metrics': metrics, + 'feedback': feedback or {}, + 'analysis_type': 'current_situation' + } + + # Insertar documento y verificar + result = collection.insert_one(document) + if result.inserted_id: + logger.info(f""" + Análisis de situación actual guardado: + - Usuario: {username} + - ID: {result.inserted_id} + - Longitud texto: {len(text)} + """) + + # Verificar almacenamiento + storage_verified = verify_storage(username) + if not storage_verified: + logger.warning("Verificación de almacenamiento falló") + + return True + + logger.error("No se pudo insertar el documento") + return False + + except Exception as e: + logger.error(f"Error guardando análisis de situación actual: {str(e)}") + return False + +def verify_storage(username): + """ + Verifica que los datos se están guardando correctamente. + """ + try: + collection = get_collection(COLLECTION_NAME) + if collection is None: + logger.error("No se pudo obtener la colección para verificación") + return False + + # Buscar documentos recientes del usuario + timestamp_threshold = (datetime.now(timezone.utc) - timedelta(minutes=5)).isoformat() + + recent_docs = collection.find({ + 'username': username, + 'timestamp': {'$gte': timestamp_threshold} + }).sort('timestamp', -1).limit(1) + + docs = list(recent_docs) + if docs: + logger.info(f""" + Último documento guardado: + - ID: {docs[0]['_id']} + - Timestamp: {docs[0]['timestamp']} + - Métricas guardadas: {bool(docs[0].get('metrics'))} + """) + return True + + logger.warning(f"No se encontraron documentos recientes para {username}") + return False + + except Exception as e: + logger.error(f"Error verificando almacenamiento: {str(e)}") + return False + +def get_current_situation_analysis(username, limit=5): + """ + Obtiene los análisis de situación actual de un usuario. + """ + try: + collection = get_collection(COLLECTION_NAME) + if collection is None: + logger.error("No se pudo obtener la colección") + return [] + + # Buscar documentos + query = {'username': username, 'analysis_type': 'current_situation'} + cursor = collection.find(query).sort('timestamp', -1) + + # Aplicar límite si se especifica + if limit: + cursor = cursor.limit(limit) + + # Convertir cursor a lista + return list(cursor) + + except Exception as e: + logger.error(f"Error obteniendo análisis de situación actual: {str(e)}") + return [] + +def get_recent_situation_analysis(username, limit=5): + """ + Obtiene los análisis más recientes de un usuario. + """ + try: + collection = get_collection(COLLECTION_NAME) + if collection is None: + return [] + + results = collection.find( + {'username': username} + ).sort('timestamp', -1).limit(limit) + + return list(results) + + except Exception as e: + logger.error(f"Error obteniendo análisis recientes: {str(e)}") + return [] \ No newline at end of file diff --git a/src/modules/database/database_init.py b/src/modules/database/database_init.py new file mode 100644 index 0000000000000000000000000000000000000000..7eb7f33a1639ec60d6d5ec592ae5809e91ec9c3e --- /dev/null +++ b/src/modules/database/database_init.py @@ -0,0 +1,188 @@ +# 1. modules/database/database_init.py + +import os +import logging +from azure.cosmos import CosmosClient +from pymongo import MongoClient +import certifi + +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +# Variables globales para Cosmos DB SQL API +cosmos_client = None +user_database = None +user_container = None +application_requests_container = None +user_feedback_container = None +user_sessions_container = None + +# Variables globales para Cosmos DB MongoDB API +mongo_client = None +mongo_db = None + +################################################################### +def verify_container_partition_key(container, expected_path): + """Verifica la configuración de partition key de un contenedor""" + try: + container_props = container.read() + partition_key_paths = container_props['partitionKey']['paths'] + logger.info(f"Container: {container.id}, Partition Key Paths: {partition_key_paths}") + return expected_path in partition_key_paths + except Exception as e: + logger.error(f"Error verificando partition key en {container.id}: {str(e)}") + return False + +################################################################### +def get_container(container_name): + """Obtiene un contenedor específico""" + logger.info(f"Solicitando contenedor: {container_name}") + + if not initialize_cosmos_sql_connection(): + logger.error("No se pudo inicializar la conexión") + return None + + # Verificar estado de los contenedores + containers_status = { + "users": user_container is not None, + "users_sessions": user_sessions_container is not None, + "application_requests": application_requests_container is not None, + "user_feedback": user_feedback_container is not None # Añadido + } + + logger.info(f"Estado actual de los contenedores: {containers_status}") + + # Mapear nombres a contenedores + containers = { + "users": user_container, + "users_sessions": user_sessions_container, + "application_requests": application_requests_container, + "user_feedback": user_feedback_container # Añadido + } + + container = containers.get(container_name) + + if container is None: + logger.error(f"Contenedor '{container_name}' no encontrado o no inicializado") + logger.error(f"Contenedores disponibles: {[k for k, v in containers_status.items() if v]}") + return None + + logger.info(f"Contenedor '{container_name}' obtenido exitosamente") + return container +################################################################### + +def initialize_cosmos_sql_connection(): + """Inicializa la conexión a Cosmos DB SQL API""" + global cosmos_client, user_database, user_container, user_sessions_container, application_requests_container, user_feedback_container # Añadida aquí user_feedback_container + + try: + # Verificar conexión existente + if all([ + cosmos_client, + user_database, + user_container, + user_sessions_container, + application_requests_container, + user_feedback_container + ]): + logger.debug("Todas las conexiones ya están inicializadas") + return True + + # Obtener credenciales + cosmos_endpoint = os.environ.get("COSMOS_ENDPOINT") + cosmos_key = os.environ.get("COSMOS_KEY") + + if not cosmos_endpoint or not cosmos_key: + raise ValueError("COSMOS_ENDPOINT y COSMOS_KEY deben estar configurados") + + # Inicializar cliente y base de datos + cosmos_client = CosmosClient(cosmos_endpoint, cosmos_key) + user_database = cosmos_client.get_database_client("user_database") + + # Inicializar contenedores + try: + user_container = user_database.get_container_client("users") + logger.info("Contenedor 'users' inicializado correctamente") + except Exception as e: + logger.error(f"Error inicializando contenedor 'users': {str(e)}") + user_container = None + + try: + user_sessions_container = user_database.get_container_client("users_sessions") + logger.info("Contenedor 'users_sessions' inicializado correctamente") + except Exception as e: + logger.error(f"Error inicializando contenedor 'users_sessions': {str(e)}") + user_sessions_container = None + + try: + application_requests_container = user_database.get_container_client("application_requests") + logger.info("Contenedor 'application_requests' inicializado correctamente") + except Exception as e: + logger.error(f"Error inicializando contenedor 'application_requests': {str(e)}") + application_requests_container = None + + try: + user_feedback_container = user_database.get_container_client("user_feedback") + logger.info("Contenedor 'user_feedback' inicializado correctamente") + except Exception as e: + logger.error(f"Error inicializando contenedor 'user_feedback': {str(e)}") + user_feedback_container = None + + # Verificar el estado de los contenedores + containers_status = { + 'users': user_container is not None, + 'users_sessions': user_sessions_container is not None, + 'application_requests': application_requests_container is not None, + 'user_feedback': user_feedback_container is not None + } + + logger.info(f"Estado de los contenedores: {containers_status}") + + if all(containers_status.values()): + logger.info("Todos los contenedores inicializados correctamente") + return True + else: + logger.error("No se pudieron inicializar todos los contenedores") + return False + + except Exception as e: + logger.error(f"Error al conectar con Cosmos DB SQL API: {str(e)}") + return False + + +################################################################### +def initialize_mongodb_connection(): + """Inicializa la conexión a MongoDB""" + global mongo_client, mongo_db + try: + connection_string = os.getenv("MONGODB_CONNECTION_STRING") + if not connection_string: + raise ValueError("MONGODB_CONNECTION_STRING debe estar configurado") + + mongo_client = MongoClient( + connection_string, + tls=True, + tlsCAFile=certifi.where(), + retryWrites=False, + serverSelectionTimeoutMS=5000, + connectTimeoutMS=10000, + socketTimeoutMS=10000 + ) + + mongo_db = mongo_client['aideatext_db'] + return True + except Exception as e: + logger.error(f"Error conectando a MongoDB: {str(e)}") + return False + +################################################################### +def initialize_database_connections(): + """Inicializa todas las conexiones""" + return initialize_cosmos_sql_connection() and initialize_mongodb_connection() + +################################################################### +def get_mongodb(): + """Obtiene la conexión MongoDB""" + if mongo_db is None: + initialize_mongodb_connection() + return mongo_db \ No newline at end of file diff --git a/src/modules/database/discourse_mongo_db.py b/src/modules/database/discourse_mongo_db.py new file mode 100644 index 0000000000000000000000000000000000000000..863c006414819621c1ce220d5d7db501105b3c05 --- /dev/null +++ b/src/modules/database/discourse_mongo_db.py @@ -0,0 +1,152 @@ +# modules/database/discourse_mongo_db.py +import base64 +import logging +from datetime import datetime, timezone +from ..database.mongo_db import get_collection, insert_document, find_documents + +logger = logging.getLogger(__name__) + +COLLECTION_NAME = 'student_discourse_analysis' + +######################################################################## + +def store_student_discourse_result(username, text1, text2, analysis_result): + """ + Guarda el resultado del análisis de discurso en MongoDB. + """ + try: + # Verificar que el resultado sea válido + if not analysis_result.get('success', False): + logger.error("No se puede guardar un análisis fallido") + return False + + logger.info(f"Almacenando análisis de discurso para {username}") + + # Preparar el documento para MongoDB + document = { + 'username': username, + 'timestamp': datetime.now(timezone.utc).isoformat(), + 'text1': text1, + 'text2': text2, + 'key_concepts1': analysis_result.get('key_concepts1', []), + 'key_concepts2': analysis_result.get('key_concepts2', []) + } + + # Codificar gráficos a base64 para almacenamiento + for graph_key in ['graph1', 'graph2', 'combined_graph']: + if graph_key in analysis_result and analysis_result[graph_key] is not None: + if isinstance(analysis_result[graph_key], bytes): + logger.info(f"Codificando {graph_key} como base64") + document[graph_key] = base64.b64encode(analysis_result[graph_key]).decode('utf-8') + logger.info(f"{graph_key} codificado correctamente, longitud: {len(document[graph_key])}") + else: + logger.warning(f"{graph_key} no es de tipo bytes, es: {type(analysis_result[graph_key])}") + else: + logger.info(f"{graph_key} no presente en el resultado del análisis") + + # Almacenar el documento en MongoDB + collection = get_collection(COLLECTION_NAME) + if collection is None: # CORREGIDO: Usar 'is None' en lugar de valor booleano + logger.error("No se pudo obtener la colección") + return False + + result = collection.insert_one(document) + logger.info(f"Análisis de discurso guardado con ID: {result.inserted_id}") + return True + + except Exception as e: + logger.error(f"Error guardando análisis de discurso: {str(e)}") + return False + +################################################################################# + +# Corrección 1: Actualizar get_student_discourse_analysis para recuperar todos los campos necesarios + +def get_student_discourse_analysis(username, limit=10): + """ + Recupera los análisis del discurso de un estudiante. + """ + try: + logger.info(f"Recuperando análisis de discurso para {username}") + + collection = get_collection(COLLECTION_NAME) + if collection is None: + logger.error("No se pudo obtener la colección") + return [] + + query = {"username": username} + documents = list(collection.find(query).sort("timestamp", -1).limit(limit)) + logger.info(f"Recuperados {len(documents)} documentos de análisis de discurso") + + # Decodificar gráficos para uso en la aplicación + for doc in documents: + for graph_key in ['graph1', 'graph2', 'combined_graph']: + if graph_key in doc and doc[graph_key]: + try: + # Verificar si es string (base64) y decodificar + if isinstance(doc[graph_key], str): + logger.info(f"Decodificando {graph_key} de base64 a bytes") + doc[graph_key] = base64.b64decode(doc[graph_key]) + logger.info(f"{graph_key} decodificado correctamente, tamaño: {len(doc[graph_key])} bytes") + elif not isinstance(doc[graph_key], bytes): + logger.warning(f"{graph_key} no es ni string ni bytes: {type(doc[graph_key])}") + except Exception as decode_error: + logger.error(f"Error decodificando {graph_key}: {str(decode_error)}") + doc[graph_key] = None + + return documents + + except Exception as e: + logger.error(f"Error recuperando análisis de discurso: {str(e)}") + return [] + +##################################################################################### + +def get_student_discourse_data(username): + """ + Obtiene un resumen de los análisis del discurso de un estudiante. + """ + try: + analyses = get_student_discourse_analysis(username, limit=None) + formatted_analyses = [] + + for analysis in analyses: + formatted_analysis = { + 'timestamp': analysis['timestamp'], + 'text1': analysis.get('text1', ''), + 'text2': analysis.get('text2', ''), + 'key_concepts1': analysis.get('key_concepts1', []), + 'key_concepts2': analysis.get('key_concepts2', []) + } + formatted_analyses.append(formatted_analysis) + + return {'entries': formatted_analyses} + + except Exception as e: + logger.error(f"Error al obtener datos del discurso: {str(e)}") + return {'entries': []} + +########################################################################### +def update_student_discourse_analysis(analysis_id, update_data): + """ + Actualiza un análisis del discurso existente. + """ + try: + query = {"_id": analysis_id} + update = {"$set": update_data} + return update_document(COLLECTION_NAME, query, update) + except Exception as e: + logger.error(f"Error al actualizar análisis del discurso: {str(e)}") + return False + +########################################################################### +def delete_student_discourse_analysis(analysis_id): + """ + Elimina un análisis del discurso. + """ + try: + query = {"_id": analysis_id} + return delete_document(COLLECTION_NAME, query) + except Exception as e: + logger.error(f"Error al eliminar análisis del discurso: {str(e)}") + return False \ No newline at end of file diff --git a/src/modules/database/mongo_db.py b/src/modules/database/mongo_db.py new file mode 100644 index 0000000000000000000000000000000000000000..ed1edb6427a5c59c53acc2f021230b2b8b32dc16 --- /dev/null +++ b/src/modules/database/mongo_db.py @@ -0,0 +1,62 @@ +from .database_init import get_mongodb +import logging + +logger = logging.getLogger(__name__) + +def get_collection(collection_name): + try: + db = get_mongodb() + if db is None: + logger.error(f"No se pudo obtener la base de datos para {collection_name}") + return None + + collection = db[collection_name] + logger.info(f"Colección {collection_name} obtenida exitosamente") + return collection + + except Exception as e: + logger.error(f"Error al obtener colección {collection_name}: {str(e)}") + return None + +def insert_document(collection_name, document): + collection = get_collection(collection_name) + try: + result = collection.insert_one(document) + logger.info(f"Documento insertado en {collection_name} con ID: {result.inserted_id}") + return result.inserted_id + except Exception as e: + logger.error(f"Error al insertar documento en {collection_name}: {str(e)}") + return None + +def find_documents(collection_name, query, sort=None, limit=None): + collection = get_collection(collection_name) + try: + cursor = collection.find(query) + if sort: + cursor = cursor.sort(sort) + if limit: + cursor = cursor.limit(limit) + return list(cursor) + except Exception as e: + logger.error(f"Error al buscar documentos en {collection_name}: {str(e)}") + return [] + +def update_document(collection_name, query, update): + collection = get_collection(collection_name) + try: + result = collection.update_one(query, update) + logger.info(f"Documento actualizado en {collection_name}: {result.modified_count} modificado(s)") + return result.modified_count + except Exception as e: + logger.error(f"Error al actualizar documento en {collection_name}: {str(e)}") + return 0 + +def delete_document(collection_name, query): + collection = get_collection(collection_name) + try: + result = collection.delete_one(query) + logger.info(f"Documento eliminado de {collection_name}: {result.deleted_count} eliminado(s)") + return result.deleted_count + except Exception as e: + logger.error(f"Error al eliminar documento de {collection_name}: {str(e)}") + return 0 \ No newline at end of file diff --git a/src/modules/database/morphosintax_mongo_db.py b/src/modules/database/morphosintax_mongo_db.py new file mode 100644 index 0000000000000000000000000000000000000000..0b28bfc0faad356f8ef1bd651e5d48187f1575dd --- /dev/null +++ b/src/modules/database/morphosintax_mongo_db.py @@ -0,0 +1,49 @@ +#/modules/database/morphosintax_mongo_db.py +from .mongo_db import insert_document, find_documents, update_document, delete_document +from ..utils.svg_to_png_converter import process_and_save_svg_diagrams +from datetime import datetime, timezone +import logging + +logger = logging.getLogger(__name__) + +COLLECTION_NAME = 'student_morphosyntax_analysis' + +def store_student_morphosyntax_result(username, text, arc_diagrams): + analysis_document = { + 'username': username, + 'timestamp': datetime.now(timezone.utc).isoformat(), + 'text': text, + 'arc_diagrams': arc_diagrams, + 'analysis_type': 'morphosyntax' + } + + result = insert_document(COLLECTION_NAME, analysis_document) + if result: + # Procesar y guardar los diagramas SVG como PNG + png_ids = process_and_save_svg_diagrams(username, str(result), arc_diagrams) + + # Actualizar el documento con los IDs de los PNGs + update_document(COLLECTION_NAME, {'_id': result}, {'$set': {'png_diagram_ids': png_ids}}) + + logger.info(f"Análisis morfosintáctico del estudiante guardado con ID: {result} para el usuario: {username}") + return True + return False + +def get_student_morphosyntax_analysis(username, limit=10): + query = {"username": username, "analysis_type": "morphosyntax"} + return find_documents(COLLECTION_NAME, query, sort=[("timestamp", -1)], limit=limit) + +def update_student_morphosyntax_analysis(analysis_id, update_data): + query = {"_id": analysis_id} + update = {"$set": update_data} + return update_document(COLLECTION_NAME, query, update) + +def delete_student_morphosyntax_analysis(analysis_id): + query = {"_id": analysis_id} + return delete_document(COLLECTION_NAME, query) + +def get_student_morphosyntax_data(username): + analyses = get_student_morphosyntax_analysis(username, limit=None) # Obtener todos los análisis + return { + 'entries': analyses + } \ No newline at end of file diff --git a/src/modules/database/morphosintaxis_export.py b/src/modules/database/morphosintaxis_export.py new file mode 100644 index 0000000000000000000000000000000000000000..2cfb33d8dc0d6497597c8545de147fcbf4752c22 --- /dev/null +++ b/src/modules/database/morphosintaxis_export.py @@ -0,0 +1,78 @@ +from io import BytesIO +from reportlab.lib import colors +from reportlab.lib.pagesizes import letter +from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image, PageBreak +from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle +from reportlab.lib.units import cm +from svglib.svglib import svg2rlg +from reportlab.graphics import renderPM +import base64 +import cairosvg +from reportlab.graphics import renderPDF +from reportlab.lib.utils import ImageReader + +#importaciones locales +from .morphosintax_mongo_db import get_student_morphosyntax_data +from .chat_db import get_chat_history + +# Placeholder para el logo +LOGO_PATH = "assets\img\logo_92x92.png" # Reemplaza esto con la ruta real de tu logo + +# Definir el tamaño de página carta manualmente (612 x 792 puntos) +LETTER_SIZE = (612, 792) + +def add_logo(canvas, doc): + logo = Image(LOGO_PATH, width=2*cm, height=2*cm) + logo.drawOn(canvas, doc.leftMargin, doc.height + doc.topMargin - 0.5*cm) + +def export_user_interactions(username, analysis_type): + # Obtener historial de chat (que ahora incluye los análisis morfosintácticos) + chat_history = get_chat_history(username, analysis_type) + + # Crear un PDF + buffer = BytesIO() + doc = SimpleDocTemplate( + buffer, + pagesize=letter, + rightMargin=2*cm, + leftMargin=2*cm, + topMargin=2*cm, + bottomMargin=2*cm + ) + + story = [] + styles = getSampleStyleSheet() + + # Título + story.append(Paragraph(f"Interacciones de {username} - Análisis {analysis_type}", styles['Title'])) + story.append(Spacer(1, 0.5*cm)) + + # Historial del chat y análisis + for entry in chat_history: + for message in entry['messages']: + role = message['role'] + content = message['content'] + story.append(Paragraph(f"{role.capitalize()}: {content}", styles['BodyText'])) + story.append(Spacer(1, 0.25*cm)) + + # Si hay visualizaciones (diagramas SVG), convertirlas a imagen y añadirlas + if 'visualizations' in message and message['visualizations']: + for svg in message['visualizations']: + drawing = svg2rlg(BytesIO(svg.encode('utf-8'))) + img_data = BytesIO() + renderPM.drawToFile(drawing, img_data, fmt="PNG") + img_data.seek(0) + img = Image(img_data, width=15*cm, height=7.5*cm) + story.append(img) + story.append(Spacer(1, 0.5*cm)) + + story.append(PageBreak()) + + # Construir el PDF + doc.build(story) + buffer.seek(0) + return buffer + +# Uso en Streamlit: +# pdf_buffer = export_user_interactions(username, 'morphosyntax') +# st.download_button(label="Descargar PDF", data=pdf_buffer, file_name="interacciones.pdf", mime="application/pdf") \ No newline at end of file diff --git a/src/modules/database/morphosintaxis_export_v1.py b/src/modules/database/morphosintaxis_export_v1.py new file mode 100644 index 0000000000000000000000000000000000000000..2b2e67742b4f9fdae6476882757ee8e187639ca2 --- /dev/null +++ b/src/modules/database/morphosintaxis_export_v1.py @@ -0,0 +1,97 @@ +# database_export.py + +import pandas as pd +import matplotlib.pyplot as plt +from io import BytesIO +#importaciones locales +from .morphosintax_mongo_db import get_student_morphosyntax_analysis +from .chat_db import get_chat_history + + +def export_user_interactions(username, analysis_type): + # Obtener historial de chat (que ahora incluye los análisis morfosintácticos) + chat_history = get_chat_history(username, analysis_type) + + # Crear un PDF + buffer = BytesIO() + doc = SimpleDocTemplate( + buffer, + pagesize=letter, + rightMargin=2*cm, + leftMargin=2*cm, + topMargin=2*cm, + bottomMargin=2*cm + ) + + story = [] + styles = getSampleStyleSheet() + + # Título + story.append(Paragraph(f"Interacciones de {username} - Análisis {analysis_type}", styles['Title'])) + story.append(Spacer(1, 0.5*cm)) + + # Historial del chat y análisis + for entry in chat_history: + for message in entry['messages']: + role = message['role'] + content = message['content'] + story.append(Paragraph(f"{role.capitalize()}: {content}", styles['BodyText'])) + story.append(Spacer(1, 0.25*cm)) + + # Si hay visualizaciones (diagramas SVG), convertirlas a imagen y añadirlas + if 'visualizations' in message and message['visualizations']: + for svg in message['visualizations']: + drawing = svg2rlg(BytesIO(svg.encode('utf-8'))) + img_data = BytesIO() + renderPM.drawToFile(drawing, img_data, fmt="PNG") + img_data.seek(0) + img = Image(img_data, width=15*cm, height=7.5*cm) + story.append(img) + story.append(Spacer(1, 0.5*cm)) + + story.append(PageBreak()) + + # Construir el PDF + doc.build(story) + buffer.seek(0) + return buffer + +#def export_user_interactions(username, analysis_type): + # Obtener análisis morfosintáctico + #morphosyntax_data = get_student_morphosyntax_analysis(username) + + # Obtener historial de chat + #chat_history = get_chat_history(username, analysis_type) + + # Crear un DataFrame con los datos + #df = pd.DataFrame({ + # 'Timestamp': [entry['timestamp'] for entry in chat_history], + # 'Role': [msg['role'] for entry in chat_history for msg in entry['messages']], + # 'Content': [msg['content'] for entry in chat_history for msg in entry['messages']] + #}) + + # Crear un PDF + #buffer = BytesIO() + #plt.figure(figsize=(12, 6)) + #plt.axis('off') + #plt.text(0.5, 0.98, f"Interacciones de {username} - Análisis {analysis_type}", ha='center', va='top', fontsize=16) + #plt.text(0.5, 0.95, f"Total de interacciones: {len(df)}", ha='center', va='top', fontsize=12) + + # Añadir tabla con las interacciones + #plt.table(cellText=df.values, colLabels=df.columns, cellLoc='center', loc='center') + + # Añadir diagramas de arco si es análisis morfosintáctico + #if analysis_type == 'morphosyntax' and morphosyntax_data: + # for i, analysis in enumerate(morphosyntax_data): + # plt.figure(figsize=(12, 6)) + # plt.axis('off') + # plt.text(0.5, 0.98, f"Diagrama de Arco {i+1}", ha='center', va='top', fontsize=16) + # plt.imshow(analysis['arc_diagrams'][0]) # Asumiendo que arc_diagrams es una lista de imágenes + + #plt.savefig(buffer, format='pdf', bbox_inches='tight') + #buffer.seek(0) + #return buffer + +# Uso: +# pdf_buffer = export_user_interactions(username, 'morphosyntax') +# st.download_button(label="Descargar PDF", data=pdf_buffer, file_name="interacciones.pdf", mime="application/pdf") \ No newline at end of file diff --git a/src/modules/database/morphosyntax_iterative_mongo_db.py b/src/modules/database/morphosyntax_iterative_mongo_db.py new file mode 100644 index 0000000000000000000000000000000000000000..52df5a8b65bba592f0138a3256ba5e80792c464f --- /dev/null +++ b/src/modules/database/morphosyntax_iterative_mongo_db.py @@ -0,0 +1,171 @@ +# modules/database/morphosyntax_iterative_mongo_db.py + + +from datetime import datetime, timezone +import logging +from bson import ObjectId # <--- Importar ObjectId +from .mongo_db import get_collection, insert_document, find_documents, update_document, delete_document + +logger = logging.getLogger(__name__) + +BASE_COLLECTION = 'student_morphosyntax_analysis_base' +ITERATION_COLLECTION = 'student_morphosyntax_iterations' + +def store_student_morphosyntax_base(username, text, arc_diagrams): + """Almacena el análisis morfosintáctico base y retorna su ObjectId.""" + try: + base_document = { + 'username': username, + 'timestamp': datetime.now(timezone.utc).isoformat(), + 'text': text, + 'arc_diagrams': arc_diagrams, + 'analysis_type': 'morphosyntax_base', + 'has_iterations': False + } + collection = get_collection(BASE_COLLECTION) + result = collection.insert_one(base_document) + + logger.info(f"Análisis base guardado para {username}") + # Retornamos el ObjectId directamente (NO str) + return result.inserted_id + + except Exception as e: + logger.error(f"Error almacenando análisis base: {str(e)}") + return None + +def store_student_morphosyntax_iteration(username, base_id, original_text, iteration_text, arc_diagrams): + """ + Almacena una iteración de análisis morfosintáctico. + base_id: ObjectId de la base (o string convertible a ObjectId). + """ + try: + # Convertir a ObjectId si viene como string + if isinstance(base_id, str): + base_id = ObjectId(base_id) + + iteration_document = { + 'username': username, + 'base_id': base_id, # Guardar el ObjectId en la iteración + 'timestamp': datetime.now(timezone.utc).isoformat(), + 'original_text': original_text, + 'iteration_text': iteration_text, + 'arc_diagrams': arc_diagrams, + 'analysis_type': 'morphosyntax_iteration' + } + collection = get_collection(ITERATION_COLLECTION) + result = collection.insert_one(iteration_document) + + # Actualizar documento base (usando ObjectId) + base_collection = get_collection(BASE_COLLECTION) + base_collection.update_one( + {'_id': base_id, 'username': username}, + {'$set': {'has_iterations': True}} + ) + + logger.info(f"Iteración guardada para {username}, base_id: {base_id}") + return result.inserted_id # Retornar el ObjectId de la iteración + + except Exception as e: + logger.error(f"Error almacenando iteración: {str(e)}") + return None + +def get_student_morphosyntax_analysis(username, limit=10): + """ + Obtiene los análisis base y sus iteraciones. + Returns: Lista de análisis con sus iteraciones. + """ + try: + base_collection = get_collection(BASE_COLLECTION) + base_query = { + "username": username, + "analysis_type": "morphosyntax_base" + } + base_analyses = list( + base_collection.find(base_query).sort("timestamp", -1).limit(limit) + ) + + # Para cada análisis base, obtener sus iteraciones + iteration_collection = get_collection(ITERATION_COLLECTION) + for analysis in base_analyses: + base_id = analysis['_id'] + # Buscar iteraciones con base_id = ObjectId + iterations = list( + iteration_collection.find({"base_id": base_id}).sort("timestamp", -1) + ) + analysis['iterations'] = iterations + + return base_analyses + + except Exception as e: + logger.error(f"Error obteniendo análisis: {str(e)}") + return [] + +def update_student_morphosyntax_analysis(analysis_id, is_base, update_data): + """ + Actualiza un análisis base o iteración. + analysis_id puede ser un ObjectId o string. + """ + from bson import ObjectId + + try: + collection_name = BASE_COLLECTION if is_base else ITERATION_COLLECTION + collection = get_collection(collection_name) + + if isinstance(analysis_id, str): + analysis_id = ObjectId(analysis_id) + + query = {"_id": analysis_id} + update = {"$set": update_data} + + result = update_document(collection_name, query, update) + return result + + except Exception as e: + logger.error(f"Error actualizando análisis: {str(e)}") + return False + +def delete_student_morphosyntax_analysis(analysis_id, is_base): + """ + Elimina un análisis base o iteración. + Si es base, también elimina todas sus iteraciones. + """ + from bson import ObjectId + + try: + if isinstance(analysis_id, str): + analysis_id = ObjectId(analysis_id) + + if is_base: + # Eliminar iteraciones vinculadas + iteration_collection = get_collection(ITERATION_COLLECTION) + iteration_collection.delete_many({"base_id": analysis_id}) + + # Luego eliminar el análisis base + collection = get_collection(BASE_COLLECTION) + else: + collection = get_collection(ITERATION_COLLECTION) + + query = {"_id": analysis_id} + result = delete_document(collection.name, query) + return result + + except Exception as e: + logger.error(f"Error eliminando análisis: {str(e)}") + return False + +def get_student_morphosyntax_data(username): + """ + Obtiene todos los datos de análisis morfosintáctico de un estudiante. + Returns: Diccionario con todos los análisis y sus iteraciones. + """ + try: + analyses = get_student_morphosyntax_analysis(username, limit=None) + return { + 'entries': analyses, + 'total_analyses': len(analyses), + 'has_iterations': any(a.get('has_iterations', False) for a in analyses) + } + + except Exception as e: + logger.error(f"Error obteniendo datos del estudiante: {str(e)}") + return {'entries': [], 'total_analyses': 0, 'has_iterations': False} diff --git a/src/modules/database/semantic_export.py b/src/modules/database/semantic_export.py new file mode 100644 index 0000000000000000000000000000000000000000..3ba92b6b94302d8f96660e3571f5ed37565c8531 --- /dev/null +++ b/src/modules/database/semantic_export.py @@ -0,0 +1,78 @@ +from io import BytesIO +from reportlab.lib import colors +from reportlab.lib.pagesizes import letter +from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image, PageBreak +from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle +from reportlab.lib.units import cm +from svglib.svglib import svg2rlg +from reportlab.graphics import renderPM +import base64 +import cairosvg +from reportlab.graphics import renderPDF +from reportlab.lib.utils import ImageReader + +#importaciones locales +from .semantic_mongo_db import get_student_semantic_data +from .chat_db import get_chat_history + +# Placeholder para el logo +LOGO_PATH = "assets\img\logo_92x92.png" # Reemplaza esto con la ruta real de tu logo + +# Definir el tamaño de página carta manualmente (612 x 792 puntos) +LETTER_SIZE = (612, 792) + +def add_logo(canvas, doc): + logo = Image(LOGO_PATH, width=2*cm, height=2*cm) + logo.drawOn(canvas, doc.leftMargin, doc.height + doc.topMargin - 0.5*cm) + +def export_user_interactions(username, analysis_type): + # Obtener historial de chat (que ahora incluye los análisis morfosintácticos) + chat_history = get_chat_history(username, analysis_type) + + # Crear un PDF + buffer = BytesIO() + doc = SimpleDocTemplate( + buffer, + pagesize=letter, + rightMargin=2*cm, + leftMargin=2*cm, + topMargin=2*cm, + bottomMargin=2*cm + ) + + story = [] + styles = getSampleStyleSheet() + + # Título + story.append(Paragraph(f"Interacciones de {username} - Análisis {analysis_type}", styles['Title'])) + story.append(Spacer(1, 0.5*cm)) + + # Historial del chat y análisis + for entry in chat_history: + for message in entry['messages']: + role = message['role'] + content = message['content'] + story.append(Paragraph(f"{role.capitalize()}: {content}", styles['BodyText'])) + story.append(Spacer(1, 0.25*cm)) + + # Si hay visualizaciones (diagramas SVG), convertirlas a imagen y añadirlas + if 'visualizations' in message and message['visualizations']: + for svg in message['visualizations']: + drawing = svg2rlg(BytesIO(svg.encode('utf-8'))) + img_data = BytesIO() + renderPM.drawToFile(drawing, img_data, fmt="PNG") + img_data.seek(0) + img = Image(img_data, width=15*cm, height=7.5*cm) + story.append(img) + story.append(Spacer(1, 0.5*cm)) + + story.append(PageBreak()) + + # Construir el PDF + doc.build(story) + buffer.seek(0) + return buffer + +# Uso en Streamlit: +# pdf_buffer = export_user_interactions(username, 'morphosyntax') +# st.download_button(label="Descargar PDF", data=pdf_buffer, file_name="interacciones.pdf", mime="application/pdf") \ No newline at end of file diff --git a/src/modules/database/semantic_mongo_db.py b/src/modules/database/semantic_mongo_db.py new file mode 100644 index 0000000000000000000000000000000000000000..5e62b55b5dc88f8356183cfbb16a6c877e33f41b --- /dev/null +++ b/src/modules/database/semantic_mongo_db.py @@ -0,0 +1,179 @@ +#/modules/database/semantic_mongo_db.py + +# Importaciones estándar +import io +import base64 +from datetime import datetime, timezone +import logging + +# Importaciones de terceros +import matplotlib.pyplot as plt + +# Importaciones locales +from .mongo_db import ( + get_collection, + insert_document, + find_documents, + update_document, + delete_document +) + +# Configuración del logger +logger = logging.getLogger(__name__) # Cambiado de name a __name__ +COLLECTION_NAME = 'student_semantic_analysis' + +#################################################################### +# modules/database/semantic_mongo_db.py + +# modules/database/semantic_mongo_db.py + +def store_student_semantic_result(username, text, analysis_result, lang_code='en'): + """ + Guarda el resultado del análisis semántico en MongoDB. + Args: + username: Nombre del usuario + text: Texto completo analizado + analysis_result: Diccionario con los resultados del análisis + lang_code: Código de idioma (opcional, default 'en') + """ + try: + # Verificar datos mínimos requeridos + if not username or not text or not analysis_result: + logger.error("Datos insuficientes para guardar el análisis") + return False + + # Preparar el gráfico conceptual + concept_graph_data = None + if 'concept_graph' in analysis_result and analysis_result['concept_graph'] is not None: + try: + if isinstance(analysis_result['concept_graph'], bytes): + concept_graph_data = base64.b64encode(analysis_result['concept_graph']).decode('utf-8') + else: + logger.warning("El gráfico conceptual no está en formato bytes") + except Exception as e: + logger.error(f"Error al codificar gráfico conceptual: {str(e)}") + + # Crear documento para MongoDB + analysis_document = { + 'username': username, + 'timestamp': datetime.now(timezone.utc), + 'text': text, + 'analysis_type': 'semantic', + 'key_concepts': analysis_result.get('key_concepts', []), + 'concept_centrality': analysis_result.get('concept_centrality', {}), + 'concept_graph': concept_graph_data, + 'language': lang_code # Usamos el parámetro directamente + } + + # Insertar en MongoDB + result = insert_document(COLLECTION_NAME, analysis_document) + if result: + logger.info(f"Análisis semántico guardado para {username}") + return True + + logger.error("No se pudo insertar el documento en MongoDB") + return False + + except Exception as e: + logger.error(f"Error al guardar el análisis semántico: {str(e)}", exc_info=True) + return False + +#################################################################################### +def get_student_semantic_analysis(username, limit=10): + """ + Recupera los análisis semánticos de un estudiante. + """ + try: + # Obtener la colección + collection = get_collection(COLLECTION_NAME) + if collection is None: # Cambiado de if not collection a if collection is None + logger.error("No se pudo obtener la colección semantic") + return [] + + # Consulta + query = { + "username": username, + "analysis_type": "semantic" + } + + # Campos a recuperar + projection = { + "timestamp": 1, + "concept_graph": 1, + "_id": 1 + } + + # Ejecutar consulta + try: + cursor = collection.find(query, projection).sort("timestamp", -1) + if limit: + cursor = cursor.limit(limit) + + # Convertir cursor a lista + results = list(cursor) + logger.info(f"Recuperados {len(results)} análisis semánticos para {username}") + return results + + except Exception as db_error: + logger.error(f"Error en la consulta a MongoDB: {str(db_error)}") + return [] + + except Exception as e: + logger.error(f"Error recuperando análisis semántico: {str(e)}") + return [] +#################################################################################################### + + +def update_student_semantic_analysis(analysis_id, update_data): + """ + Actualiza un análisis semántico existente. + Args: + analysis_id: ID del análisis a actualizar + update_data: Datos a actualizar + """ + query = {"_id": analysis_id} + update = {"$set": update_data} + return update_document(COLLECTION_NAME, query, update) + +def delete_student_semantic_analysis(analysis_id): + """ + Elimina un análisis semántico. + Args: + analysis_id: ID del análisis a eliminar + """ + query = {"_id": analysis_id} + return delete_document(COLLECTION_NAME, query) + +def get_student_semantic_data(username): + """ + Obtiene todos los análisis semánticos de un estudiante. + Args: + username: Nombre del usuario + Returns: + dict: Diccionario con todos los análisis del estudiante + """ + analyses = get_student_semantic_analysis(username, limit=None) + + formatted_analyses = [] + for analysis in analyses: + formatted_analysis = { + 'timestamp': analysis['timestamp'], + 'text': analysis['text'], + 'key_concepts': analysis['key_concepts'], + 'entities': analysis['entities'] + # No incluimos los gráficos en el resumen general + } + formatted_analyses.append(formatted_analysis) + + return { + 'entries': formatted_analyses + } + +# Exportar las funciones necesarias +__all__ = [ + 'store_student_semantic_result', + 'get_student_semantic_analysis', + 'update_student_semantic_analysis', + 'delete_student_semantic_analysis', + 'get_student_semantic_data' +] \ No newline at end of file diff --git a/src/modules/database/sql_db.py b/src/modules/database/sql_db.py new file mode 100644 index 0000000000000000000000000000000000000000..b618b569b26b0246d7195746db9218d0256ec564 --- /dev/null +++ b/src/modules/database/sql_db.py @@ -0,0 +1,323 @@ +# modules/database/sql_db.py + +from .database_init import get_container +from datetime import datetime, timezone +import logging +import bcrypt +import uuid + +logger = logging.getLogger(__name__) + +######################################### +def get_user(username, role=None): + container = get_container("users") + try: + query = f"SELECT * FROM c WHERE c.id = '{username}'" + if role: + query += f" AND c.role = '{role}'" + items = list(container.query_items(query=query)) + return items[0] if items else None + except Exception as e: + logger.error(f"Error al obtener usuario {username}: {str(e)}") + return None + + +######################################### +def get_admin_user(username): + return get_user(username, role='Administrador') + + +######################################### +def get_student_user(username): + return get_user(username, role='Estudiante') + + +######################################### +def get_teacher_user(username): + return get_user(username, role='Profesor') + + +######################################### +def create_user(username, password, role, additional_info=None): + """Crea un nuevo usuario""" + container = get_container("users") + if not container: + logger.error("No se pudo obtener el contenedor de usuarios") + return False + + try: + user_data = { + 'id': username, + 'password': password, + 'role': role, + 'timestamp': datetime.now(timezone.utc).isoformat(), + 'additional_info': additional_info or {}, + 'partitionKey': username # Agregar partition key + } + + # Crear item sin especificar partition_key en el método + container.create_item(body=user_data) + logger.info(f"Usuario {role} creado: {username}") + return True + + except Exception as e: + logger.error(f"Error al crear usuario {role}: {str(e)}") + return False + +######################################### +def create_student_user(username, password, additional_info=None): + return create_user(username, password, 'Estudiante', additional_info) + +######################################### +def create_teacher_user(username, password, additional_info=None): + return create_user(username, password, 'Profesor', additional_info) + +######################################### +def create_admin_user(username, password, additional_info=None): + return create_user(username, password, 'Administrador', additional_info) + +######################################### +def record_login(username): + """Registra el inicio de sesión de un usuario""" + try: + container = get_container("users_sessions") + if not container: + logger.error("No se pudo obtener el contenedor users_sessions") + return None + + session_id = str(uuid.uuid4()) + session_doc = { + "id": session_id, + "type": "session", + "username": username, + "loginTime": datetime.now(timezone.utc).isoformat(), + "additional_info": {}, + "partitionKey": username + } + + result = container.create_item(body=session_doc) + logger.info(f"Sesión {session_id} registrada para {username}") + return session_id + except Exception as e: + logger.error(f"Error registrando login: {str(e)}") + return None + +######################################### +def record_logout(username, session_id): + """Registra el cierre de sesión y calcula la duración""" + try: + container = get_container("users_sessions") + if not container: + logger.error("No se pudo obtener el contenedor users_sessions") + return False + + query = "SELECT * FROM c WHERE c.id = @id AND c.username = @username" + params = [ + {"name": "@id", "value": session_id}, + {"name": "@username", "value": username} + ] + + items = list(container.query_items( + query=query, + parameters=params + )) + + if not items: + logger.warning(f"Sesión no encontrada: {session_id}") + return False + + session = items[0] + login_time = datetime.fromisoformat(session['loginTime'].rstrip('Z')) + logout_time = datetime.now(timezone.utc) + duration = int((logout_time - login_time).total_seconds()) + + session.update({ + "logoutTime": logout_time.isoformat(), + "sessionDuration": duration, + "partitionKey": username + }) + + container.upsert_item(body=session) + logger.info(f"Sesión {session_id} cerrada para {username}, duración: {duration}s") + return True + except Exception as e: + logger.error(f"Error registrando logout: {str(e)}") + return False + +######################################### +def get_recent_sessions(limit=10): + """Obtiene las sesiones más recientes""" + try: + container = get_container("users_sessions") + if not container: + logger.error("No se pudo obtener el contenedor users_sessions") + return [] + + query = """ + SELECT c.username, c.loginTime, c.logoutTime, c.sessionDuration + FROM c + WHERE c.type = 'session' + ORDER BY c.loginTime DESC + OFFSET 0 LIMIT @limit + """ + + sessions = list(container.query_items( + query=query, + parameters=[{"name": "@limit", "value": limit}], + enable_cross_partition_query=True # Agregar este parámetro + )) + + clean_sessions = [] + for session in sessions: + try: + clean_sessions.append({ + "username": session["username"], + "loginTime": session["loginTime"], + "logoutTime": session.get("logoutTime", "Activo"), + "sessionDuration": session.get("sessionDuration", 0) + }) + except KeyError as e: + logger.warning(f"Sesión con datos incompletos: {e}") + continue + + return clean_sessions + except Exception as e: + logger.error(f"Error obteniendo sesiones recientes: {str(e)}") + return [] + +######################################### +def get_user_total_time(username): + """Obtiene el tiempo total que un usuario ha pasado en la plataforma""" + try: + container = get_container("users_sessions") + if not container: + return None + + query = """ + SELECT VALUE SUM(c.sessionDuration) + FROM c + WHERE c.type = 'session' + AND c.username = @username + AND IS_DEFINED(c.sessionDuration) + """ + + result = list(container.query_items( + query=query, + parameters=[{"name": "@username", "value": username}] + )) + + return result[0] if result and result[0] is not None else 0 + except Exception as e: + logger.error(f"Error obteniendo tiempo total: {str(e)}") + return 0 + +######################################### +def update_student_user(username, new_info): + container = get_container("users") + try: + user = get_student_user(username) + if user: + user['additional_info'].update(new_info) + user['partitionKey'] = username + container.upsert_item(body=user) + logger.info(f"Información del estudiante actualizada: {username}") + return True + else: + logger.warning(f"Intento de actualizar estudiante no existente: {username}") + return False + except Exception as e: + logger.error(f"Error al actualizar información del estudiante {username}: {str(e)}") + return False + +######################################### +def delete_student_user(username): + container = get_container("users") + try: + user = get_student_user(username) + if user: + # El ID es suficiente para eliminación ya que partitionKey está en el documento + container.delete_item(item=user['id']) + logger.info(f"Estudiante eliminado: {username}") + return True + else: + logger.warning(f"Intento de eliminar estudiante no existente: {username}") + return False + except Exception as e: + logger.error(f"Error al eliminar estudiante {username}: {str(e)}") + return False + +######################################### +def store_application_request(name, lastname, email, institution, current_role, desired_role, reason): + """Almacena una solicitud de aplicación""" + try: + # Obtener el contenedor usando get_container() que sí funciona + container = get_container("application_requests") + if not container: + logger.error("No se pudo obtener el contenedor de solicitudes") + return False + + # Crear documento con la solicitud + # Nótese que incluimos email como partition key en el cuerpo del documento + application_request = { + "id": str(uuid.uuid4()), + "name": name, + "lastname": lastname, + "email": email, + "institution": institution, + "current_role": current_role, + "desired_role": desired_role, + "reason": reason, + "requestDate": datetime.utcnow().isoformat(), + # El campo para partition key debe estar en el documento + "partitionKey": email + } + + # Crear el item en el contenedor - sin el parámetro enable_cross_partition_query + container.create_item( + body=application_request # Solo pasamos el body + ) + logger.info(f"Solicitud de aplicación almacenada para: {email}") + return True + + except Exception as e: + logger.error(f"Error al almacenar la solicitud de aplicación: {str(e)}") + logger.error(f"Detalles del error: {str(e)}") + return False + + +################################################################ +def store_student_feedback(username, name, email, feedback): + """Almacena el feedback de un estudiante""" + try: + # Obtener el contenedor - verificar disponibilidad + logger.info(f"Intentando obtener contenedor user_feedback para usuario: {username}") + container = get_container("user_feedback") + if not container: + logger.error("No se pudo obtener el contenedor user_feedback") + return False + + # Crear documento de feedback - asegurar que el username esté como partition key + feedback_item = { + "id": str(uuid.uuid4()), + "username": username, # Campo regular + "name": name, + "email": email, + "feedback": feedback, + "role": "Estudiante", + "timestamp": datetime.now(timezone.utc).isoformat(), + "partitionKey": username # Campo de partición + } + + # Crear el item - sin el parámetro enable_cross_partition_query + logger.info(f"Intentando almacenar feedback para usuario: {username}") + result = container.create_item( + body=feedback_item # Solo el body, no parámetros adicionales + ) + + logger.info(f"Feedback almacenado exitosamente para el usuario: {username}") + return True + + except Exception as e: + logger.error(f"Error al almacenar el feedback del estudiante {username}") + logger.error(f"Detalles del error: {str(e)}") + return False \ No newline at end of file diff --git a/src/modules/database/txt.txt b/src/modules/database/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/database/writing_progress_mongo_db.py b/src/modules/database/writing_progress_mongo_db.py new file mode 100644 index 0000000000000000000000000000000000000000..84b90a1ec130c0a887fbe7ed6a073fb72fece468 --- /dev/null +++ b/src/modules/database/writing_progress_mongo_db.py @@ -0,0 +1,141 @@ +# modules/database/writing_progress_mongo_db.py + +from .mongo_db import get_collection, insert_document +from datetime import datetime, timezone +import logging + +logger = logging.getLogger(__name__) +COLLECTION_NAME = 'writing_progress' + +def store_writing_baseline(username, metrics, text): + """ + Guarda la línea base de escritura de un usuario. + Args: + username: ID del usuario + metrics: Diccionario con métricas iniciales + text: Texto analizado + """ + try: + document = { + 'username': username, + 'type': 'baseline', + 'metrics': metrics, + 'text': text, + 'timestamp': datetime.now(timezone.utc).isoformat(), + 'iteration': 0 # Línea base siempre es iteración 0 + } + + # Verificar si ya existe una línea base + collection = get_collection(COLLECTION_NAME) + existing = collection.find_one({ + 'username': username, + 'type': 'baseline' + }) + + if existing: + # Actualizar línea base existente + result = collection.update_one( + {'_id': existing['_id']}, + {'$set': document} + ) + success = result.modified_count > 0 + else: + # Insertar nueva línea base + result = collection.insert_one(document) + success = result.inserted_id is not None + + logger.info(f"Línea base {'actualizada' if existing else 'creada'} para usuario: {username}") + return success + + except Exception as e: + logger.error(f"Error al guardar línea base: {str(e)}") + return False + +def store_writing_progress(username, metrics, text): + """ + Guarda una nueva iteración de progreso. + """ + try: + # Obtener último número de iteración + collection = get_collection(COLLECTION_NAME) + last_progress = collection.find_one( + {'username': username}, + sort=[('iteration', -1)] + ) + + next_iteration = (last_progress['iteration'] + 1) if last_progress else 1 + + document = { + 'username': username, + 'type': 'progress', + 'metrics': metrics, + 'text': text, + 'timestamp': datetime.now(timezone.utc).isoformat(), + 'iteration': next_iteration + } + + result = collection.insert_one(document) + success = result.inserted_id is not None + + if success: + logger.info(f"Progreso guardado para {username}, iteración {next_iteration}") + + return success + + except Exception as e: + logger.error(f"Error al guardar progreso: {str(e)}") + return False + +def get_writing_baseline(username): + """ + Obtiene la línea base de un usuario. + """ + try: + collection = get_collection(COLLECTION_NAME) + return collection.find_one({ + 'username': username, + 'type': 'baseline' + }) + except Exception as e: + logger.error(f"Error al obtener línea base: {str(e)}") + return None + +def get_writing_progress(username, limit=None): + """ + Obtiene el historial de progreso de un usuario. + Args: + username: ID del usuario + limit: Número máximo de registros a retornar + """ + try: + collection = get_collection(COLLECTION_NAME) + cursor = collection.find( + { + 'username': username, + 'type': 'progress' + }, + sort=[('iteration', -1)] + ) + + if limit: + cursor = cursor.limit(limit) + + return list(cursor) + + except Exception as e: + logger.error(f"Error al obtener progreso: {str(e)}") + return [] + +def get_latest_writing_metrics(username): + """ + Obtiene las métricas más recientes (línea base o progreso). + """ + try: + collection = get_collection(COLLECTION_NAME) + return collection.find_one( + {'username': username}, + sort=[('timestamp', -1)] + ) + except Exception as e: + logger.error(f"Error al obtener métricas recientes: {str(e)}") + return None \ No newline at end of file diff --git a/src/modules/discourse/__init__.py b/src/modules/discourse/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..06faa2f4a88284a241f0e9aa40d369e455cdf485 --- /dev/null +++ b/src/modules/discourse/__init__.py @@ -0,0 +1,17 @@ +# En /modules/discourse/__init__.py + +from ..database.discourse_mongo_db import ( + store_student_discourse_result, + get_student_discourse_analysis, + update_student_discourse_analysis, + delete_student_discourse_analysis, + get_student_discourse_data +) + +__all__ = [ + 'store_student_discourse_result', + 'get_student_discourse_analysis', + 'update_student_discourse_analysis', + 'delete_student_discourse_analysis', + 'get_student_discourse_data' +] \ No newline at end of file diff --git a/src/modules/discourse/__pycache__/__init__.cpython-311.pyc b/src/modules/discourse/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..531fc4d8fdd23ed8161f6e843ea0c74857a2b978 Binary files /dev/null and b/src/modules/discourse/__pycache__/__init__.cpython-311.pyc differ diff --git a/src/modules/discourse/__pycache__/discourse_interface.cpython-311.pyc b/src/modules/discourse/__pycache__/discourse_interface.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e24a65c99cd7c93a342fcf3dba20781483972e33 Binary files /dev/null and b/src/modules/discourse/__pycache__/discourse_interface.cpython-311.pyc differ diff --git a/src/modules/discourse/__pycache__/discourse_process.cpython-311.pyc b/src/modules/discourse/__pycache__/discourse_process.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6ed76cf9b49d6541d349438ffe7fdbde63034234 Binary files /dev/null and b/src/modules/discourse/__pycache__/discourse_process.cpython-311.pyc differ diff --git a/src/modules/discourse/discourse_interface.py b/src/modules/discourse/discourse_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..c97fe0229f5d0d0c8901111d1cd2c1771a7471d3 --- /dev/null +++ b/src/modules/discourse/discourse_interface.py @@ -0,0 +1,280 @@ +# modules/discourse/discourse/discourse_interface.py + +import streamlit as st +import pandas as pd +import matplotlib.pyplot as plt +import plotly.graph_objects as go +import logging +import io # <-- Añade esta importación + +from ..utils.widget_utils import generate_unique_key +from .discourse_process import perform_discourse_analysis +from ..database.chat_mongo_db import store_chat_history +from ..database.discourse_mongo_db import store_student_discourse_result + +logger = logging.getLogger(__name__) + +############################################################################################# +def display_discourse_interface(lang_code, nlp_models, discourse_t): + """ + Interfaz para el análisis del discurso + Args: + lang_code: Código del idioma actual + nlp_models: Modelos de spaCy cargados + discourse_t: Diccionario de traducciones + """ + try: + # 1. Inicializar estado si no existe + if 'discourse_state' not in st.session_state: + st.session_state.discourse_state = { + 'analysis_count': 0, + 'last_analysis': None, + 'current_files': None + } + + # 2. Título y descripción + # st.subheader(discourse_t.get('discourse_title', 'Análisis del Discurso')) + st.info(discourse_t.get('initial_instruction', + 'Cargue dos archivos de texto para realizar un análisis comparativo del discurso.')) + + # 3. Área de carga de archivos + col1, col2 = st.columns(2) + with col1: + st.markdown(discourse_t.get('file1_label', "**Documento 1 (Patrón)**")) + uploaded_file1 = st.file_uploader( + discourse_t.get('file_uploader1', "Cargar archivo 1"), + type=['txt'], + key=f"discourse_file1_{st.session_state.discourse_state['analysis_count']}" + ) + + with col2: + st.markdown(discourse_t.get('file2_label', "**Documento 2 (Comparación)**")) + uploaded_file2 = st.file_uploader( + discourse_t.get('file_uploader2', "Cargar archivo 2"), + type=['txt'], + key=f"discourse_file2_{st.session_state.discourse_state['analysis_count']}" + ) + + # 4. Botón de análisis + col1, col2, col3 = st.columns([1,2,1]) + with col1: + analyze_button = st.button( + discourse_t.get('discourse_analyze_button', 'Comparar textos'), + key=generate_unique_key("discourse", "analyze_button"), + type="primary", + icon="🔍", + disabled=not (uploaded_file1 and uploaded_file2), + use_container_width=True + ) + + # 5. Proceso de análisis + if analyze_button and uploaded_file1 and uploaded_file2: + try: + with st.spinner(discourse_t.get('processing', 'Procesando análisis...')): + # Leer contenido de archivos + text1 = uploaded_file1.getvalue().decode('utf-8') + text2 = uploaded_file2.getvalue().decode('utf-8') + + # Realizar análisis + result = perform_discourse_analysis( + text1, + text2, + nlp_models[lang_code], + lang_code + ) + + if result['success']: + # Guardar estado + st.session_state.discourse_result = result + st.session_state.discourse_state['analysis_count'] += 1 + st.session_state.discourse_state['current_files'] = ( + uploaded_file1.name, + uploaded_file2.name + ) + + # Guardar en base de datos + if store_student_discourse_result( + st.session_state.username, + text1, + text2, + result + ): + st.success(discourse_t.get('success_message', 'Análisis guardado correctamente')) + + # Mostrar resultados + display_discourse_results(result, lang_code, discourse_t) + else: + st.error(discourse_t.get('error_message', 'Error al guardar el análisis')) + else: + st.error(discourse_t.get('analysis_error', 'Error en el análisis')) + + except Exception as e: + logger.error(f"Error en análisis del discurso: {str(e)}") + st.error(discourse_t.get('error_processing', f'Error procesando archivos: {str(e)}')) + + # 6. Mostrar resultados previos + elif 'discourse_result' in st.session_state and st.session_state.discourse_result is not None: + if st.session_state.discourse_state.get('current_files'): + st.info( + discourse_t.get('current_analysis_message', 'Mostrando análisis de los archivos: {} y {}') + .format(*st.session_state.discourse_state['current_files']) + ) + display_discourse_results( + st.session_state.discourse_result, + lang_code, + discourse_t + ) + + except Exception as e: + logger.error(f"Error general en interfaz del discurso: {str(e)}") + st.error(discourse_t.get('general_error', 'Se produjo un error. Por favor, intente de nuevo.')) + + + +##################################################################################################################### +def display_discourse_results(result, lang_code, discourse_t): + """ + Muestra los resultados del análisis del discurso + Versión actualizada con: + - Un solo expander para interpretación + - Botón de descarga combinado + - Sin mensaje de "próxima actualización" + - Estilo consistente con semantic_interface + """ + if not result.get('success'): + st.warning(discourse_t.get('no_results', 'No hay resultados disponibles')) + return + + # Estilo CSS unificado + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar conceptos clave para ambos documentos + col1, col2 = st.columns(2) + + # Documento 1 + with col1: + st.subheader(discourse_t.get('compare_doc1_title', 'Documento 1')) + if 'key_concepts1' in result: + df1 = pd.DataFrame( + result['key_concepts1'], + columns=[discourse_t.get('concept', 'Concepto'), discourse_t.get('frequency', 'Frecuencia')] + ) + st.write( + '
' + + ''.join([ + f'
{concept}' + f'({freq:.2f})
' + for concept, freq in df1.values + ]) + "
", + unsafe_allow_html=True + ) + + if 'graph1' in result and result['graph1']: + st.image(result['graph1'], use_container_width=True) + + # Documento 2 + with col2: + st.subheader(discourse_t.get('compare_doc2_title', 'Documento 2')) + if 'key_concepts2' in result: + df2 = pd.DataFrame( + result['key_concepts2'], + columns=[discourse_t.get('concept', 'Concepto'), discourse_t.get('frequency', 'Frecuencia')] + ) + st.write( + '
' + + ''.join([ + f'
{concept}' + f'({freq:.2f})
' + for concept, freq in df2.values + ]) + "
", + unsafe_allow_html=True + ) + + if 'graph2' in result and result['graph2']: + st.image(result['graph2'], use_container_width=True) + + # Sección unificada de interpretación (como semantic_interface) + st.markdown(""" + + """, unsafe_allow_html=True) + + with st.expander("📊 " + discourse_t.get('semantic_graph_interpretation', "Interpretación de los gráficos")): + st.markdown(f""" + - 🔀 {discourse_t.get('compare_arrow_meaning', 'Las flechas indican la dirección de la relación entre conceptos')} + - 🎨 {discourse_t.get('compare_color_meaning', 'Los colores más intensos indican conceptos más centrales en el texto')} + - ⭕ {discourse_t.get('compare_size_meaning', 'El tamaño de los nodos representa la frecuencia del concepto')} + - ↔️ {discourse_t.get('compare_thickness_meaning', 'El grosor de las líneas indica la fuerza de la conexión')} + """) + + # Botón de descarga combinado (para ambas imágenes) + if 'graph1' in result and 'graph2' in result and result['graph1'] and result['graph2']: + # Crear figura combinada + fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 10)) + + # Mostrar primer gráfico + if isinstance(result['graph1'], bytes): + img1 = plt.imread(io.BytesIO(result['graph1'])) + ax1.imshow(img1) + ax1.axis('off') + ax1.set_title(discourse_t.get('compare_doc1_title', 'Documento 1')) + + # Mostrar segundo gráfico + if isinstance(result['graph2'], bytes): + img2 = plt.imread(io.BytesIO(result['graph2'])) + ax2.imshow(img2) + ax2.axis('off') + ax2.set_title(discourse_t.get('compare_doc2_title', 'Documento 2')) + + plt.tight_layout() + + # Convertir a bytes + buf = io.BytesIO() + plt.savefig(buf, format='png', dpi=150, bbox_inches='tight') + buf.seek(0) + + # Botón de descarga + st.markdown('
', unsafe_allow_html=True) + st.download_button( + label="📥 " + discourse_t.get('download_both_graphs', "Descargar ambos gráficos"), + data=buf, + file_name="comparison_graphs.png", + mime="image/png", + use_container_width=True + ) + st.markdown('
', unsafe_allow_html=True) + + plt.close() \ No newline at end of file diff --git a/src/modules/discourse/discourse_live_interface.py b/src/modules/discourse/discourse_live_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..564c0dd216a73e3c924bd3a10264459fbb84c507 --- /dev/null +++ b/src/modules/discourse/discourse_live_interface.py @@ -0,0 +1,151 @@ +# modules/discourse/discourse/discourse_live_interface.py + +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +import pandas as pd +import logging +import io +import matplotlib.pyplot as plt + +# Configuración del logger +logger = logging.getLogger(__name__) + +# Importaciones locales +from .discourse_process import perform_discourse_analysis +from .discourse_interface import display_discourse_results # Añadida esta importación +from ..utils.widget_utils import generate_unique_key +from ..database.discourse_mongo_db import store_student_discourse_result +from ..database.chat_mongo_db import store_chat_history, get_chat_history + + +##################################################################################################### +def fig_to_bytes(fig): + """Convierte una figura de matplotlib a bytes.""" + try: + buf = io.BytesIO() + fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') + buf.seek(0) + return buf.getvalue() + except Exception as e: + logger.error(f"Error en fig_to_bytes: {str(e)}") + return None + +################################################################################################# +def display_discourse_live_interface(lang_code, nlp_models, discourse_t): + """ + Interfaz para el análisis del discurso en vivo con layout mejorado + """ + try: + if 'discourse_live_state' not in st.session_state: + st.session_state.discourse_live_state = { + 'analysis_count': 0, + 'current_text1': '', + 'current_text2': '', + 'last_result': None, + 'text_changed': False + } + + # Título + st.subheader(discourse_t.get('enter_text', 'Ingrese sus textos')) + + # Área de entrada de textos en dos columnas + text_col1, text_col2 = st.columns(2) + + # Texto 1 + with text_col1: + st.markdown("**Texto 1 (Patrón)**") + text_input1 = st.text_area( + "Texto 1", + height=200, + key="discourse_live_text1", + value=st.session_state.discourse_live_state.get('current_text1', ''), + label_visibility="collapsed" + ) + st.session_state.discourse_live_state['current_text1'] = text_input1 + + # Texto 2 + with text_col2: + st.markdown("**Texto 2 (Comparación)**") + text_input2 = st.text_area( + "Texto 2", + height=200, + key="discourse_live_text2", + value=st.session_state.discourse_live_state.get('current_text2', ''), + label_visibility="collapsed" + ) + st.session_state.discourse_live_state['current_text2'] = text_input2 + + # Botón de análisis centrado + col1, col2, col3 = st.columns([1,2,1]) + with col1: + analyze_button = st.button( + discourse_t.get('analyze_button', 'Analizar'), + key="discourse_live_analyze", + type="primary", + icon="🔍", + disabled=not (text_input1 and text_input2), + use_container_width=True + ) + + # Proceso y visualización de resultados + if analyze_button and text_input1 and text_input2: + try: + with st.spinner(discourse_t.get('processing', 'Procesando...')): + result = perform_discourse_analysis( + text_input1, + text_input2, + nlp_models[lang_code], + lang_code + ) + + if result['success']: + # Procesar ambos gráficos + for graph_key in ['graph1', 'graph2']: + if graph_key in result and result[graph_key] is not None: + bytes_key = f'{graph_key}_bytes' + graph_bytes = fig_to_bytes(result[graph_key]) + if graph_bytes: + result[bytes_key] = graph_bytes + plt.close(result[graph_key]) + + st.session_state.discourse_live_state['last_result'] = result + st.session_state.discourse_live_state['analysis_count'] += 1 + + store_student_discourse_result( + st.session_state.username, + text_input1, + text_input2, + result + ) + + # Mostrar resultados + st.markdown("---") + st.subheader(discourse_t.get('results_title', 'Resultados del Análisis')) + display_discourse_results(result, lang_code, discourse_t) + + else: + st.error(result.get('message', 'Error en el análisis')) + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(discourse_t.get('error_processing', f'Error al procesar el texto: {str(e)}')) + + # Mostrar resultados previos si existen + elif 'last_result' in st.session_state.discourse_live_state and \ + st.session_state.discourse_live_state['last_result'] is not None: + + st.markdown("---") + st.subheader(discourse_t.get('previous_results', 'Resultados del Análisis Anterior')) + display_discourse_results( + st.session_state.discourse_live_state['last_result'], + lang_code, + discourse_t + ) + + except Exception as e: + logger.error(f"Error general en interfaz del discurso en vivo: {str(e)}") + st.error(discourse_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo.")) + + + diff --git a/src/modules/discourse/discourse_process.py b/src/modules/discourse/discourse_process.py new file mode 100644 index 0000000000000000000000000000000000000000..b9379e77331b3d300ad21e53cac26098a039a754 --- /dev/null +++ b/src/modules/discourse/discourse_process.py @@ -0,0 +1,68 @@ +from ..text_analysis.discourse_analysis import perform_discourse_analysis, compare_semantic_analysis +import streamlit as st + +def process_discourse_input(text1, text2, nlp_models, lang_code): + """ + Procesa la entrada para el análisis del discurso + Args: + text1: Texto del primer documento + text2: Texto del segundo documento + nlp_models: Diccionario de modelos de spaCy + lang_code: Código del idioma actual + Returns: + dict: Resultados del análisis + """ + try: + # Obtener el modelo específico del idioma + nlp = nlp_models[lang_code] + + # Realizar el análisis + analysis_result = perform_discourse_analysis(text1, text2, nlp, lang_code) + + if analysis_result['success']: + return { + 'success': True, + 'analysis': analysis_result + } + else: + return { + 'success': False, + 'error': 'Error en el análisis del discurso' + } + + except Exception as e: + logger.error(f"Error en process_discourse_input: {str(e)}") + return { + 'success': False, + 'error': str(e) + } + +def format_discourse_results(result): + """ + Formatea los resultados del análisis para su visualización + Args: + result: Resultado del análisis + Returns: + dict: Resultados formateados + """ + try: + if not result['success']: + return result + + analysis = result['analysis'] + return { + 'success': True, + 'graph1': analysis['graph1'], + 'graph2': analysis['graph2'], + 'key_concepts1': analysis['key_concepts1'], + 'key_concepts2': analysis['key_concepts2'], + 'table1': analysis['table1'], + 'table2': analysis['table2'] + } + + except Exception as e: + logger.error(f"Error en format_discourse_results: {str(e)}") + return { + 'success': False, + 'error': str(e) + } \ No newline at end of file diff --git a/src/modules/email/__init__.py b/src/modules/email/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/email/__pycache__/__init__.cpython-311.pyc b/src/modules/email/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..decd2af6d410fe2fb58d2694805363eb73aacd9d Binary files /dev/null and b/src/modules/email/__pycache__/__init__.cpython-311.pyc differ diff --git a/src/modules/email/__pycache__/email.cpython-311.pyc b/src/modules/email/__pycache__/email.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..766c7c57fb026d6b10afe9262588d1facb6b17e4 Binary files /dev/null and b/src/modules/email/__pycache__/email.cpython-311.pyc differ diff --git a/src/modules/email/email.py b/src/modules/email/email.py new file mode 100644 index 0000000000000000000000000000000000000000..878d5c53b1c1c31a51c2d7ec3bb7710784855861 --- /dev/null +++ b/src/modules/email/email.py @@ -0,0 +1,92 @@ +import smtplib +from email.mime.text import MIMEText +from email.mime.multipart import MIMEMultipart +import os + +def send_email_notification(name, email, institution, role, reason): + sender_email = "noreply@aideatext.ai" # Configura esto con tu dirección de correo + receiver_email = "hello@aideatext.ai" + password = os.environ.get("NOREPLY_EMAIL_PASSWORD") # Configura esto en tus variables de entorno + + message = MIMEMultipart("alternative") + message["Subject"] = "Nueva solicitud de prueba de AIdeaText" + message["From"] = sender_email + message["To"] = receiver_email + + text = f"""\ + Nueva solicitud de prueba de AIdeaText: + Nombre: {name} + Email: {email} + Institución: {institution} + Rol: {role} + Razón: {reason} + """ + + html = f"""\ + + +

Nueva solicitud de prueba de AIdeaText

+

Nombre: {name}

+

Email: {email}

+

Institución: {institution}

+

Rol: {role}

+

Razón: {reason}

+ + + """ + + part1 = MIMEText(text, "plain") + part2 = MIMEText(html, "html") + + message.attach(part1) + message.attach(part2) + + try: + with smtplib.SMTP_SSL("smtp.titan.email", 465) as server: + logger.info("Conectado al servidor SMTP") + server.login(sender_email, password) + logger.info("Inicio de sesión exitoso") + server.sendmail(sender_email, receiver_email, message.as_string()) + logger.info(f"Correo enviado de {sender_email} a {receiver_email}") + logger.info(f"Email notification sent for application request: {email}") + return True + except Exception as e: + logger.error(f"Error sending email notification: {str(e)}") + return False + +def send_user_feedback_notification(name, email, feedback): + sender_email = "noreply@aideatext.ai" + receiver_email = "feedback@aideatext.ai" # Cambia esto a la dirección que desees + password = os.environ.get("NOREPLY_EMAIL_PASSWORD") + + message = MIMEMultipart("alternative") + message["Subject"] = "Nuevo comentario de usuario en AIdeaText" + message["From"] = sender_email + message["To"] = receiver_email + + html = f"""\ + + +

Nuevo comentario de usuario en AIdeaText

+

Nombre: {name}

+

Email: {email}

+

Comentario: {feedback}

+ + + """ + + part = MIMEText(html, "html") + message.attach(part) + + try: + with smtplib.SMTP_SSL("smtp.titan.email", 465) as server: + logger.info("Conectado al servidor SMTP") + server.login(sender_email, password) + logger.info("Inicio de sesión exitoso") + server.sendmail(sender_email, receiver_email, message.as_string()) + logger.info(f"Correo enviado de {sender_email} a {receiver_email}") + logger.info(f"Email notification sent for user feedback from: {email}") + return True + except Exception as e: + logger.error(f"Error sending user feedback email notification: {str(e)}") + return False \ No newline at end of file diff --git a/src/modules/email/txt.txt b/src/modules/email/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/lost.py b/src/modules/lost.py new file mode 100644 index 0000000000000000000000000000000000000000..9a5a4fee0812e6dae79d898d23afedd8355961bd --- /dev/null +++ b/src/modules/lost.py @@ -0,0 +1,104 @@ +import streamlit as st +import pandas as pd +import matplotlib.pyplot as plt +import seaborn as sns +from datetime import datetime, timedelta +import pytz +import logging +from io import BytesIO +from reportlab.pdfgen import canvas +from reportlab.lib.pagesizes import letter +from docx import Document +from odf.opendocument import OpenDocumentText +from odf.text import P + +# Configuración de logging +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +# Asumimos que estas funciones están disponibles a través de las importaciones en load_database_functions +from .database.morphosintax_mongo_db import get_student_morphosyntax_analysis, get_student_morphosyntax_data +from .database.chat_db import get_chat_history + +def display_student_progress(username, lang_code, t): + logger.debug(f"Iniciando display_student_progress para {username}") + + st.title(f"{t.get('progress_of', 'Progreso de')} {username}") + + # Obtener datos de análisis morfosintáctico + morphosyntax_data = get_student_morphosyntax_data(username) + # Obtener historial de chat + chat_history = get_chat_history(username, None) + + if not morphosyntax_data and not chat_history: + logger.warning(f"No se encontraron datos para el estudiante {username}") + st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante.")) + st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero.")) + return + + # Resumen de actividades + with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True): + total_morphosyntax = len(morphosyntax_data) + total_chats = len(chat_history) + st.write(f"{t.get('total_morphosyntax_analyses', 'Total de análisis morfosintácticos')}: {total_morphosyntax}") + st.write(f"{t.get('total_chats', 'Total de conversaciones de chat')}: {total_chats}") + + # Gráfico de tipos de actividades + try: + activity_counts = pd.Series({ + 'Análisis Morfosintáctico': total_morphosyntax, + 'Conversaciones de Chat': total_chats + }) + fig, ax = plt.subplots() + sns.barplot(x=activity_counts.index, y=activity_counts.values, ax=ax) + ax.set_title(t.get("activity_types_chart", "Tipos de actividades realizadas")) + ax.set_ylabel(t.get("count", "Cantidad")) + st.pyplot(fig) + except Exception as e: + logger.error(f"Error al crear el gráfico: {e}") + st.error("No se pudo crear el gráfico de tipos de actividades.") + + # Función para generar el contenido del archivo de actividades de las últimas 48 horas + def generate_activity_content_48h(): + content = f"Actividades de {username} en las últimas 48 horas\n\n" + + two_days_ago = datetime.now(pytz.utc) - timedelta(days=2) + + try: + recent_morphosyntax = [a for a in morphosyntax_data if datetime.fromisoformat(a['timestamp']) > two_days_ago] + + content += f"Análisis morfosintácticos: {len(recent_morphosyntax)}\n" + for analysis in recent_morphosyntax: + content += f"- Análisis del {analysis['timestamp']}: {analysis['text'][:50]}...\n" + + recent_chats = [c for c in chat_history if datetime.fromisoformat(c['timestamp']) > two_days_ago] + + content += f"\nConversaciones de chat: {len(recent_chats)}\n" + for chat in recent_chats: + content += f"- Chat del {chat['timestamp']}: {len(chat['messages'])} mensajes\n" + except Exception as e: + logger.error(f"Error al generar el contenido de actividades: {e}") + content += "Error al recuperar los datos de actividades.\n" + + return content + + # Botones para descargar el histórico de actividades de las últimas 48 horas + st.subheader(t.get("download_history_48h", "Descargar Histórico de Actividades (Últimas 48 horas)")) + if st.button("Generar reporte de 48 horas"): + try: + report_content = generate_activity_content_48h() + st.text_area("Reporte de 48 horas", report_content, height=300) + st.download_button( + label="Descargar TXT (48h)", + data=report_content, + file_name="actividades_48h.txt", + mime="text/plain" + ) + except Exception as e: + logger.error(f"Error al generar el reporte: {e}") + st.error("No se pudo generar el reporte. Por favor, verifica los logs para más detalles.") + + logger.debug("Finalizando display_student_progress") + +# Funciones auxiliares para generar diferentes formatos de archivo (PDF, DOCX, ODT) se mantienen igual +# ... \ No newline at end of file diff --git a/src/modules/morphosyntax/__init__.py b/src/modules/morphosyntax/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b1da8c211b7315325f058baa1f599e8ccb01f15f --- /dev/null +++ b/src/modules/morphosyntax/__init__.py @@ -0,0 +1,29 @@ +from .morphosyntax_interface import ( + display_morphosyntax_interface, + display_arc_diagram + # display_morphosyntax_results +) + +from .morphosyntax_process import ( + process_morphosyntactic_input, + format_analysis_results, + perform_advanced_morphosyntactic_analysis, + get_repeated_words_colors, + highlight_repeated_words, + POS_COLORS, + POS_TRANSLATIONS +) + +__all__ = [ + 'display_morphosyntax_interface', + 'display_arc_diagram', + #'display_morphosyntax_results', + 'process_morphosyntactic_input', + 'format_analysis_results', + 'perform_advanced_morphosyntactic_analysis', + 'get_repeated_words_colors', + 'highlight_repeated_words', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] + diff --git a/src/modules/morphosyntax/__pycache__/__init__.cpython-311.pyc b/src/modules/morphosyntax/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d1de440bb8567809c523502b8eb53e8cbc879140 Binary files /dev/null and b/src/modules/morphosyntax/__pycache__/__init__.cpython-311.pyc differ diff --git a/src/modules/morphosyntax/__pycache__/morphosyntax_interface.cpython-311.pyc b/src/modules/morphosyntax/__pycache__/morphosyntax_interface.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..31626a87d30b5ef698ab28d4e18280c2ab3b2878 Binary files /dev/null and b/src/modules/morphosyntax/__pycache__/morphosyntax_interface.cpython-311.pyc differ diff --git a/src/modules/morphosyntax/__pycache__/morphosyntax_process.cpython-311.pyc b/src/modules/morphosyntax/__pycache__/morphosyntax_process.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..46b24c65f61758eaa702d506363ec7f9d05ceeaa Binary files /dev/null and b/src/modules/morphosyntax/__pycache__/morphosyntax_process.cpython-311.pyc differ diff --git a/src/modules/morphosyntax/morphosyntax_interface-Back1910-25-9-24.py b/src/modules/morphosyntax/morphosyntax_interface-Back1910-25-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..e8bb9d5dda50e6e595246de2a292bf0e3fa4536d --- /dev/null +++ b/src/modules/morphosyntax/morphosyntax_interface-Back1910-25-9-24.py @@ -0,0 +1,171 @@ +#modules/morphosyntax/morphosyntax_interface.py +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +from streamlit.components.v1 import html +import base64 +from .morphosyntax_process import process_morphosyntactic_input +from ..chatbot.chatbot import initialize_chatbot +from ..utils.widget_utils import generate_unique_key +from ..database.database_oldFromV2 import store_morphosyntax_result + +import logging +logger = logging.getLogger(__name__) + + +####################### VERSION ANTERIOR A LAS 20:00 24-9-24 + +def display_morphosyntax_interface(lang_code, nlp_models, t): + # Estilo CSS personalizado + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['morpho_initial_message']} +
+ """, unsafe_allow_html=True) + + # Inicializar el chatbot si no existe + if 'morphosyntax_chatbot' not in st.session_state: + st.session_state.morphosyntax_chatbot = initialize_chatbot('morphosyntactic') + + # Crear un contenedor para el chat + chat_container = st.container() + + # Mostrar el historial del chat + with chat_container: + if 'morphosyntax_chat_history' not in st.session_state: + st.session_state.morphosyntax_chat_history = [] + for i, message in enumerate(st.session_state.morphosyntax_chat_history): + with st.chat_message(message["role"]): + st.write(message["content"]) + if "visualizations" in message: + for viz in message["visualizations"]: + st.components.v1.html( + f""" +
+
+ {viz} +
+
+ """, + height=370, + scrolling=True + ) + + + # Input del usuario + user_input = st.chat_input( + t['morpho_input_label'], + key=generate_unique_key('morphosyntax', "chat_input") + ) + + if user_input: + # Añadir el mensaje del usuario al historial + st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) + + # Mostrar indicador de carga + with st.spinner(t.get('processing', 'Processing...')): + try: + # Procesar el input del usuario + response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t) + + # Añadir la respuesta al historial + message = { + "role": "assistant", + "content": response + } + if visualizations: + message["visualizations"] = visualizations + st.session_state.morphosyntax_chat_history.append(message) + + # Mostrar la respuesta más reciente + with st.chat_message("assistant"): + st.write(response) + if visualizations: + for i, viz in enumerate(visualizations): + st.components.v1.html( + f""" +
+
+ {viz} +
+
+ """, + height=350, + scrolling=True + ) + + # Si es un análisis, guardarlo en la base de datos + if user_input.startswith('/analisis_morfosintactico') and result: + store_morphosyntax_result( + st.session_state.username, + user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado + result.get('repeated_words', {}), + visualizations, + result.get('pos_analysis', []), + result.get('morphological_analysis', []), + result.get('sentence_structure', []) + ) + + except Exception as e: + st.error(f"{t['error_processing']}: {str(e)}") + + # Si es un análisis, guardarlo en la base de datos + if user_input.startswith('/analisis_morfosintactico') and result: + store_morphosyntax_result( + st.session_state.username, + user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado + result['repeated_words'], + visualizations, # Ahora pasamos todas las visualizaciones + result['pos_analysis'], + result['morphological_analysis'], + result['sentence_structure'] + ) + + # Forzar la actualización de la interfaz + st.rerun() + + # Botón para limpiar el historial del chat + if st.button(t['clear_chat'], key=generate_unique_key('morphosyntax', 'clear_chat')): + st.session_state.morphosyntax_chat_history = [] + st.rerun() + + + +''' +############ MODULO PARA DEPURACIÓN Y PRUEBAS ##################################################### +def display_morphosyntax_interface(lang_code, nlp_models, t): + st.subheader(t['morpho_title']) + + text_input = st.text_area( + t['warning_message'], + height=150, + key=generate_unique_key("morphosyntax", "text_area") + ) + + if st.button( + t['results_title'], + key=generate_unique_key("morphosyntax", "analyze_button") + ): + if text_input: + # Aquí iría tu lógica de análisis morfosintáctico + # Por ahora, solo mostraremos un mensaje de placeholder + st.info(t['analysis_placeholder']) + else: + st.warning(t['no_text_warning']) +### +################################################# +''' diff --git a/src/modules/morphosyntax/morphosyntax_interface-BackUp_Dec24_OK.py b/src/modules/morphosyntax/morphosyntax_interface-BackUp_Dec24_OK.py new file mode 100644 index 0000000000000000000000000000000000000000..490e5ed0e2ad0652d432e79d31e4a05236b4f2f1 --- /dev/null +++ b/src/modules/morphosyntax/morphosyntax_interface-BackUp_Dec24_OK.py @@ -0,0 +1,322 @@ +#modules/morphosyntax/morphosyntax_interface.py +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +from streamlit.components.v1 import html +import spacy +from spacy import displacy +import spacy_streamlit +import pandas as pd +import base64 +import re + +# Importar desde morphosyntax_process.py +from .morphosyntax_process import ( + process_morphosyntactic_input, + format_analysis_results, + perform_advanced_morphosyntactic_analysis, # Añadir esta importación + get_repeated_words_colors, # Y estas también + highlight_repeated_words, + POS_COLORS, + POS_TRANSLATIONS +) + +from ..utils.widget_utils import generate_unique_key + +from ..database.morphosintax_mongo_db import store_student_morphosyntax_result +from ..database.chat_mongo_db import store_chat_history, get_chat_history + +# from ..database.morphosintaxis_export import export_user_interactions + +import logging +logger = logging.getLogger(__name__) + +############################################################################################################ +def display_morphosyntax_interface(lang_code, nlp_models, morpho_t): + try: + # 1. Inicializar el estado morfosintáctico si no existe + if 'morphosyntax_state' not in st.session_state: + st.session_state.morphosyntax_state = { + 'input_text': "", + 'analysis_count': 0, + 'last_analysis': None + } + + # 2. Campo de entrada de texto con key única basada en el contador + input_key = f"morpho_input_{st.session_state.morphosyntax_state['analysis_count']}" + + sentence_input = st.text_area( + morpho_t.get('morpho_input_label', 'Enter text to analyze'), + height=150, + placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...'), + key=input_key + ) + + # 3. Actualizar el estado con el texto actual + st.session_state.morphosyntax_state['input_text'] = sentence_input + + # 4. Crear columnas para el botón + col1, col2, col3 = st.columns([2,1,2]) + + # 5. Botón de análisis en la columna central + with col1: + analyze_button = st.button( + morpho_t.get('morpho_analyze_button', 'Analyze Morphosyntax'), + key=f"morpho_button_{st.session_state.morphosyntax_state['analysis_count']}", + type="primary", # Nuevo en Streamlit 1.39.0 + icon="🔍", # Nuevo en Streamlit 1.39.0 + disabled=not bool(sentence_input.strip()), # Se activa solo cuando hay texto + use_container_width=True + ) + + # 6. Lógica de análisis + if analyze_button and sentence_input.strip(): # Verificar que haya texto y no solo espacios + try: + with st.spinner(morpho_t.get('processing', 'Processing...')): + # Obtener el modelo específico del idioma y procesar el texto + doc = nlp_models[lang_code](sentence_input) + + # Realizar análisis morfosintáctico con el mismo modelo + advanced_analysis = perform_advanced_morphosyntactic_analysis( + sentence_input, + nlp_models[lang_code] + ) + + # Guardar resultado en el estado de la sesión + st.session_state.morphosyntax_result = { + 'doc': doc, + 'advanced_analysis': advanced_analysis + } + + # Incrementar el contador de análisis + st.session_state.morphosyntax_state['analysis_count'] += 1 + + # Guardar el análisis en la base de datos + if store_student_morphosyntax_result( + username=st.session_state.username, + text=sentence_input, + arc_diagrams=advanced_analysis['arc_diagrams'] + ): + st.success(morpho_t.get('success_message', 'Analysis saved successfully')) + + # Mostrar resultados + display_morphosyntax_results( + st.session_state.morphosyntax_result, + lang_code, + morpho_t + ) + else: + st.error(morpho_t.get('error_message', 'Error saving analysis')) + + except Exception as e: + logger.error(f"Error en análisis morfosintáctico: {str(e)}") + st.error(morpho_t.get('error_processing', f'Error processing text: {str(e)}')) + + # 7. Mostrar resultados previos si existen + elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None: + display_morphosyntax_results( + st.session_state.morphosyntax_result, + lang_code, + morpho_t + ) + elif not sentence_input.strip(): + st.info(morpho_t.get('morpho_initial_message', 'Enter text to begin analysis')) + + except Exception as e: + logger.error(f"Error general en display_morphosyntax_interface: {str(e)}") + st.error("Se produjo un error. Por favor, intente de nuevo.") + st.error(f"Detalles del error: {str(e)}") # Añadido para mejor debugging + +############################################################################################################ +def display_morphosyntax_results(result, lang_code, morpho_t): + """ + Muestra los resultados del análisis morfosintáctico. + Args: + result: Resultado del análisis + lang_code: Código del idioma + t: Diccionario de traducciones + """ + # Obtener el diccionario de traducciones morfosintácticas + # morpho_t = t.get('MORPHOSYNTACTIC', {}) + + if result is None: + st.warning(morpho_t.get('no_results', 'No results available')) + return + + doc = result['doc'] + advanced_analysis = result['advanced_analysis'] + + # Mostrar leyenda + st.markdown(f"##### {morpho_t.get('legend', 'Legend: Grammatical categories')}") + legend_html = "
" + for pos, color in POS_COLORS.items(): + if pos in POS_TRANSLATIONS[lang_code]: + legend_html += f"
{POS_TRANSLATIONS[lang_code][pos]}
" + legend_html += "
" + st.markdown(legend_html, unsafe_allow_html=True) + + # Mostrar análisis de palabras repetidas + word_colors = get_repeated_words_colors(doc) + with st.expander(morpho_t.get('repeated_words', 'Repeated words'), expanded=True): + highlighted_text = highlight_repeated_words(doc, word_colors) + st.markdown(highlighted_text, unsafe_allow_html=True) + + # Mostrar estructura de oraciones + with st.expander(morpho_t.get('sentence_structure', 'Sentence structure'), expanded=True): + for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): + sentence_str = ( + f"**{morpho_t.get('sentence', 'Sentence')} {i+1}** " # Aquí está el cambio + f"{morpho_t.get('root', 'Root')}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " # Y aquí + f"{morpho_t.get('subjects', 'Subjects')}: {', '.join(sent_analysis['subjects'])} -- " # Y aquí + f"{morpho_t.get('objects', 'Objects')}: {', '.join(sent_analysis['objects'])} -- " # Y aquí + f"{morpho_t.get('verbs', 'Verbs')}: {', '.join(sent_analysis['verbs'])}" # Y aquí + ) + st.markdown(sentence_str) + + # Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico + col1, col2 = st.columns(2) + + with col1: + with st.expander(morpho_t.get('pos_analysis', 'Part of speech'), expanded=True): + pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) + + # Traducir las etiquetas POS a sus nombres en el idioma seleccionado + pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Renombrar las columnas para mayor claridad + pos_df = pos_df.rename(columns={ + 'pos': morpho_t.get('grammatical_category', 'Grammatical category'), + 'count': morpho_t.get('count', 'Count'), + 'percentage': morpho_t.get('percentage', 'Percentage'), + 'examples': morpho_t.get('examples', 'Examples') + }) + + # Mostrar el dataframe + st.dataframe(pos_df) + + with col2: + with st.expander(morpho_t.get('morphological_analysis', 'Morphological Analysis'), expanded=True): + # 1. Crear el DataFrame inicial + morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) + + # 2. Primero renombrar las columnas usando las traducciones de la interfaz + column_mapping = { + 'text': morpho_t.get('word', 'Word'), + 'lemma': morpho_t.get('lemma', 'Lemma'), + 'pos': morpho_t.get('grammatical_category', 'Grammatical category'), + 'dep': morpho_t.get('dependency', 'Dependency'), + 'morph': morpho_t.get('morphology', 'Morphology') + } + + # 3. Aplicar el renombrado + morph_df = morph_df.rename(columns=column_mapping) + + # 4. Traducir las categorías gramaticales usando POS_TRANSLATIONS global + grammatical_category = morpho_t.get('grammatical_category', 'Grammatical category') + morph_df[grammatical_category] = morph_df[grammatical_category].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # 2.2 Traducir dependencias usando traducciones específicas + dep_translations = { + + 'es': { + 'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', + 'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', + 'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', + 'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', + 'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal', + 'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva', + 'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', + 'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo', + 'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', + 'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación' + }, + + 'en': { + 'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', + 'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', + 'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', + 'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', + 'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', + 'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', + 'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', + 'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', + 'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' + }, + + 'fr': { + 'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', + 'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique', + 'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', + 'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', + 'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant', + 'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée', + 'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', + 'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation' + } + } + + dependency = morpho_t.get('dependency', 'Dependency') + morph_df[dependency] = morph_df[dependency].map(lambda x: dep_translations[lang_code].get(x, x)) + + morph_translations = { + 'es': { + 'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido', + 'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', + 'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', + 'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', + 'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', + 'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', + 'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' + }, + + 'en': { + 'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', + 'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', + 'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', + 'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', + 'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' + }, + + 'fr': { + 'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom', + 'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', + 'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', + 'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe', + 'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' + } + } + + def translate_morph(morph_string, lang_code): + for key, value in morph_translations[lang_code].items(): + morph_string = morph_string.replace(key, value) + return morph_string + + morphology = morpho_t.get('morphology', 'Morphology') + morph_df[morphology] = morph_df[morphology].apply(lambda x: translate_morph(x, lang_code)) + + st.dataframe(morph_df) + + # Mostrar diagramas de arco + with st.expander(morpho_t.get('arc_diagram', 'Syntactic analysis: Arc diagram'), expanded=True): + sentences = list(doc.sents) + arc_diagrams = [] + + for i, sent in enumerate(sentences): + st.subheader(f"{morpho_t.get('sentence', 'Sentence')} {i+1}") + html = displacy.render(sent, style="dep", options={"distance": 100}) + html = html.replace('height="375"', 'height="200"') + html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', + lambda m: f']*>', + lambda m: m.group(0).replace('height="450"', 'height="300"'), + svg_html + ) + svg_html = re.sub( + r']*transform="translate\((\d+),(\d+)\)"', + lambda m: f'{svg_html}' + return diagram_html + + except Exception as e: + logger.error(f"Error en display_arc_diagram: {str(e)}") + return "

Error generando diagrama

" + +########################################################################### +def display_morphosyntax_interface(lang_code, nlp_models, morpho_t): + """ + Interfaz principal para la visualización de diagramas de arco + (Texto Base vs Iteraciones), usando traducciones con morpho_t. + """ + # CSS para layout y estilo + st.markdown(""" + + """, unsafe_allow_html=True) + + # 1) Inicializar estados + initialize_arc_analysis_state() + arc_state = st.session_state.arc_analysis_state + + # 2) Crear pestañas con etiquetas traducidas + tab_text_base = morpho_t.get('tab_text_baseline', 'Ingresa la primera versión de tu texto') + tab_iterations = morpho_t.get('tab_iterations', 'Produce nuevas versiones de tu primer texto') + tabs = st.tabs([tab_text_base, tab_iterations]) + + # =================== PESTAÑA 1: Texto Base ========================== + with tabs[0]: + # st.subheader(morpho_t.get('analysis_base_subheader', "Análisis de Texto Base")) + + # Textarea de texto base + arc_state["base_text"] = st.text_area( + morpho_t.get('input_baseline_text', "Ingresa el primer texto para analizarlo"), + value=arc_state["base_text"], + key="base_text_input", + height=150 + ) + + # Botón para analizar texto base + if st.button(morpho_t.get('btn_analyze_baseline', "Analizar la primera versión de tu texto"), key="btn_analyze_base"): + if not arc_state["base_text"].strip(): + st.warning(morpho_t.get('warn_enter_text', "Ingrese un texto nuevo para analizarlo.")) + else: + try: + # Procesar con spaCy + doc = nlp_models[lang_code](arc_state["base_text"]) + base_arc_html = display_arc_diagram(doc) + arc_state["base_diagram"] = base_arc_html + + # Guardar en Mongo + analysis = perform_advanced_morphosyntactic_analysis( + arc_state["base_text"], + nlp_models[lang_code] + ) + base_id = store_student_morphosyntax_base( + username=st.session_state.username, + text=arc_state["base_text"], + arc_diagrams=analysis["arc_diagrams"] + ) + if base_id: + arc_state["base_id"] = base_id + saved_msg = morpho_t.get('analysis_base_saved', "Análisis base guardado. ID: {base_id}") + st.success(saved_msg.format(base_id=base_id)) + + except Exception as exc: + st.error(morpho_t.get('error_processing_baseline', "Error al procesar el texto inicial")) + logger.error(f"Error en análisis base: {str(exc)}") + + # Botón para iniciar nuevo análisis + if st.button(morpho_t.get('btn_new_morpho_analysis', "Nuevo análisis morfosintático"), key="btn_reset_base"): + # Si fuera necesario recargar la app por completo: + # st.experimental_rerun() + reset_arc_analysis_state() + + # Mostrar diagrama base + if arc_state["base_diagram"]: + st.markdown("
", unsafe_allow_html=True) + st.markdown(f"#### {morpho_t.get('arc_diagram_baseline_label', 'Diagrama de arco del texto inicial')}") + st.write(arc_state["base_diagram"], unsafe_allow_html=True) + else: + if arc_state["base_text"].strip(): + # Solo mostrar si ya hay texto base pero no se ha procesado + st.info(morpho_t.get('baseline_diagram_not_available', "Diagrama de arco del texto inicial no disponible.")) + + # ================== PESTAÑA 2: Iteraciones ========================== + with tabs[1]: + #st.subheader(morpho_t.get('iteration_text_subheader', "Nueva versión del texto inicial")) + + # Verificar que exista un texto base + if not arc_state["base_id"]: + st.info(morpho_t.get('info_first_analyze_base', + "Verifica la existencia de un texto anterior.")) + return + + # --- 1) Mostrar SIEMPRE el diagrama base arriba --- + st.markdown(f"#### {morpho_t.get('arc_diagram_base_label', 'Diagrama de arco del texto inicial')}") + if arc_state["base_diagram"]: + st.write(arc_state["base_diagram"], unsafe_allow_html=True) + else: + st.info(morpho_t.get('baseline_diagram_not_available', "Diagrama de arco del texto inicial no disponible.")) + + # --- 2) Caja de texto para la iteración --- + st.markdown("
", unsafe_allow_html=True) + #st.subheader(morpho_t.get('iteration_text_subheader', "Ingresa una nueva versión del texto inicial y compara los arcos de ambos textos")) + + arc_state["iteration_text"] = st.text_area( + morpho_t.get('input_iteration_text', "Ingresa una nueva versión del texto inicial y compara los arcos de ambos textos"), + value=arc_state["iteration_text"], + height=150 + ) + + # Botón para analizar iteración + if st.button(morpho_t.get('btn_analyze_iteration', "Analizar Cambios"), key="btn_analyze_iteration"): + if not arc_state["iteration_text"].strip(): + st.warning(morpho_t.get('warn_enter_iteration_text', "Ingresa una nueva versión del texto inicial y compara los arcos de ambos textos.")) + else: + try: + # Procesar con spaCy + doc_iter = nlp_models[lang_code](arc_state["iteration_text"]) + arc_html_iter = display_arc_diagram(doc_iter) + arc_state["iteration_diagram"] = arc_html_iter + + # Guardar en Mongo + analysis_iter = perform_advanced_morphosyntactic_analysis( + arc_state["iteration_text"], + nlp_models[lang_code] + ) + iteration_id = store_student_morphosyntax_iteration( + username=st.session_state.username, + base_id=arc_state["base_id"], + original_text=arc_state["base_text"], + iteration_text=arc_state["iteration_text"], + arc_diagrams=analysis_iter["arc_diagrams"] + ) + if iteration_id: + saved_iter_msg = morpho_t.get('iteration_saved', "Cambios guardados correctamente. ID: {iteration_id}") + st.success(saved_iter_msg.format(iteration_id=iteration_id)) + + except Exception as exc: + st.error(morpho_t.get('error_iteration', "Error procesando los nuevos cambios")) + logger.error(f"Error en iteración: {str(exc)}") + + + # --- 3) Mostrar diagrama de iteración debajo --- + if arc_state["iteration_diagram"]: + st.markdown("
", unsafe_allow_html=True) + st.markdown(f"#### {morpho_t.get('arc_diagram_iteration_label', 'Diagrama de Arco (Iteración)')}") + st.write(arc_state["iteration_diagram"], unsafe_allow_html=True) diff --git a/src/modules/morphosyntax/morphosyntax_interface_BackUp_Dec-28-Ok.py b/src/modules/morphosyntax/morphosyntax_interface_BackUp_Dec-28-Ok.py new file mode 100644 index 0000000000000000000000000000000000000000..38ab7f95c54e79429398ecc4539fb3340ff52520 --- /dev/null +++ b/src/modules/morphosyntax/morphosyntax_interface_BackUp_Dec-28-Ok.py @@ -0,0 +1,164 @@ +#modules/morphosyntax/morphosyntax_interface.py + +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +from streamlit.components.v1 import html +import spacy +from spacy import displacy +import spacy_streamlit +import pandas as pd +import base64 +import re + +from .morphosyntax_process import ( + process_morphosyntactic_input, + format_analysis_results, + perform_advanced_morphosyntactic_analysis, + get_repeated_words_colors, + highlight_repeated_words, + POS_COLORS, + POS_TRANSLATIONS +) + +from ..utils.widget_utils import generate_unique_key +from ..database.morphosintax_mongo_db import store_student_morphosyntax_result +from ..database.chat_mongo_db import store_chat_history, get_chat_history + +import logging +logger = logging.getLogger(__name__) + + +def display_morphosyntax_interface(lang_code, nlp_models, morpho_t): + try: + # Inicializar el estado si no existe + if 'morphosyntax_state' not in st.session_state: + st.session_state.morphosyntax_state = { + 'analysis_count': 0, + 'current_text': '', # Almacenar el texto actual + 'last_analysis': None, + 'needs_update': False # Flag para actualización + } + + # Campo de entrada de texto que mantiene su valor + text_key = "morpho_text_input" + + # Función para manejar cambios en el texto + def on_text_change(): + st.session_state.morphosyntax_state['current_text'] = st.session_state[text_key] + st.session_state.morphosyntax_state['needs_update'] = True + + # Recuperar el texto anterior si existe + default_text = st.session_state.morphosyntax_state.get('current_text', '') + + sentence_input = st.text_area( + morpho_t.get('morpho_input_label', 'Enter text to analyze'), + value=default_text, # Usar el texto guardado + height=150, + key=text_key, + on_change=on_text_change, + placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...') + ) + + # Botón de análisis + col1, col2, col3 = st.columns([2,1,2]) + with col1: + analyze_button = st.button( + morpho_t.get('morpho_analyze_button', 'Analyze Morphosyntax'), + key=f"morpho_button_{st.session_state.morphosyntax_state['analysis_count']}", + type="primary", + icon="🔍", + disabled=not bool(sentence_input.strip()), + use_container_width=True + ) + + # Procesar análisis solo cuando sea necesario + if (analyze_button or st.session_state.morphosyntax_state['needs_update']) and sentence_input.strip(): + try: + with st.spinner(morpho_t.get('processing', 'Processing...')): + doc = nlp_models[lang_code](sentence_input) + advanced_analysis = perform_advanced_morphosyntactic_analysis( + sentence_input, + nlp_models[lang_code] + ) + + st.session_state.morphosyntax_result = { + 'doc': doc, + 'advanced_analysis': advanced_analysis + } + + # Solo guardar en DB si fue un click en el botón + if analyze_button: + if store_student_morphosyntax_result( + username=st.session_state.username, + text=sentence_input, + arc_diagrams=advanced_analysis['arc_diagrams'] + ): + st.success(morpho_t.get('success_message', 'Analysis saved successfully')) + st.session_state.morphosyntax_state['analysis_count'] += 1 + + st.session_state.morphosyntax_state['needs_update'] = False + + # Mostrar resultados en un contenedor específico + with st.container(): + display_morphosyntax_results( + st.session_state.morphosyntax_result, + lang_code, + morpho_t + ) + + except Exception as e: + logger.error(f"Error en análisis morfosintáctico: {str(e)}") + st.error(morpho_t.get('error_processing', f'Error processing text: {str(e)}')) + + # Mostrar resultados previos si existen + elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result: + with st.container(): + display_morphosyntax_results( + st.session_state.morphosyntax_result, + lang_code, + morpho_t + ) + + except Exception as e: + logger.error(f"Error general en display_morphosyntax_interface: {str(e)}") + st.error("Se produjo un error. Por favor, intente de nuevo.") + + + +def display_morphosyntax_results(result, lang_code, morpho_t): + """ + Muestra solo el análisis sintáctico con diagramas de arco. + """ + if result is None: + st.warning(morpho_t.get('no_results', 'No results available')) + return + + doc = result['doc'] + + # Análisis sintáctico (diagramas de arco) + st.markdown(f"### {morpho_t.get('arc_diagram', 'Syntactic analysis: Arc diagram')}") + + with st.container(): + sentences = list(doc.sents) + for i, sent in enumerate(sentences): + with st.container(): + st.subheader(f"{morpho_t.get('sentence', 'Sentence')} {i+1}") + try: + html = displacy.render(sent, style="dep", options={ + "distance": 100, + "arrow_spacing": 20, + "word_spacing": 30 + }) + # Ajustar dimensiones del SVG + html = html.replace('height="375"', 'height="200"') + html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', + lambda m: f'{html}' + st.write(html, unsafe_allow_html=True) + except Exception as e: + logger.error(f"Error rendering sentence {i}: {str(e)}") + st.error(f"Error displaying diagram for sentence {i+1}") diff --git a/src/modules/morphosyntax/morphosyntax_interface_vOk-30-12-24.py b/src/modules/morphosyntax/morphosyntax_interface_vOk-30-12-24.py new file mode 100644 index 0000000000000000000000000000000000000000..e1371cb28d2de38bc8671bcaee75b675e171b2e8 --- /dev/null +++ b/src/modules/morphosyntax/morphosyntax_interface_vOk-30-12-24.py @@ -0,0 +1,247 @@ +# modules/morphosyntax/morphosyntax_interface.py + +import streamlit as st +import re +import logging +from spacy import displacy + +# Se asume que la función perform_advanced_morphosyntactic_analysis +# y los métodos store_student_morphosyntax_base/iteration existen. +from ..morphosyntax.morphosyntax_process import perform_advanced_morphosyntactic_analysis +from ..database.morphosyntax_iterative_mongo_db import ( + store_student_morphosyntax_base, + store_student_morphosyntax_iteration, +) + +logger = logging.getLogger(__name__) + +########################################################################### +def initialize_arc_analysis_state(): + """ + Inicializa el estado de análisis de arcos (base e iteraciones) si no existe. + """ + if "arc_analysis_state" not in st.session_state: + st.session_state.arc_analysis_state = { + "base_id": None, + "base_text": "", + "base_diagram": None, + "iteration_text": "", + "iteration_diagram": None, + } + logger.info("Estado de análisis de arcos inicializado.") + +########################################################################### +def reset_arc_analysis_state(): + """ + Resetea completamente el estado de análisis de arcos. + """ + st.session_state.arc_analysis_state = { + "base_id": None, + "base_text": "", + "base_diagram": None, + "iteration_text": "", + "iteration_diagram": None, + } + logger.info("Estado de arcos reseteado.") + +########################################################################### +def display_arc_diagram(doc): + """ + Genera y retorna el HTML del diagrama de arco para un `Doc` de spaCy. + No imprime directamente en pantalla; regresa el HTML para + usar con `st.write(..., unsafe_allow_html=True)`. + """ + try: + diagram_html = "" + for sent in doc.sents: + svg_html = displacy.render( + sent, + style="dep", + options={ + "distance": 100, + "arrow_spacing": 20, + "word_spacing": 30 + } + ) + # Ajustar tamaños + svg_html = svg_html.replace('height="375"', 'height="200"') + svg_html = re.sub( + r']*>', + lambda m: m.group(0).replace('height="450"', 'height="300"'), + svg_html + ) + svg_html = re.sub( + r']*transform="translate\((\d+),(\d+)\)"', + lambda m: f'{svg_html}' + return diagram_html + + except Exception as e: + logger.error(f"Error en display_arc_diagram: {str(e)}") + return "

Error generando diagrama

" + +########################################################################### +def display_morphosyntax_interface(lang_code, nlp_models, morpho_t): + """ + Interfaz principal para la visualización de diagramas de arco + (Texto Base vs Iteraciones). + """ + # CSS para layout vertical y estable + st.markdown(""" + + """, unsafe_allow_html=True) + + # 1) Inicializar estados + initialize_arc_analysis_state() + arc_state = st.session_state.arc_analysis_state + + # 2) Creamos pestañas: "Texto Base" y "Iteraciones" + tabs = st.tabs(["Texto Base", "Iteraciones"]) + + # =================== PESTAÑA 1: Texto Base ========================== + with tabs[0]: + st.subheader("Análisis de Texto Base") + + # Botón para iniciar nuevo análisis + if st.button("Nuevo Análisis", key="btn_reset_base"): + # Solo limpiamos el estado; si requieres forzar reload, + # descomenta la siguiente línea: + # st.experimental_rerun() + reset_arc_analysis_state() + + # Textarea de texto base + arc_state["base_text"] = st.text_area( + "Ingrese su texto inicial", + value=arc_state["base_text"], + key="base_text_input", + height=150 + ) + + # Botón para analizar texto base + if st.button("Analizar Texto Base", key="btn_analyze_base"): + if not arc_state["base_text"].strip(): + st.warning("Ingrese un texto para analizar.") + else: + try: + # Procesar con spaCy + doc = nlp_models[lang_code](arc_state["base_text"]) + # Generar HTML del arco + arc_html = display_arc_diagram(doc) + arc_state["base_diagram"] = arc_html + + # Guardar en Mongo + analysis = perform_advanced_morphosyntactic_analysis( + arc_state["base_text"], + nlp_models[lang_code] + ) + base_id = store_student_morphosyntax_base( + username=st.session_state.username, + text=arc_state["base_text"], + arc_diagrams=analysis["arc_diagrams"] + ) + if base_id: + arc_state["base_id"] = base_id + st.success(f"Análisis base guardado. ID: {base_id}") + + except Exception as exc: + st.error("Error procesando texto base") + logger.error(f"Error en análisis base: {str(exc)}") + + # Mostrar diagrama base + if arc_state["base_diagram"]: + st.markdown("
", unsafe_allow_html=True) + st.markdown("#### Diagrama de Arco (Texto Base)") + st.write(arc_state["base_diagram"], unsafe_allow_html=True) + + # ================== PESTAÑA 2: Iteraciones ========================== + with tabs[1]: + st.subheader("Análisis de Cambios / Iteraciones") + + # Verificar que exista texto base analizado + if not arc_state["base_id"]: + st.info("Primero analiza un texto base en la pestaña anterior.") + return + + # Mostrar texto base como referencia (solo lectura) + st.text_area( + "Texto Base (solo lectura)", + value=arc_state["base_text"], + height=80, + disabled=True + ) + + # Caja de texto para la iteración + arc_state["iteration_text"] = st.text_area( + "Texto de Iteración", + value=arc_state["iteration_text"], + height=150 + ) + + # Botón analizar iteración + if st.button("Analizar Cambios", key="btn_analyze_iteration"): + if not arc_state["iteration_text"].strip(): + st.warning("Ingrese texto de iteración.") + else: + try: + # Procesar con spaCy + doc_iter = nlp_models[lang_code](arc_state["iteration_text"]) + arc_html_iter = display_arc_diagram(doc_iter) + arc_state["iteration_diagram"] = arc_html_iter + + # Guardar en Mongo + analysis_iter = perform_advanced_morphosyntactic_analysis( + arc_state["iteration_text"], + nlp_models[lang_code] + ) + iteration_id = store_student_morphosyntax_iteration( + username=st.session_state.username, + base_id=arc_state["base_id"], + original_text=arc_state["base_text"], + iteration_text=arc_state["iteration_text"], + arc_diagrams=analysis_iter["arc_diagrams"] + ) + if iteration_id: + st.success(f"Iteración guardada. ID: {iteration_id}") + + except Exception as exc: + st.error("Error procesando iteración") + logger.error(f"Error en iteración: {str(exc)}") + + # Mostrar diagrama de iteración + if arc_state["iteration_diagram"]: + st.markdown("
", unsafe_allow_html=True) + st.markdown("#### Diagrama de Arco (Iteración)") + st.write(arc_state["iteration_diagram"], unsafe_allow_html=True) + + # Comparación vertical (uno abajo del otro) + if arc_state["base_diagram"] and arc_state["iteration_diagram"]: + st.markdown("
", unsafe_allow_html=True) + st.markdown("### Comparación Vertical: Base vs. Iteración") + + st.markdown("**Diagrama Base**") + st.write(arc_state["base_diagram"], unsafe_allow_html=True) + + st.markdown("---") + st.markdown("**Diagrama Iterado**") + st.write(arc_state["iteration_diagram"], unsafe_allow_html=True) \ No newline at end of file diff --git a/src/modules/morphosyntax/morphosyntax_process-Back1910-25-9-24.py b/src/modules/morphosyntax/morphosyntax_process-Back1910-25-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..191855b00ca8237f7dfd88afc925a314e82a2dc4 --- /dev/null +++ b/src/modules/morphosyntax/morphosyntax_process-Back1910-25-9-24.py @@ -0,0 +1,29 @@ +#modules/morphosyntax/morphosyntax_process.py +from ..text_analysis.morpho_analysis import perform_advanced_morphosyntactic_analysis +from ..database.database_oldFromV2 import store_morphosyntax_result +import streamlit as st + +def process_morphosyntactic_input(user_input, lang_code, nlp_models, t): + if user_input.startswith('/analisis_morfosintactico'): + # Extraer el texto entre corchetes + text_to_analyze = user_input.split('[', 1)[1].rsplit(']', 1)[0] + + # Realizar el análisis morfosintáctico + result = perform_advanced_morphosyntactic_analysis(text_to_analyze, nlp_models[lang_code]) + + if result is None: + response = t.get('morphosyntactic_analysis_error', 'Error in morphosyntactic analysis') + return response, None, None + + # Preparar la respuesta + response = t.get('morphosyntactic_analysis_completed', 'Morphosyntactic analysis completed') + + # Obtener todos los diagramas de arco + visualizations = result['arc_diagram'] + + return response, visualizations, result + else: + # Para otros tipos de input, simplemente devolver la respuesta del chatbot + chatbot = st.session_state.morphosyntax_chatbot + response = chatbot.generate_response(user_input, lang_code) + return response, None, None diff --git a/src/modules/morphosyntax/morphosyntax_process.py b/src/modules/morphosyntax/morphosyntax_process.py new file mode 100644 index 0000000000000000000000000000000000000000..407d29a66a20998b951d842619e354ee4dac803b --- /dev/null +++ b/src/modules/morphosyntax/morphosyntax_process.py @@ -0,0 +1,132 @@ +#modules/morphosyntax/morphosyntax_process.py +import streamlit as st + +from ..text_analysis.morpho_analysis import ( + get_repeated_words_colors, + highlight_repeated_words, + generate_arc_diagram, + get_detailed_pos_analysis, + get_morphological_analysis, + get_sentence_structure_analysis, + perform_advanced_morphosyntactic_analysis, + POS_COLORS, + POS_TRANSLATIONS +) + +from ..database.morphosintax_mongo_db import store_student_morphosyntax_result + +import logging +logger = logging.getLogger(__name__) + + +def process_morphosyntactic_input(text, lang_code, nlp_models, t): + """ + Procesa el texto ingresado para realizar el análisis morfosintáctico. + + Args: + text: Texto a analizar + lang_code: Código del idioma + nlp_models: Diccionario de modelos spaCy + t: Diccionario de traducciones + + Returns: + tuple: (análisis, visualizaciones, texto_resaltado, mensaje) + """ + try: + # Realizar el análisis morfosintáctico + doc = nlp_models[lang_code](text) + + # Obtener el análisis avanzado + analysis = perform_advanced_morphosyntactic_analysis(text, nlp_models[lang_code]) + + # Generar visualizaciones - AQUÍ ESTÁ EL CAMBIO + arc_diagrams = generate_arc_diagram(doc) # Quitamos lang_code + + # Obtener palabras repetidas y texto resaltado + word_colors = get_repeated_words_colors(doc) + highlighted_text = highlight_repeated_words(doc, word_colors) + + # Guardar el análisis en la base de datos + store_student_morphosyntax_result( + st.session_state.username, + text, + { + 'arc_diagrams': arc_diagrams, + 'pos_analysis': analysis['pos_analysis'], + 'morphological_analysis': analysis['morphological_analysis'], + 'sentence_structure': analysis['sentence_structure'] + } + ) + + return { + 'analysis': analysis, + 'visualizations': arc_diagrams, + 'highlighted_text': highlighted_text, + 'success': True, + 'message': t.get('MORPHOSYNTACTIC', {}).get('success_message', 'Analysis completed successfully') + } + + except Exception as e: + logger.error(f"Error en el análisis morfosintáctico: {str(e)}") + return { + 'analysis': None, + 'visualizations': None, + 'highlighted_text': None, + 'success': False, + 'message': t.get('MORPHOSYNTACTIC', {}).get('error_message', f'Error in analysis: {str(e)}') + } + + +def format_analysis_results(analysis_result, t): + """ + Formatea los resultados del análisis para su visualización. + + Args: + analysis_result: Resultado del análisis morfosintáctico + t: Diccionario de traducciones + + Returns: + dict: Resultados formateados para visualización + """ + morpho_t = t.get('MORPHOSYNTACTIC', {}) + + if not analysis_result['success']: + return { + 'formatted_text': analysis_result['message'], + 'visualizations': None + } + + formatted_sections = [] + + # Formato para análisis POS + if 'pos_analysis' in analysis_result['analysis']: + pos_section = [f"### {morpho_t.get('pos_analysis', 'Part of Speech Analysis')}"] + for pos_item in analysis_result['analysis']['pos_analysis']: + pos_section.append( + f"- {morpho_t.get(pos_item['pos'], pos_item['pos'])}: " + f"{pos_item['count']} ({pos_item['percentage']}%)\n " + f"Ejemplos: {', '.join(pos_item['examples'])}" + ) + formatted_sections.append('\n'.join(pos_section)) + + # Agregar otras secciones de formato según sea necesario + + return { + 'formatted_text': '\n\n'.join(formatted_sections), + 'visualizations': analysis_result['visualizations'], + 'highlighted_text': analysis_result['highlighted_text'] + } + +# Re-exportar las funciones y constantes necesarias +__all__ = [ + 'process_morphosyntactic_input', + 'highlight_repeated_words', + 'generate_arc_diagram', + 'get_repeated_words_colors', + 'get_detailed_pos_analysis', + 'get_morphological_analysis', + 'get_sentence_structure_analysis', + 'perform_advanced_morphosyntactic_analysis', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] \ No newline at end of file diff --git a/src/modules/morphosyntax/morphosyntax_process_BackUp_Dec24_Ok.py b/src/modules/morphosyntax/morphosyntax_process_BackUp_Dec24_Ok.py new file mode 100644 index 0000000000000000000000000000000000000000..407d29a66a20998b951d842619e354ee4dac803b --- /dev/null +++ b/src/modules/morphosyntax/morphosyntax_process_BackUp_Dec24_Ok.py @@ -0,0 +1,132 @@ +#modules/morphosyntax/morphosyntax_process.py +import streamlit as st + +from ..text_analysis.morpho_analysis import ( + get_repeated_words_colors, + highlight_repeated_words, + generate_arc_diagram, + get_detailed_pos_analysis, + get_morphological_analysis, + get_sentence_structure_analysis, + perform_advanced_morphosyntactic_analysis, + POS_COLORS, + POS_TRANSLATIONS +) + +from ..database.morphosintax_mongo_db import store_student_morphosyntax_result + +import logging +logger = logging.getLogger(__name__) + + +def process_morphosyntactic_input(text, lang_code, nlp_models, t): + """ + Procesa el texto ingresado para realizar el análisis morfosintáctico. + + Args: + text: Texto a analizar + lang_code: Código del idioma + nlp_models: Diccionario de modelos spaCy + t: Diccionario de traducciones + + Returns: + tuple: (análisis, visualizaciones, texto_resaltado, mensaje) + """ + try: + # Realizar el análisis morfosintáctico + doc = nlp_models[lang_code](text) + + # Obtener el análisis avanzado + analysis = perform_advanced_morphosyntactic_analysis(text, nlp_models[lang_code]) + + # Generar visualizaciones - AQUÍ ESTÁ EL CAMBIO + arc_diagrams = generate_arc_diagram(doc) # Quitamos lang_code + + # Obtener palabras repetidas y texto resaltado + word_colors = get_repeated_words_colors(doc) + highlighted_text = highlight_repeated_words(doc, word_colors) + + # Guardar el análisis en la base de datos + store_student_morphosyntax_result( + st.session_state.username, + text, + { + 'arc_diagrams': arc_diagrams, + 'pos_analysis': analysis['pos_analysis'], + 'morphological_analysis': analysis['morphological_analysis'], + 'sentence_structure': analysis['sentence_structure'] + } + ) + + return { + 'analysis': analysis, + 'visualizations': arc_diagrams, + 'highlighted_text': highlighted_text, + 'success': True, + 'message': t.get('MORPHOSYNTACTIC', {}).get('success_message', 'Analysis completed successfully') + } + + except Exception as e: + logger.error(f"Error en el análisis morfosintáctico: {str(e)}") + return { + 'analysis': None, + 'visualizations': None, + 'highlighted_text': None, + 'success': False, + 'message': t.get('MORPHOSYNTACTIC', {}).get('error_message', f'Error in analysis: {str(e)}') + } + + +def format_analysis_results(analysis_result, t): + """ + Formatea los resultados del análisis para su visualización. + + Args: + analysis_result: Resultado del análisis morfosintáctico + t: Diccionario de traducciones + + Returns: + dict: Resultados formateados para visualización + """ + morpho_t = t.get('MORPHOSYNTACTIC', {}) + + if not analysis_result['success']: + return { + 'formatted_text': analysis_result['message'], + 'visualizations': None + } + + formatted_sections = [] + + # Formato para análisis POS + if 'pos_analysis' in analysis_result['analysis']: + pos_section = [f"### {morpho_t.get('pos_analysis', 'Part of Speech Analysis')}"] + for pos_item in analysis_result['analysis']['pos_analysis']: + pos_section.append( + f"- {morpho_t.get(pos_item['pos'], pos_item['pos'])}: " + f"{pos_item['count']} ({pos_item['percentage']}%)\n " + f"Ejemplos: {', '.join(pos_item['examples'])}" + ) + formatted_sections.append('\n'.join(pos_section)) + + # Agregar otras secciones de formato según sea necesario + + return { + 'formatted_text': '\n\n'.join(formatted_sections), + 'visualizations': analysis_result['visualizations'], + 'highlighted_text': analysis_result['highlighted_text'] + } + +# Re-exportar las funciones y constantes necesarias +__all__ = [ + 'process_morphosyntactic_input', + 'highlight_repeated_words', + 'generate_arc_diagram', + 'get_repeated_words_colors', + 'get_detailed_pos_analysis', + 'get_morphological_analysis', + 'get_sentence_structure_analysis', + 'perform_advanced_morphosyntactic_analysis', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] \ No newline at end of file diff --git a/src/modules/morphosyntax/txt.txt b/src/modules/morphosyntax/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/semantic/__init_.py b/src/modules/semantic/__init_.py new file mode 100644 index 0000000000000000000000000000000000000000..ba6219c1088c717ac77136cb933347733d716a35 --- /dev/null +++ b/src/modules/semantic/__init_.py @@ -0,0 +1,17 @@ +# modules/semantic/__init_.py + +from .semantic_interface import ( + display_semantic_interface, + display_semantic_results +) +from .semantic_process import ( + process_semantic_input, + format_semantic_results +) + +__all__ = [ + 'display_semantic_interface', + 'display_semantic_results', + 'process_semantic_input', + 'format_semantic_results' +] \ No newline at end of file diff --git a/src/modules/semantic/__pycache__/flexible_analysis_handler.cpython-311.pyc b/src/modules/semantic/__pycache__/flexible_analysis_handler.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ee65f50c83dd3bfd0530139fa905960ce57b8a24 Binary files /dev/null and b/src/modules/semantic/__pycache__/flexible_analysis_handler.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_float.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_float.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..afb9426ea5597b3d85ac0f0500d665a49b1a147b Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_float.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_float68ok.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_float68ok.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2736c7be7b369af9c9368810c98d590ef66db70e Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_float68ok.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_float86ok.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_float86ok.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0640e8983813bc16ee13251e6d6d65ffa23c823a Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_float86ok.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_float_reset.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_float_reset.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..021862ba760cca86a770a4d0c46349894e389ae6 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_float_reset.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c8a9a3c5527bfc1667cf12cb816298b9b8dc4314 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interfaceBackUp_2092024_1800.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interfaceBackUp_2092024_1800.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b49443b6b818aef2248867278c43369ca51a662 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interfaceBackUp_2092024_1800.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interfaceBorrados.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interfaceBorrados.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ef8bf460009df8fd59e3d489ebdce3163f2588f6 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interfaceBorrados.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interfaceKoKo.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interfaceKoKo.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8c42b43be508ed128eac77ae0f753dc575a9113e Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interfaceKoKo.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_1.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_1.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c9f0fef968b2f37b43dfc116c5f2ce2eb3d9e099 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_1.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_2.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_2.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..46222222f83623c6b7de8bb0a92c634af86f8744 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_2.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_2192024_1632.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_2192024_1632.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7d62dabaaf573d5de0a760a242a43332955c9f36 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_2192024_1632.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_3.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_3.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b9b5eec9852b9159bbf76c1f7d8482108c099803 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_3.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_4.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_4.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..701cbc0e83a28b4a25fd8aa80465fd5e79e7b01a Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_4.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_5.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_5.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..52ee832d6ece08e1f92d23f223e56796b1a2cc54 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_5.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_6.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_6.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dcbe12108da351a568e772abfbb883d25b08c517 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_6.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_61.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_61.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..386c8ac736aeeb2a120880d3e6bfae0facc9f7f2 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_61.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_610.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_610.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f60c48f197a142f57c9f59cb1055ae57db32407f Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_610.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_62.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_62.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fedd207e2531dc00d3ee98645be42383e194e8db Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_62.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_63.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_63.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..78b98d5ffad8ec43b02cdcafab3a6752e4a27ef7 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_63.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_64.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_64.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e94c4a23f3a5c2098964ce3f8d5d67d561e0a944 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_64.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_65.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_65.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4e45c7073838ffe64539d9470f4efecc2dad75b0 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_65.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_66.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_66.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0bd5c0b21aba6451de1963b18e79e2e8121f69f0 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_66.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_67.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_67.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4fa300c5559d94da29f1c2dc3a5c0712e028ea6f Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_67.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_68.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_68.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5bc6395eabbac5e54d20a38a4eb1aaf61e4e171e Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_68.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_681.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_681.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d13664fec98f1609721ede6a5ab8abf88480f375 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_681.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_68ok.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_68ok.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..85965738ee096cba107008fa62c5d60004d3fad7 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_68ok.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_69.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_69.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..66c5867ad061bca00a6ec984d824ea694fe26adc Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_69.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_7.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_7.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ef2c5bc6d30879a47186e7e17858e0b3a001bb04 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_7.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_StreamLitChat.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_StreamLitChat.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d43c979fafff38614b9565936d755342894b7abf Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_StreamLitChat.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_Test.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_Test.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f5c14d8bf89c9a1e8f5887e40f3c307ea0f43fbf Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_Test.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_afterParty.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_afterParty.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cce4f330ccd69352a6f6ec411dfa26d5fd01789c Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_afterParty.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_backup2092024_1930.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_backup2092024_1930.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7940c44b2027728a9e8478d2c5a508ed44070469 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_backup2092024_1930.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_backup_2092024.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_backup_2092024.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3db97b9995c894928a31892cda744d6c4da483f9 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_backup_2092024.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_backup_2192024_1230.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_backup_2192024_1230.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..64b09631b0b72880568c8077ba29bb75283d88c1 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_backup_2192024_1230.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_interface_vOk.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_interface_vOk.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c9f2fa094a416e6429b9a3bccb0312558c955c02 Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_interface_vOk.cpython-311.pyc differ diff --git a/src/modules/semantic/__pycache__/semantic_process.cpython-311.pyc b/src/modules/semantic/__pycache__/semantic_process.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..58e1056dd70a702aa4ea3f67e4ff20e54923fd9c Binary files /dev/null and b/src/modules/semantic/__pycache__/semantic_process.cpython-311.pyc differ diff --git a/src/modules/semantic/flexible_analysis_handler.py b/src/modules/semantic/flexible_analysis_handler.py new file mode 100644 index 0000000000000000000000000000000000000000..3e4396ab87a2a3559c06d41b388e7cdc4b843048 --- /dev/null +++ b/src/modules/semantic/flexible_analysis_handler.py @@ -0,0 +1,59 @@ +from typing import Dict, Any +import base64 +from io import BytesIO +from matplotlib.figure import Figure + +class FlexibleAnalysisHandler: + def __init__(self, analysis_data): + self.data = analysis_data + + def get_key_concepts(self): + return self.data.get('key_concepts', []) + + def get_concept_graph(self): + return self.data.get('concept_graph') + + def get_entity_graph(self): + return self.data.get('entity_graph') + + # Método genérico para obtener cualquier tipo de grafo + def get_graph(self, graph_type): + return self.data.get(graph_type) + + # Agrega más métodos según sea necesario + + +''' +class FlexibleAnalysisHandler: + def __init__(self, analysis_data: Dict[str, Any]): + self.data = analysis_data + + def get_key_concepts(self): + if 'key_concepts' in self.data: + return self.data['key_concepts'] + elif 'word_count' in self.data: + # Convertir word_count a un formato similar a key_concepts + return [(word, count) for word, count in self.data['word_count'].items()] + return [] + + def get_graph(self): + if 'graph' in self.data: + # Decodificar la imagen base64 + image_data = base64.b64decode(self.data['graph']) + return BytesIO(image_data) + elif 'arc_diagrams' in self.data: + # Devolver el primer diagrama de arco como SVG + return self.data['arc_diagrams'][0] + return None + + def get_pos_analysis(self): + return self.data.get('pos_analysis', []) + + def get_morphological_analysis(self): + return self.data.get('morphological_analysis', []) + + def get_sentence_structure(self): + return self.data.get('sentence_structure', []) + + # Agregar más métodos según sea necesario para otros tipos de análisis +''' \ No newline at end of file diff --git a/src/modules/semantic/logV6ite5.txt b/src/modules/semantic/logV6ite5.txt new file mode 100644 index 0000000000000000000000000000000000000000..27ff0010ade774a6e958f97c6f380c6b08050b14 --- /dev/null +++ b/src/modules/semantic/logV6ite5.txt @@ -0,0 +1,63 @@ +Request headers: + 'Cache-Control': 'no-cache' + 'x-ms-version': 'REDACTED' + 'x-ms-documentdb-query-iscontinuationexpected': 'REDACTED' + 'x-ms-consistency-level': 'REDACTED' + 'x-ms-documentdb-isquery': 'REDACTED' + 'Content-Type': 'application/query+json' + 'x-ms-session-token': 'REDACTED' + 'x-ms-documentdb-query-enablecrosspartition': 'REDACTED' + 'x-ms-date': 'REDACTED' + 'authorization': 'REDACTED' + 'Accept': 'application/json' + 'x-ms-cosmos-correlated-activityid': 'REDACTED' + 'Content-Length': '154' + 'User-Agent': 'azsdk-python-cosmos/4.7.0 Python/3.11.5 (Windows-10-10.0.22631-SP0)' +A body is sent with the request +INFO:azure.core.pipeline.policies.http_logging_policy:Response status: 200 +Response headers: + 'Content-Length': '377' + 'Date': 'Mon, 23 Sep 2024 16:50:28 GMT' + 'Content-Type': 'application/json' + 'Server': 'Compute' + 'x-ms-gatewayversion': 'REDACTED' + 'x-ms-activity-id': 'REDACTED' + 'x-ms-last-state-change-utc': 'REDACTED' + 'x-ms-resource-quota': 'REDACTED' + 'x-ms-resource-usage': 'REDACTED' + 'x-ms-schemaversion': 'REDACTED' + 'lsn': 'REDACTED' + 'x-ms-item-count': 'REDACTED' + 'x-ms-request-charge': 'REDACTED' + 'x-ms-alt-content-path': 'REDACTED' + 'x-ms-content-path': 'REDACTED' + 'x-ms-documentdb-partitionkeyrangeid': 'REDACTED' + 'x-ms-xp-role': 'REDACTED' + 'x-ms-cosmos-query-execution-info': 'REDACTED' + 'x-ms-global-Committed-lsn': 'REDACTED' + 'x-ms-number-of-read-regions': 'REDACTED' + 'x-ms-transport-request-id': 'REDACTED' + 'x-ms-cosmos-llsn': 'REDACTED' + 'x-ms-session-token': 'REDACTED' + 'x-ms-request-duration-ms': 'REDACTED' + 'x-ms-serviceversion': 'REDACTED' + 'x-ms-cosmos-is-partition-key-delete-pending': 'REDACTED' + 'x-ms-cosmos-physical-partition-id': 'REDACTED' +2024-09-23 10:50:28.499 `label` got an empty value. This is discouraged for accessibility reasons and may be disallowed in the future by raising an exception. Please provide a non-empty label and hide it with label_visibility if needed. +ERROR:modules.database.database:Error al obtener detalles de análisis para el usuario sebastian.marroquin@aideatext.ai: Error=2, Details='Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820; Reason: (Message: {"Errors":["The index path corresponding to the specified order-by item is excluded."]} +ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820, Request URI: /apps/8198d87f-2a8c-48ce-b2aa-d600d8339179/services/8cde3c70-163e-4ffe-9ef7-2e635e3612a9/partitions/617356c9-0748-483a-9063-d83f8fa10f24/replicas/133658946384147008s/, RequestStats: Microsoft.Azure.Cosmos.Tracing.TraceData.ClientSideRequestStatisticsTraceDatum, SDK: Windows/10.0.20348 cosmos-netstandard-sdk/3.18.0);););, full error: {'ok': 0.0, 'errmsg': 'Error=2, Details=\'Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820; Reason: (Message: {"Errors":["The index path corresponding to the specified order-by item is excluded."]}\r\nActivityId: 1232e510-97a7-434e-a4c1-fca9fcdb4820, Request URI: /apps/8198d87f-2a8c-48ce-b2aa-d600d8339179/services/8cde3c70-163e-4ffe-9ef7-2e635e3612a9/partitions/617356c9-0748-483a-9063-d83f8fa10f24/replicas/133658946384147008s/, RequestStats: Microsoft.Azure.Cosmos.Tracing.TraceData.ClientSideRequestStatisticsTraceDatum, SDK: Windows/10.0.20348 cosmos-netstandard-sdk/3.18.0);););', 'code': 2, 'codeName': 'BadValue'} +ERROR:modules.database.database:Error al obtener detalles de análisis para el usuario sebastian.marroquin@aideatext.ai: Error=2, Details='Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c; Reason: (Message: {"Errors":["The index path corresponding to the specified order-by item is excluded."]} +ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c, Request URI: /apps/8198d87f-2a8c-48ce-b2aa-d600d8339179/services/8cde3c70-163e-4ffe-9ef7-2e635e3612a9/partitions/617356c9-0748-483a-9063-d83f8fa10f24/replicas/133710761763567388s/, RequestStats: Microsoft.Azure.Cosmos.Tracing.TraceData.ClientSideRequestStatisticsTraceDatum, SDK: Windows/10.0.20348 cosmos-netstandard-sdk/3.18.0);););, full error: {'ok': 0.0, 'errmsg': 'Error=2, Details=\'Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c; Reason: (Message: {"Errors":["The index path corresponding to the specified order-by item is excluded."]}\r\nActivityId: 42ca6540-5e85-417e-ac10-84c49e87515c, Request URI: /apps/8198d87f-2a8c-48ce-b2aa-d600d8339179/services/8cde3c70-163e-4ffe-9ef7-2e635e3612a9/partitions/617356c9-0748-483a-9063-d83f8fa10f24/replicas/133710761763567388s/, RequestStats: Microsoft.Azure.Cosmos.Tracing.TraceData.ClientSideRequestStatisticsTraceDatum, SDK: Windows/10.0.20348 cosmos-netstandard-sdk/3.18.0);););', 'code': 2, 'codeName': 'BadValue'} +ERROR:modules.database.database:Error al obtener detalles de análisis para el usuario sebastian.marroquin@aideatext.ai: Error=2, Details='Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32; Reason: (Message: {"Errors":["The index path corresponding to the specified order-by item is excluded."]} +ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32, Request URI: /apps/8198d87f-2a8c-48ce-b2aa-d600d8339179/services/8cde3c70-163e-4ffe-9ef7-2e635e3612a9/partitions/617356c9-0748-483a-9063-d83f8fa10f24/replicas/133710761763567388s/, RequestStats: Microsoft.Azure.Cosmos.Tracing.TraceData.ClientSideRequestStatisticsTraceDatum, SDK: Windows/10.0.20348 cosmos-netstandard-sdk/3.18.0);););, full error: {'ok': 0.0, 'errmsg': 'Error=2, Details=\'Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32; Reason: (Response status code does not indicate success: BadRequest (400); Substatus: 0; ActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32; Reason: (Message: {"Errors":["The index path corresponding to the specified order-by item is excluded."]}\r\nActivityId: 20b3da1e-1bb8-4857-8d0d-80fd19d49e32, Request URI: /apps/8198d87f-2a8c-48ce-b2aa-d600d8339179/services/8cde3c70-163e-4ffe-9ef7-2e635e3612a9/partitions/617356c9-0748-483a-9063-d83f8fa10f24/replicas/133710761763567388s/, RequestStats: Microsoft.Azure.Cosmos.Tracing.TraceData.ClientSideRequestStatisticsTraceDatum, SDK: Windows/10.0.20348 cosmos-netstandard-sdk/3.18.0);););', 'code': 2, 'codeName': 'BadValue'} +ERROR:modules.ui.ui:Error en la pestaña 3: 'timestamp' +Traceback (most recent call last): + File "M:\test-3dev\modules\ui\ui.py", line 177, in user_page + func(st.session_state.username, st.session_state.lang_code, t) + File "M:\test-3dev\modules\studentact\student_activities.py", line 88, in display_student_progress + st.subheader(f"Conversación {i+1} - {chat['timestamp']}") + ~~~~^^^^^^^^^^^^^ +KeyError: 'timestamp' +INFO:root:display_feedback_form called with lang_code: es +INFO:modules.ui.ui:Finalizada la renderización de user_page +INFO:modules.ui.ui:Estado final de la sesión: {'semantic_file_selector_sebastian.marroquin@aideatext.ai': 'Uso de stanza en el análisis sintác.txt', 'graph_visible': True, 'logout_button_sebastian.marroquin@aideatext.ai_es': False, 'discourse_chatbot': , 'language_selector_sebastian.marroquin@aideatext.ai_es': 'Español', 'semantic_chatbot': , 'semantic_chat_history': [{'role': 'user', 'content': 'Hola'}, {'role': 'assistant', 'content': 'Hola, gracias por contactarme. \n\nPara ayudarte con el requerimiento funcional a nivel sintáctico, primero elaboraré una secuencia didáctica estándar de cómo enseñar a mejorar las habilidades de redacción de un estudiante partiendo de un análisis sintáctico:\n\nPaso 1: Leer el texto redactado por el estudiante e identificar problemas de sintaxis como oraciones mal construidas, errores en concordancia de género y número, uso incorrecto de tiempos verbales, etc. \n\nPaso 2: Explicar al estudiante los conceptos básicos de sintaxis y estructura oracional. Por ejemplo, sujeto, verbo, complementos, oraciones simples vs compuestas, etc.\n\nPaso 3: Presentar al estudiante ejemplos de oraciones con problemas sintácticos y pedirle que los identifique y corrija. Guiarlo en este proceso de autocorrección.\n\nPaso 4: Solicitar al estudiante que aplique lo aprendido a su propio texto, identificando y corrigiendo problemas de sintaxis. Se puede utilizar diferentes colores para resaltar dist'}], 'delete_audio prompt.txt.txt': False, 'db_initialized': {'mongodb': True, 'cosmos_sql': True}, 'file_contents': None, 'semantic_chat_input_sebastian.marroquin@aideatext.ai': 'Hola', 'lang_code': 'es', 'morphosyntax_chatbot': , 'semantic_send_message_sebastian.marroquin@aideatext.ai': False, 'delete_Semblanza.txt': False, 'morphosyntax_chat_input_sebastian.marroquin@aideatext.ai': None, 'nlp_models': {'es': , 'en': , 'fr': }, 'feedback_name_es': '', 'role': 'role', 'discourse_sebastian.marroquin@aideatext.ai_sebastian.marroquin@aideatext.ai': None, 'username': 'sebastian.marroquin@aideatext.ai', 'current_file_contents': 'Uso de stanza en el análisis sintáctico en la enseñanza de la redacción. \r\n\r\nStanza es una biblioteca de procesamiento del lenguaje natural (NLP) desarrollada por Stanford NLP Group, que ofrece una serie de herramientas de análisis lingüístico para muchos idiomas. Sus capacidades se extienden desde la segmentación de texto hasta análisis más complejos como el reconocimiento de partes del discurso, análisis de entidades nombradas, análisis sintáctico y semántico, entre otros. \r\n\r\n\r\nAquí te explico cómo algunas de sus funcionalidades específicas pueden facilitar la implementación de actividades de aprendizaje de la redacción en el nivel medio superior y superior, desde un enfoque andragógico:\r\n\r\nSegmentación de texto en oraciones y palabras.\r\nEsta funcionalidad puede ayudar a los estudiantes a identificar la estructura básica de los textos. \r\nAl descomponer un texto en sus componentes más básicos, los estudiantes pueden empezar a entender cómo se construyen las oraciones y párrafos, lo cual es fundamental para la redacción.\r\n\r\nReconocimiento de partes del discurso (POS tagging): Comprender las partes del discurso es esencial para el análisis sintáctico y la construcción de oraciones coherentes y complejas. Stanza puede ayudar a los estudiantes a identificar automáticamente sustantivos, verbos, adjetivos, etc., en los textos que escriben o analizan, lo que facilita el aprendizaje de la gramática y la sintaxis de manera aplicada.\r\nAnálisis de entidades nombradas (NER): Esta herramienta puede ser útil para actividades de redacción que involucren investigación y análisis de textos. \r\n\r\nAl identificar personas, lugares, organizaciones y otros tipos de entidades dentro de un texto, los estudiantes pueden aprender a distinguir entre diferentes tipos de información y a utilizarlos adecuadamente en sus escritos.\r\n\r\nAnálisis sintáctico: El análisis de la estructura de las oraciones puede mejorar significativamente la calidad de la escritura. Stanza permite analizar cómo las palabras en una oración se relacionan entre sí, lo que puede ayudar a los estudiantes a comprender y aplicar conceptos de coherencia y cohesión en sus textos.\r\n\r\nAnálisis de dependencias: Esta funcionalidad ofrece una visión detallada de las relaciones sintácticas dentro de las oraciones, lo cual es crucial para construir oraciones complejas y bien formadas. Los estudiantes pueden utilizar esta herramienta para revisar y mejorar la estructura sintáctica de sus escritos.\r\nLematización y stemming: Ayuda a los estudiantes a comprender la raíz de las palabras y sus variaciones, lo cual es útil para la ampliación del vocabulario y la correcta utilización de las palabras en diferentes contextos.\r\nDesde el punto de vista andragógico, el uso de herramientas como Stanza puede fomentar un enfoque más autodirigido y reflexivo hacia el aprendizaje de la redacción. Los estudiantes pueden utilizar estas herramientas para analizar y mejorar sus propios textos, recibir retroalimentación inmediata sobre aspectos específicos de su escritura, y llevar a cabo investigaciones lingüísticas que enriquezcan su comprensión del idioma. La incorporación de tecnologías digitales en el aprendizaje se alinea con las necesidades y estilos de aprendizaje de los adultos, promoviendo la autonomía, la autoevaluación y la aplicación práctica de los conocimientos adquiridos.\r\n\r\n \r\nAnexo I. Requerimiento funcional a nivel sintáctico [Producto 1]\r\nEn esta sección vamos a describir las tareas que deberá realizar el o la profesional identificada como usuaria / usuario líder. Para este caso es un profesional competente en la enseñanza y el aprendizaje del idioma castellano y que posee este idioma como lenguaje materno. Entonces requerimos de sus servicios profesionales par que: \r\n[Subproducto 11] Elaborar una secuencia [didáctica] estándar de como enseñaría a mejorar las habilidades de un estudiante partiendo de un análisis sintáctico. No requerimos que nos describa como hacer un análisis sintáctico, sino que como enseña a redactar al estudiante empleando sus diferentes técnicas y métodos dentro del nivel sintáctico. \r\nEjemplo:\r\n\r\nPaso 5: Evaluar. \r\nCuando el estudiante termina de redactar un texto tengo que corregir. Entonces tomo un boli rojo y comienzo a leer y marco las palabras repetidas, pero también cuando no hay relación entre género y número; y así, [en este caso la descripción tiene que ser detallada]\r\nPaso 6: Retro alimentación de la evaluación\r\nEn este momento trato de orientar mis comentarios hacia las fortalezas del estudiante y después le indico como es que puede mejorar su redacción, le presento ejemplos de otros textos que son cercanos a su estilo [en este caso la descripción tiene que ser detallada]\r\n[Subroducto 12] Con los resultados del producto [11] es importante que reporte cuáles tareas podrías ser reemplazadas por funciones en la funcionalidad de análisis semántico de AIdeaText. Es importante que grafique, empleando la interfase de AIdeaText, como se vería está funcionalidad. En ese sentido, es importante que anote que visualizaciones funcionarían mejor (o si ninguna funciona) que otras o si se requiere implementar otras funcionalidades que, de hacerlo de manera manual, serían muy laboriosas de hacer. \r\nEjemplo: \r\nFunción evaluar: La aplicación, al presentar una visualización ya está entregado una evaluación. Pero para el caso sintáctico no sería mejor que devuelva el mismo escrito, pero señalando con un círculo donde se encuentran las palabras repetidas, por ejemplo. [Se debe dibujar como se vería esta función en la interfase]\r\n', 'morphosyntax_clear_chat_sebastian.marroquin@aideatext.ai': False, 'concept_graph': '', 'initialized': True, 'feedback_text_es': '', 'semantic_clear_chat_sebastian.marroquin@aideatext.ai': False, 'discourse_clear_chat_sebastian.marroquin@aideatext.ai': False, 'key_concepts': [('análisis', 12.0), ('estudiante', 12.0), ('texto', 11.0), ('oración', 7.0), ('redacción', 6.0), ('funcionalidad', 6.0), ('aprendizaje', 6.0), ('palabra', 6.0), (']', 6.0), ('herramienta', 5.0)], 'logged_in': True, 'feedback_email_es': '', 'morphosyntax_chat_history': [], 'feedback_submit_es': False, 'toggle_graph': False, 'entity_graph': '', 'graph_id': 'semantic-float-4a0c84f3', 'semantic_file_uploader_sebastian.marroquin@aideatext.ai': None, 'delete_Uso de stanza en el análisis sintác.txt': False, 'page': 'user'} diff --git a/src/modules/semantic/semantic_agent_interaction.py b/src/modules/semantic/semantic_agent_interaction.py new file mode 100644 index 0000000000000000000000000000000000000000..93f0fed9c6a89598e27ba00d189f719891231fd2 --- /dev/null +++ b/src/modules/semantic/semantic_agent_interaction.py @@ -0,0 +1,404 @@ +# modules/semantic/semantic_agent_interaction.py +import os +import anthropic +import streamlit as st +import time +import json +import base64 +import logging + +from datetime import datetime, timezone +from io import BytesIO + +# Local imports +from ..utils.widget_utils import generate_unique_key +from ..database.chat_mongo_db import store_chat_history + +logger = logging.getLogger(__name__) + +# Cache for conversation history to avoid redundant API calls +conversation_cache = {} + +def get_conversation_cache_key(text, metrics, graph_data, lang_code): + """ + Generate a cache key for conversations based on analysis data. + """ + text_hash = hash(text[:1000]) # Only use first 1000 chars for hashing + metrics_hash = hash(json.dumps(metrics, sort_keys=True)) + graph_hash = hash(graph_data[:100]) if graph_data else 0 + return f"{text_hash}_{metrics_hash}_{graph_hash}_{lang_code}" + +def format_semantic_context(text, metrics, graph_data, lang_code): + """ + Format the semantic analysis data for Claude's context. + """ + formatted_data = { + 'text_sample': text[:2000], # Limit text sample + 'key_concepts': metrics.get('key_concepts', []), + 'concept_centrality': metrics.get('concept_centrality', {}), + 'graph_description': "Network graph available" if graph_data else "No graph available", + 'language': lang_code + } + + return json.dumps(formatted_data, indent=2, ensure_ascii=False) + +def initiate_semantic_conversation(text, metrics, graph_data, lang_code): + """ + Start a conversation with Claude about semantic analysis results. + """ + try: + api_key = os.environ.get("ANTHROPIC_API_KEY") + if not api_key: + logger.error("Claude API key not found in environment variables") + return get_fallback_response(lang_code) + + # Check cache first + cache_key = get_conversation_cache_key(text, metrics, graph_data, lang_code) + if cache_key in conversation_cache: + logger.info("Using cached conversation starter") + return conversation_cache[cache_key] + + # Format context for Claude + context = format_semantic_context(text, metrics, graph_data, lang_code) + + # Determine language for prompt + if lang_code == 'es': + system_prompt = """Eres un asistente especializado en análisis semántico de textos. + El usuario ha analizado un texto y quiere discutir los resultados contigo. + Estos son los datos del análisis: + - Fragmento del texto analizado + - Lista de conceptos clave identificados + - Medidas de centralidad de los conceptos + - Un grafo de relaciones conceptuales (si está disponible) + + Tu rol es: + 1. Demostrar comprensión del análisis mostrado + 2. Hacer preguntas relevantes sobre los resultados + 3. Ayudar al usuario a interpretar los hallazgos + 4. Sugerir posibles direcciones para profundizar el análisis + + Usa un tono profesional pero accesible. Sé conciso pero claro. + """ + user_prompt = f"""Aquí están los resultados del análisis semántico: + + {context} + + Por favor: + 1. Haz un breve resumen de lo que notas en los resultados + 2. Formula 2-3 preguntas interesantes que podríamos explorar sobre estos datos + 3. Sugiere un aspecto del análisis que podría profundizarse + + Mantén tu respuesta bajo 250 palabras.""" + + elif lang_code == 'fr': + system_prompt = """Vous êtes un assistant spécialisé dans l'analyse sémantique de textes. + L'utilisateur a analysé un texte et souhaite discuter des résultats avec vous. + Voici les données d'analyse: + - Extrait du texte analysé + - Liste des concepts clés identifiés + - Mesures de centralité des concepts + - Un graphique des relations conceptuelles (si disponible) + + Votre rôle est: + 1. Démontrer une compréhension de l'analyse présentée + 2. Poser des questions pertinentes sur les résultats + 3. Aider l'utilisateur à interpréter les résultats + 4. Proposer des pistes pour approfondir l'analyse + + Utilisez un ton professionnel mais accessible. Soyez concis mais clair. + """ + user_prompt = f"""Voici les résultats de l'analyse sémantique: + + {context} + + Veuillez: + 1. Faire un bref résumé de ce que vous remarquez dans les résultats + 2. Formuler 2-3 questions intéressantes que nous pourrions explorer + 3. Suggérer un aspect de l'analyse qui pourrait être approfondi + + Limitez votre réponse à 250 mots.""" + + elif lang_code == 'pt': + system_prompt = """Você é um assistente especializado em análise semântica de textos. + O usuário analisou um texto e quer discutir os resultados com você. + Aqui estão os dados da análise: + - Trecho do texto analisado + - Lista de conceitos-chave identificados + - Medidas de centralidade dos conceitos + - Um grafo de relações conceituais (se disponível) + + Seu papel é: + 1. Demonstrar compreensão da análise apresentada + 2. Fazer perguntas relevantes sobre os resultados + 3. Ajudar o usuário a interpretar os achados + 4. Sugerir possíveis direções para aprofundar a análise + + Use um tom profissional mas acessível. Seja conciso mas claro. + """ + user_prompt = f"""Aqui estão os resultados da análise semântica: + + {context} + + Por favor: + 1. Faça um breve resumo do que você nota nos resultados + 2. Formule 2-3 perguntas interessantes que poderíamos explorar + 3. Sugira um aspecto da análise que poderia ser aprofundado + + Mantenha sua resposta em até 250 palavras.""" + + else: # Default to English + system_prompt = """You are an assistant specialized in semantic text analysis. + The user has analyzed a text and wants to discuss the results with you. + Here is the analysis data: + - Sample of the analyzed text + - List of identified key concepts + - Concept centrality measures + - A concept relationship graph (if available) + + Your role is to: + 1. Demonstrate understanding of the shown analysis + 2. Ask relevant questions about the results + 3. Help the user interpret the findings + 4. Suggest possible directions to deepen the analysis + + Use a professional but accessible tone. Be concise but clear. + """ + user_prompt = f"""Here are the semantic analysis results: + + {context} + + Please: + 1. Give a brief summary of what you notice in the results + 2. Formulate 2-3 interesting questions we could explore + 3. Suggest one aspect of the analysis that could be deepened + + Keep your response under 250 words.""" + + # Initialize Claude client + client = anthropic.Anthropic(api_key=api_key) + + # Call Claude API + start_time = time.time() + response = client.messages.create( + model="claude-3-sonnet-20240229", + max_tokens=1024, + temperature=0.7, + system=system_prompt, + messages=[ + {"role": "user", "content": user_prompt} + ] + ) + logger.info(f"Claude API call completed in {time.time() - start_time:.2f} seconds") + + # Extract response + initial_response = response.content[0].text + + # Cache the result + conversation_cache[cache_key] = initial_response + + return initial_response + + except Exception as e: + logger.error(f"Error initiating semantic conversation: {str(e)}") + return get_fallback_response(lang_code) + +def continue_conversation(conversation_history, new_message, lang_code): + """ + Continue an existing conversation about semantic analysis. + """ + try: + api_key = os.environ.get("ANTHROPIC_API_KEY") + if not api_key: + logger.error("Claude API key not found in environment variables") + return get_fallback_response(lang_code) + + # Prepare conversation history for Claude + messages = [] + for msg in conversation_history: + messages.append({ + "role": "user" if msg["sender"] == "user" else "assistant", + "content": msg["message"] + }) + + # Add the new message + messages.append({"role": "user", "content": new_message}) + + # System prompt based on language + if lang_code == 'es': + system_prompt = """Continúa la conversación sobre el análisis semántico. + Sé conciso pero útil. Responde en español.""" + elif lang_code == 'fr': + system_prompt = """Continuez la conversation sur l'analyse sémantique. + Soyez concis mais utile. Répondez en français.""" + elif lang_code == 'pt': + system_prompt = """Continue a conversa sobre a análise semântica. + Seja conciso mas útil. Responda em português.""" + else: + system_prompt = """Continue the conversation about semantic analysis. + Be concise but helpful. Respond in English.""" + + # Initialize Claude client + client = anthropic.Anthropic(api_key=api_key) + + # Call Claude API + response = client.messages.create( + model="claude-3-sonnet-20240229", + max_tokens=1024, + temperature=0.7, + system=system_prompt, + messages=messages + ) + + return response.content[0].text + + except Exception as e: + logger.error(f"Error continuing semantic conversation: {str(e)}") + return get_fallback_response(lang_code) + +def get_fallback_response(lang_code): + """ + Return fallback response if Claude API fails. + """ + if lang_code == 'es': + return """Parece que hay un problema técnico. Por favor intenta de nuevo más tarde. + + Mientras tanto, aquí hay algunas preguntas que podrías considerar sobre tu análisis: + 1. ¿Qué conceptos tienen la mayor centralidad y por qué podría ser? + 2. ¿Hay conexiones inesperadas entre conceptos en tu grafo? + 3. ¿Cómo podrías profundizar en las relaciones entre los conceptos clave?""" + + elif lang_code == 'fr': + return """Il semble y avoir un problème technique. Veuillez réessayer plus tard. + + En attendant, voici quelques questions que vous pourriez considérer: + 1. Quels concepts ont la plus grande centralité et pourquoi? + 2. Y a-t-il des connexions inattendues entre les concepts? + 3. Comment pourriez-vous approfondir les relations entre les concepts clés?""" + + elif lang_code == 'pt': + return """Parece haver um problema técnico. Por favor, tente novamente mais tarde. + + Enquanto isso, aqui estão algumas perguntas que você poderia considerar: + 1. Quais conceitos têm maior centralidade e por que isso pode ocorrer? + 2. Há conexões inesperadas entre conceitos no seu grafo? + 3. Como você poderia aprofundar as relações entre os conceitos-chave?""" + + else: + return """There seems to be a technical issue. Please try again later. + + Meanwhile, here are some questions you might consider about your analysis: + 1. Which concepts have the highest centrality and why might that be? + 2. Are there unexpected connections between concepts in your graph? + 3. How could you explore the relationships between key concepts further?""" + +def store_conversation(username, text, metrics, graph_data, conversation): + try: + result = store_chat_history( + username=username, + messages=conversation, + analysis_type='semantic_analysis', + metadata={ + 'text_sample': text[:500], + 'key_concepts': metrics.get('key_concepts', []), + 'graph_available': bool(graph_data) + } + ) + logger.info(f"Conversación semántica guardada: {result}") + return result + except Exception as e: + logger.error(f"Error almacenando conversación semántica: {str(e)}") + return False + +def display_semantic_chat(text, metrics, graph_data, lang_code, t): + """ + Display the chat interface for semantic analysis discussion. + """ + try: + # Initialize session state for conversation if not exists + if 'semantic_chat' not in st.session_state: + st.session_state.semantic_chat = { + 'history': [], + 'initialized': False + } + + # Container for chat display + chat_container = st.container() + + # Initialize conversation if not done yet + if not st.session_state.semantic_chat['initialized']: + with st.spinner(t.get('initializing_chat', 'Initializing conversation...')): + initial_response = initiate_semantic_conversation( + text, metrics, graph_data, lang_code + ) + + st.session_state.semantic_chat['history'].append({ + "sender": "assistant", + "message": initial_response + }) + st.session_state.semantic_chat['initialized'] = True + + # Store initial conversation + if 'username' in st.session_state: + store_conversation( + st.session_state.username, + text, + metrics, + graph_data, + st.session_state.semantic_chat['history'] + ) + + # Display chat history + with chat_container: + st.markdown("### 💬 " + t.get('semantic_discussion', 'Semantic Analysis Discussion')) + + for msg in st.session_state.semantic_chat['history']: + if msg["sender"] == "user": + st.chat_message("user").write(msg["message"]) + else: + st.chat_message("assistant").write(msg["message"]) + + # Input for new message + user_input = st.chat_input( + t.get('chat_input_placeholder', 'Ask about your semantic analysis...') + ) + + if user_input: + # Add user message to history + st.session_state.semantic_chat['history'].append({ + "sender": "user", + "message": user_input + }) + + # Display user message immediately + with chat_container: + st.chat_message("user").write(user_input) + with st.spinner(t.get('assistant_thinking', 'Assistant is thinking...')): + # Get assistant response + assistant_response = continue_conversation( + st.session_state.semantic_chat['history'], + user_input, + lang_code + ) + + # Add assistant response to history + st.session_state.semantic_chat['history'].append({ + "sender": "assistant", + "message": assistant_response + }) + + # Display assistant response + st.chat_message("assistant").write(assistant_response) + + # Store updated conversation + if 'username' in st.session_state: + store_conversation( + st.session_state.username, + text, + metrics, + graph_data, + st.session_state.semantic_chat['history'] + ) + + except Exception as e: + logger.error(f"Error displaying semantic chat: {str(e)}") + st.error(t.get('chat_error', 'Error in chat interface. Please try again.')) \ No newline at end of file diff --git a/src/modules/semantic/semantic_float.py b/src/modules/semantic/semantic_float.py new file mode 100644 index 0000000000000000000000000000000000000000..043ab99ab13630b25c8bbbedb4a734b627e4a337 --- /dev/null +++ b/src/modules/semantic/semantic_float.py @@ -0,0 +1,213 @@ +import streamlit as st +import uuid +import streamlit.components.v1 as components + + +''' + +# Lista de estilos de sombra y transición (sin cambios) +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + +def semantic_float_init(): + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + "center-right": "top: 50%; right: 20px; transform: translateY(-50%);" + } + + css = f""" + width: {width}; + height: {height}; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + + return float_box(content, css=css) + +def float_box(content, css=""): + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + components.html(f""" +
+
+ {content} +
+
+ + """, height=0) + return box_id + +def toggle_float_visibility(box_id, visible): + display = "block" if visible else "none" + components.html(f""" + + """, height=0) + +def update_float_content(box_id, new_content): + components.html(f""" + + """, height=0) +''' + + +# Lista de estilos de sombra (puedes ajustar según tus preferencias) +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +# Lista de estilos de transición +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + +def semantic_float_init(): + """Inicializa los estilos necesarios para los elementos flotantes en la interfaz semántica.""" + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + """ + Crea un contenedor flotante para el gráfico de visualización semántica. + + :param content: Contenido HTML o Markdown para el gráfico + :param width: Ancho del contenedor + :param height: Altura del contenedor + :param position: Posición del contenedor ('top-left', 'top-right', 'bottom-left', 'bottom-right') + :param shadow: Índice del estilo de sombra a utilizar + :param transition: Índice del estilo de transición a utilizar + """ + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + } + + css = f""" + width: {width}; + height: {height}; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + + return float_box(content, css=css) + +def float_box(content, css=""): + """ + Crea un contenedor flotante genérico. + + :param content: Contenido HTML o Markdown para el contenedor + :param css: Estilos CSS adicionales + """ + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + st.markdown(f""" +
+
+ {content} +
+
+ """, unsafe_allow_html=True) + return box_id + +def toggle_float_visibility(box_id, visible): + """ + Cambia la visibilidad de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param visible: True para mostrar, False para ocultar + """ + display = "block" if visible else "none" + st.markdown(f""" + + """, unsafe_allow_html=True) + +def update_float_content(box_id, new_content): + """ + Actualiza el contenido de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param new_content: Nuevo contenido HTML o Markdown + """ + st.markdown(f""" + + """, unsafe_allow_html=True) + +# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario \ No newline at end of file diff --git a/src/modules/semantic/semantic_float68ok.py b/src/modules/semantic/semantic_float68ok.py new file mode 100644 index 0000000000000000000000000000000000000000..a57a08d49e3c3945b90a1a358305e520a6e1d650 --- /dev/null +++ b/src/modules/semantic/semantic_float68ok.py @@ -0,0 +1,467 @@ +import streamlit as st +import uuid +import streamlit.components.v1 as components +import streamlit.components.v1 as stc + +########################## PRUEBA 1 ######################### + # COMBINADO CON SEMANCTIC_INTERFACE_68OK APARECEN DOS BOX FLOTANTES +# Lista de estilos de sombra (puedes ajustar según tus preferencias) + +''' +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +# Lista de estilos de transición +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + +def semantic_float_init(): + st.markdown(""" + + """, unsafe_allow_html=True) + +#################################################### +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + } + css = f""" + width: {width}; + height: {height}; + position: fixed; + z-index: 9999; + background-color: white; + border: 1px solid #ddd; + padding: 10px; + overflow: auto; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + return float_box(content, css=css) + +######################################################### +def float_box(content, css=""): + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + st.markdown(f""" +
+ {content} +
+ """, unsafe_allow_html=True) + return box_id + +######################################################### + +def toggle_float_visibility(box_id, visible): + """ + Cambia la visibilidad de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param visible: True para mostrar, False para ocultar + """ + display = "block" if visible else "none" + st.markdown(f""" + + """, unsafe_allow_html=True) + +########################################################### +def update_float_content(box_id, new_content): + """ + Actualiza el contenido de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param new_content: Nuevo contenido HTML o Markdown + """ + st.markdown(f""" + + """, unsafe_allow_html=True) + +# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario +''' + +################################################# version backup ######################### + # COMBINADO CON SEMANCTIC_INTERFACE_68OK APARECEN SOLO UN CUADRO A LA DERECJHA Y AL CENTRO + # Lista de estilos de sombra (puedes ajustar según tus preferencias) +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +# Lista de estilos de transición +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + + +def semantic_float_init(): + """Inicializa los estilos necesarios para los elementos flotantes en la interfaz semántica.""" + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + """ + Crea un contenedor flotante para el gráfico de visualización semántica. + + :param content: Contenido HTML o Markdown para el gráfico + :param width: Ancho del contenedor + :param height: Altura del contenedor + :param position: Posición del contenedor ('top-left', 'top-right', 'bottom-left', 'bottom-right') + :param shadow: Índice del estilo de sombra a utilizar + :param transition: Índice del estilo de transición a utilizar + """ + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + } + + css = f""" + width: {width}; + height: {height}; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + + return float_box(content, css=css) + +def float_box(content, css=""): + """ + Crea un contenedor flotante genérico. + + :param content: Contenido HTML o Markdown para el contenedor + :param css: Estilos CSS adicionales + """ + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + st.markdown(f""" +
+
+ {content} +
+
+ """, unsafe_allow_html=True) + return box_id + +def toggle_float_visibility(box_id, visible): + """ + Cambia la visibilidad de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param visible: True para mostrar, False para ocultar + """ + display = "block" if visible else "none" + st.markdown(f""" + + """, unsafe_allow_html=True) + +def update_float_content(box_id, new_content): + """ + Actualiza el contenido de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param new_content: Nuevo contenido HTML o Markdown + """ + st.markdown(f""" + + """, unsafe_allow_html=True) + +# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario +#################FIN BLOQUE DEL BACK UP################################################# + + + + + + + + + + + + + + + + + + + + + +''' +############ TEST ######################################### +def semantic_float_init(): + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="center-right", shadow=0, transition=0): + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + "center-right": "top: 50%; right: 20px; transform: translateY(-50%);" + } + + css = f""" + position: fixed; + width: {width}; + height: {height}; + {position_css.get(position, position_css['center-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + z-index: 9999; + display: block !important; + background-color: white; + border: 1px solid #ddd; + border-radius: 5px; + padding: 10px; + overflow: auto; + """ + + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + html_content = f""" +
+ {content} +
+ + """ + + components.html(html_content, height=600, scrolling=True) + return box_id + +def toggle_float_visibility(box_id, visible): + display = "block" if visible else "none" + components.html(f""" + + """, height=0) + +def update_float_content(box_id, new_content): + components.html(f""" + + """, height=0) + + + + + + + + + + +############BackUp ######################################### + + + + + + + + + + + + + + + + + + + + + + + + +# Lista de estilos de sombra y transición (sin cambios) +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + +def semantic_float_init(): + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + "center-right": "top: 50%; right: 20px; transform: translateY(-50%);" + } + + css = f""" + width: {width}; + height: {height}; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + + return float_box(content, css=css) + +def float_box(content, css=""): + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + components.html(f""" +
+
+ {content} +
+
+ + """, height=0) + return box_id + +def toggle_float_visibility(box_id, visible): + display = "block" if visible else "none" + components.html(f""" + + """, height=0) + +def update_float_content(box_id, new_content): + components.html(f""" + + """, height=0) +''' \ No newline at end of file diff --git a/src/modules/semantic/semantic_float_old.py b/src/modules/semantic/semantic_float_old.py new file mode 100644 index 0000000000000000000000000000000000000000..192c7a46004ab8b35c2046cde482a001088475c7 --- /dev/null +++ b/src/modules/semantic/semantic_float_old.py @@ -0,0 +1,220 @@ +import streamlit as st +import uuid +import streamlit.components.v1 as components +import base64 + +''' + +# Lista de estilos de sombra y transición (sin cambios) +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + +def semantic_float_init(): + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + "center-right": "top: 50%; right: 20px; transform: translateY(-50%);" + } + + css = f""" + width: {width}; + height: {height}; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + + return float_box(content, css=css) + +def float_box(content, css=""): + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + components.html(f""" +
+
+ {content} +
+
+ + """, height=0) + return box_id + +def toggle_float_visibility(box_id, visible): + display = "block" if visible else "none" + components.html(f""" + + """, height=0) + +def update_float_content(box_id, new_content): + components.html(f""" + + """, height=0) +''' + + +# Lista de estilos de sombra (puedes ajustar según tus preferencias) +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +# Lista de estilos de transición +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + + +def encode_image_to_base64(image_path): + with open(image_path, "rb") as image_file: + encoded_string = base64.b64encode(image_file.read()).decode("utf-8") + return f"data:image/png;base64,{encoded_string}" + + +def semantic_float_init(): + """Inicializa los estilos necesarios para los elementos flotantes en la interfaz semántica.""" + st.markdown(""" + + """, unsafe_allow_html=True) + +def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0): + """ + Crea un contenedor flotante para el gráfico de visualización semántica. + + :param content: Contenido HTML o Markdown para el gráfico + :param width: Ancho del contenedor + :param height: Altura del contenedor + :param position: Posición del contenedor ('top-left', 'top-right', 'bottom-left', 'bottom-right') + :param shadow: Índice del estilo de sombra a utilizar + :param transition: Índice del estilo de transición a utilizar + """ + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + } + + css = f""" + width: {width}; + height: {height}; + {position_css.get(position, position_css['bottom-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + """ + + return float_box(content, css=css) + +def float_box(content, css=""): + """ + Crea un contenedor flotante genérico. + + :param content: Contenido HTML o Markdown para el contenedor + :param css: Estilos CSS adicionales + """ + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + st.markdown(f""" +
+
+ {content} +
+
+ """, unsafe_allow_html=True) + return box_id + +def toggle_float_visibility(box_id, visible): + """ + Cambia la visibilidad de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param visible: True para mostrar, False para ocultar + """ + display = "block" if visible else "none" + st.markdown(f""" + + """, unsafe_allow_html=True) + +def update_float_content(box_id, new_content): + """ + Actualiza el contenido de un contenedor flotante. + + :param box_id: ID del contenedor flotante + :param new_content: Nuevo contenido HTML o Markdown + """ + st.markdown(f""" + + """, unsafe_allow_html=True) + +# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario diff --git a/src/modules/semantic/semantic_float_reset.py b/src/modules/semantic/semantic_float_reset.py new file mode 100644 index 0000000000000000000000000000000000000000..1d782eb27f4493283de556391ef49334ed6e7256 --- /dev/null +++ b/src/modules/semantic/semantic_float_reset.py @@ -0,0 +1,94 @@ +import streamlit as st +import uuid +import streamlit.components.v1 as components +import base64 + +# Lista de estilos de sombra +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +# Lista de estilos de transición +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", + +] + +################################################################################### +def semantic_float_init(): + st.markdown(""" + + """, unsafe_allow_html=True) + + components.html(""" +
+ + """, height=0) + +def float_graph(content): + js = f""" + + """ + components.html(js, height=0) + +def toggle_float_visibility(visible): + js = f""" + + """ + components.html(js, height=0) + +def update_float_content(new_content): + js = f""" + + """ + components.html(js, height=0) \ No newline at end of file diff --git a/src/modules/semantic/semantic_float_reset_23-9-2024.py b/src/modules/semantic/semantic_float_reset_23-9-2024.py new file mode 100644 index 0000000000000000000000000000000000000000..5d8fb602fec66518348fcfa37e1a272284a7adf4 --- /dev/null +++ b/src/modules/semantic/semantic_float_reset_23-9-2024.py @@ -0,0 +1,128 @@ +import streamlit as st +import uuid +import streamlit.components.v1 as components +import base64 + +# Lista de estilos de sombra +shadow_list = [ + "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;", + "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;", + "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;", + "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;", +] + +# Lista de estilos de transición +transition_list = [ + "transition: all 0.3s ease;", + "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);", + "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);", +] + +def semantic_float_init(): + components.html(""" + + """, height=0) + +def float_graph(content, width="40%", height="60%", position="center-right", shadow=0, transition=0): + position_css = { + "top-left": "top: 20px; left: 20px;", + "top-right": "top: 20px; right: 20px;", + "bottom-left": "bottom: 20px; left: 20px;", + "bottom-right": "bottom: 20px; right: 20px;", + "center-right": "top: 50%; right: 20px; transform: translateY(-50%);" + } + + css = f""" + position: fixed; + width: {width}; + height: {height}; + {position_css.get(position, position_css['center-right'])} + {shadow_list[shadow % len(shadow_list)]} + {transition_list[transition % len(transition_list)]} + z-index: 9999; + display: block !important; + background-color: white; + border: 1px solid #ddd; + border-radius: 5px; + padding: 10px; + overflow: auto; + """ + + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + components.html(f""" +
+ {content} +
+ + """, height=0) + return box_id + +def float_box(content, css=""): + box_id = f"semantic-float-{str(uuid.uuid4())[:8]}" + components.html(f""" +
+ {content} +
+ + """, height=0) + return box_id + +def toggle_float_visibility(box_id, visible): + display = "block" if visible else "none" + components.html(f""" + + """, height=0) + +def update_float_content(box_id, new_content): + components.html(f""" + + """, height=0) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface.py b/src/modules/semantic/semantic_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..db991fb859817405bd7be3033d6a58824331dde2 --- /dev/null +++ b/src/modules/semantic/semantic_interface.py @@ -0,0 +1,290 @@ +#modules/semantic/semantic_interface.py +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +from streamlit.components.v1 import html +import spacy_streamlit +import io +from io import BytesIO +import base64 +import matplotlib.pyplot as plt +import pandas as pd +import re + +import logging + +# Configuración del logger +logger = logging.getLogger(__name__) + +# Importaciones locales +from .semantic_process import ( + process_semantic_input, + format_semantic_results +) + +from ..utils.widget_utils import generate_unique_key +from ..database.semantic_mongo_db import store_student_semantic_result +from ..database.chat_mongo_db import store_chat_history, get_chat_history + +from ..semantic.semantic_agent_interaction import display_semantic_chat +from ..chatbot.sidebar_chat import display_sidebar_chat + +# from ..database.semantic_export import export_user_interactions + +############################### + +def display_semantic_interface(lang_code, nlp_models, semantic_t): + try: + # 1. Inicializar el estado de la sesión + if 'semantic_state' not in st.session_state: + st.session_state.semantic_state = { + 'analysis_count': 0, + 'last_analysis': None, + 'current_file': None, + 'pending_analysis': False # Nuevo flag para controlar el análisis pendiente + } + + # 2. Área de carga de archivo con mensaje informativo + uploaded_file = st.file_uploader( + semantic_t.get('semantic_file_uploader', 'Upload a text file for semantic analysis'), + type=['txt'], + key=f"semantic_file_uploader_{st.session_state.semantic_state['analysis_count']}" + ) + + # 2.1 Verificar si hay un archivo cargado y un análisis pendiente + + if uploaded_file is not None and st.session_state.semantic_state.get('pending_analysis', False): + + try: + with st.spinner(semantic_t.get('processing', 'Processing...')): + # Realizar análisis + text_content = uploaded_file.getvalue().decode('utf-8') + st.session_state.semantic_state['text_content'] = text_content # <-- Guardar el texto + + analysis_result = process_semantic_input( + text_content, + lang_code, + nlp_models, + semantic_t + ) + + if analysis_result['success']: + # Guardar resultado + st.session_state.semantic_result = analysis_result + st.session_state.semantic_state['analysis_count'] += 1 + st.session_state.semantic_state['current_file'] = uploaded_file.name + + # Preparar datos para MongoDB + analysis_data = { + 'key_concepts': analysis_result['analysis'].get('key_concepts', []), + 'concept_centrality': analysis_result['analysis'].get('concept_centrality', {}), + 'concept_graph': analysis_result['analysis'].get('concept_graph') + } + + # Guardar en base de datos + storage_success = store_student_semantic_result( + st.session_state.username, + text_content, + analysis_result['analysis'], + lang_code # Pasamos el código de idioma directamente + ) + + if storage_success: + st.success( + semantic_t.get('analysis_complete', + 'Análisis completado y guardado. Para realizar un nuevo análisis, cargue otro archivo.') + ) + else: + st.error(semantic_t.get('error_message', 'Error saving analysis')) + else: + st.error(analysis_result['message']) + + # Restablecer el flag de análisis pendiente + st.session_state.semantic_state['pending_analysis'] = False + + except Exception as e: + logger.error(f"Error en análisis semántico: {str(e)}") + st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}')) + # Restablecer el flag de análisis pendiente en caso de error + st.session_state.semantic_state['pending_analysis'] = False + + # 3. Columnas para los botones y mensajes + col1, col2 = st.columns([1,4]) + + # 4. Botón de análisis + with col1: + analyze_button = st.button( + semantic_t.get('semantic_analyze_button', 'Analyze'), + key=f"semantic_analyze_button_{st.session_state.semantic_state['analysis_count']}", + type="primary", + icon="🔍", + disabled=uploaded_file is None, + use_container_width=True + ) + + # 5. Procesar análisis + if analyze_button and uploaded_file is not None: + # En lugar de realizar el análisis inmediatamente, establecer el flag + st.session_state.semantic_state['pending_analysis'] = True + # Forzar la recarga de la aplicación + st.rerun() + + # 6. Mostrar resultados previos o mensaje inicial + elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None: + # Mostrar mensaje sobre el análisis actual + #st.info( + # semantic_t.get('current_analysis_message', + # 'Mostrando análisis del archivo: {}. Para realizar un nuevo análisis, cargue otro archivo.' + # ).format(st.session_state.semantic_state["current_file"]) + #) + + display_semantic_results( + st.session_state.semantic_result, + lang_code, + semantic_t + ) + + # --- BOTÓN PARA ACTIVAR EL AGENTE VIRTUAL (NUEVA POSICIÓN CORRECTA) --- + if st.button("💬 Consultar con Asistente"): + if 'semantic_result' not in st.session_state: + st.error("Primero complete el análisis semántico") + return + + # Guardar TODOS los datos necesarios + st.session_state.semantic_agent_data = { + 'text': st.session_state.semantic_state['text_content'], # Texto completo + 'metrics': st.session_state.semantic_result['analysis'], # Métricas + 'graph_data': st.session_state.semantic_result['analysis'].get('concept_graph') + } + st.session_state.semantic_agent_active = True + st.rerun() + + # Mostrar notificación si el agente está activo + if st.session_state.get('semantic_agent_active', False): + st.success(semantic_t.get('semantic_agent_ready_message', 'El agente virtual está listo. Abre el chat en la barra lateral.')) + + else: + st.info(semantic_t.get('upload_prompt', 'Cargue un archivo para comenzar el análisis')) + + except Exception as e: + logger.error(f"Error general en interfaz semántica: {str(e)}") + st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo.")) + + +####################################### + +def display_semantic_results(semantic_result, lang_code, semantic_t): + """ + Muestra los resultados del análisis semántico de conceptos clave. + """ + if semantic_result is None or not semantic_result['success']: + st.warning(semantic_t.get('no_results', 'No results available')) + return + + analysis = semantic_result['analysis'] + + # Mostrar conceptos clave en formato horizontal (se mantiene igual) + st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) + if 'key_concepts' in analysis and analysis['key_concepts']: + df = pd.DataFrame( + analysis['key_concepts'], + columns=[ + semantic_t.get('concept', 'Concept'), + semantic_t.get('frequency', 'Frequency') + ] + ) + + st.write( + """ + +
+ """ + + ''.join([ + f'
{concept}' + f'({freq:.2f})
' + for concept, freq in df.values + ]) + + "
", + unsafe_allow_html=True + ) + else: + st.info(semantic_t.get('no_concepts', 'No key concepts found')) + + # Gráfico de conceptos (versión modificada) + if 'concept_graph' in analysis and analysis['concept_graph'] is not None: + try: + # Sección del gráfico (sin div contenedor) + st.image( + analysis['concept_graph'], + use_container_width=True + ) + + # --- SOLO ESTE BLOQUE ES NUEVO --- + st.markdown(""" + + """, unsafe_allow_html=True) + # --------------------------------- + + # Expandible con la interpretación (se mantiene igual) + with st.expander("📊 " + semantic_t.get('semantic_graph_interpretation', "Interpretación del gráfico semántico")): + st.markdown(f""" + - 🔀 {semantic_t.get('semantic_arrow_meaning', 'Las flechas indican la dirección de la relación entre conceptos')} + - 🎨 {semantic_t.get('semantic_color_meaning', 'Los colores más intensos indican conceptos más centrales en el texto')} + - ⭕ {semantic_t.get('semantic_size_meaning', 'El tamaño de los nodos representa la frecuencia del concepto')} + - ↔️ {semantic_t.get('semantic_thickness_meaning', 'El grosor de las líneas indica la fuerza de la conexión')} + """) + + # Contenedor para botones (se mantiene igual pero centrado) + st.markdown(""" + +
+ """, unsafe_allow_html=True) + + st.download_button( + label="📥 " + semantic_t.get('download_semantic_network_graph', "Descargar gráfico de red semántica"), + data=analysis['concept_graph'], + file_name="semantic_graph.png", + mime="image/png", + use_container_width=True + ) + + st.markdown("
", unsafe_allow_html=True) + + except Exception as e: + logger.error(f"Error displaying graph: {str(e)}") + st.error(semantic_t.get('graph_error', 'Error displaying the graph')) + else: + st.info(semantic_t.get('no_graph', 'No concept graph available')) diff --git a/src/modules/semantic/semantic_interfaceBackUp_2092024_1800.py b/src/modules/semantic/semantic_interfaceBackUp_2092024_1800.py new file mode 100644 index 0000000000000000000000000000000000000000..f9ef8533a44841e7fdcc66abd8b4c7a25b9e2914 --- /dev/null +++ b/src/modules/semantic/semantic_interfaceBackUp_2092024_1800.py @@ -0,0 +1,146 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + st.markdown(""" + + """, unsafe_allow_html=True) + + tab1, tab2, tab3, tab4, tab5 = st.tabs(["Upload", "Analyze", "Results", "Chat", "Export"]) + + with tab1: + tab21, tab22 = st.tabs(["File Management", "File Analysis"]) + + with tab21: + st.subheader("Upload and Manage Files") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.write("No files uploaded yet.") + + with tab22: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + with tab2: + st.subheader("Analysis Results") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + col1, col2 = st.columns(2) + with col1: + if 'concept_graph' in st.session_state: + st.subheader("Concept Graph") + st.pyplot(st.session_state.concept_graph) + with col2: + if 'entity_graph' in st.session_state: + st.subheader("Entity Graph") + st.pyplot(st.session_state.entity_graph) + + with tab3: + st.subheader("Chat with AI") + chat_container = st.container() + + with chat_container: + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + + user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) + + chat_history.append({"role": "assistant", "content": response}) + st.session_state.semantic_chat_history = chat_history + + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() + + with tab4: + st.subheader("Export Results") + # Add export functionality here + + with tab5: + st.subheader("Help") + # Add help information here \ No newline at end of file diff --git a/src/modules/semantic/semantic_interfaceBorrados.py b/src/modules/semantic/semantic_interfaceBorrados.py new file mode 100644 index 0000000000000000000000000000000000000000..9b2167adff34762e28fbd9ee65c64dd371ef713c --- /dev/null +++ b/src/modules/semantic/semantic_interfaceBorrados.py @@ -0,0 +1,196 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") diff --git a/src/modules/semantic/semantic_interfaceKoKo.py b/src/modules/semantic/semantic_interfaceKoKo.py new file mode 100644 index 0000000000000000000000000000000000000000..3a704b30129e521564b9222face9ec5c818bafea --- /dev/null +++ b/src/modules/semantic/semantic_interfaceKoKo.py @@ -0,0 +1,239 @@ +import streamlit as st +from streamlit_float import * +import logging +import sys +import io +from io import BytesIO +from datetime import datetime +import re +import base64 +import matplotlib.pyplot as plt +import plotly.graph_objects as go +import pandas as pd +import numpy as np + +from .flexible_analysis_handler import FlexibleAnalysisHandler + +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +from .semantic_process import process_semantic_analysis + +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import manage_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + + +semantic_float_init() +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + + +## +def fig_to_base64(fig): + buf = io.BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + img_str = base64.b64encode(buf.getvalue()).decode() + return f'' +## + + +def display_semantic_interface(lang_code, nlp_models, t): + #st.set_page_config(layout="wide") + + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + if 'show_graph' not in st.session_state: + st.session_state.show_graph = False + + if 'graph_id' not in st.session_state: + st.session_state.graph_id = None + + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + if 'show_graph' not in st.session_state: + st.session_state.show_graph = False + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + col1, col2 = st.columns([2, 1]) + + with col1: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + st.markdown('
', unsafe_allow_html=True) + for message in reversed(st.session_state.semantic_chat_history): + with st.chat_message(message["role"]): + st.markdown(message["content"]) + st.markdown('
', unsafe_allow_html=True) + + st.markdown('
', unsafe_allow_html=True) + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col2: + st.subheader("Document Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("Select a file to analyze", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = manage_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + logger.debug("Calling process_semantic_analysis") + analysis_result = process_semantic_analysis(file_contents, nlp_model, lang_code) + + # Crear una instancia de FlexibleAnalysisHandler con los resultados del análisis + handler = FlexibleAnalysisHandler(analysis_result) + + logger.debug(f"Type of analysis_result: {type(analysis_result)}") + logger.debug(f"Keys in analysis_result: {analysis_result.keys() if isinstance(analysis_result, dict) else 'Not a dict'}") + + st.session_state.concept_graph = handler.get_concept_graph() + st.session_state.entity_graph = handler.get_entity_graph() + st.session_state.key_concepts = handler.get_key_concepts() + st.session_state.show_graph = True + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("File Management") + + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if manage_file_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + + st.subheader("Manage Uploaded Files") + + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + ######################################################################################################################### + # Floating graph visualization + if st.session_state.show_graph: + if st.session_state.graph_id is None: + st.session_state.graph_id = float_graph( + content="
Loading graph...
", + width="40%", + height="60%", + position="bottom-right", + shadow=2, + transition=1 + ) + + graph_id = st.session_state.graph_id + + if 'key_concepts' in st.session_state: + key_concepts_html = "

Key Concepts:

" + ', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]) + "

" + update_float_content(graph_id, key_concepts_html) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + update_float_content(graph_id, st.session_state.concept_graph) + else: + update_float_content(graph_id, "No concept graph available.") + + with tab_entity: + if 'entity_graph' in st.session_state: + update_float_content(graph_id, st.session_state.entity_graph) + else: + update_float_content(graph_id, "No entity graph available.") + + if st.button("Close Graph", key="close_graph"): + toggle_float_visibility(graph_id, False) + st.session_state.show_graph = False + st.session_state.graph_id = None + st.rerun() \ No newline at end of file diff --git a/src/modules/semantic/semantic_interfaceSideBar.py b/src/modules/semantic/semantic_interfaceSideBar.py new file mode 100644 index 0000000000000000000000000000000000000000..79f0777328d68330ea531f7104abbf8a4ab0fdfb --- /dev/null +++ b/src/modules/semantic/semantic_interfaceSideBar.py @@ -0,0 +1,207 @@ +import streamlit as st +from streamlit_float import * +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Sidebar for chat + with st.sidebar: + st.subheader("Chat with AI") + + messages = st.container(height=400) + + # Display chat messages + for message in st.session_state.semantic_chat_history: + with messages.chat_message(message["role"]): + st.markdown(message["content"]) + + # Chat input + if prompt := st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')): + st.session_state.semantic_chat_history.append({"role": "user", "content": prompt}) + + with messages.chat_message("user"): + st.markdown(prompt) + + with messages.chat_message("assistant"): + message_placeholder = st.empty() + full_response = "" + + if prompt.startswith('/analyze_current'): + assistant_response = process_semantic_chat_input(prompt, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + assistant_response = st.session_state.semantic_chatbot.generate_response(prompt, lang_code, context=st.session_state.get('file_contents', '')) + + # Simulate stream of response with milliseconds delay + for chunk in assistant_response.split(): + full_response += chunk + " " + message_placeholder.markdown(full_response + "▌") + message_placeholder.markdown(full_response) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": full_response}) + + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() + + # Main content area + st.title("Semantic Analysis") + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Visualization + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_1.py b/src/modules/semantic/semantic_interface_1.py new file mode 100644 index 0000000000000000000000000000000000000000..29c22b3d1f16b0574cd5ad4b2cbd12d188b19784 --- /dev/null +++ b/src/modules/semantic/semantic_interface_1.py @@ -0,0 +1,55 @@ +import streamlit as st +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot +from ..database.database_oldFromV2 import store_semantic_result +from ..text_analysis.semantic_analysis import perform_semantic_analysis +from ..utils.widget_utils import generate_unique_key + +def display_semantic_interface(lang_code, nlp_models, t): + st.subheader(t['title']) + + # Inicializar el chatbot si no existe + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + # Sección para cargar archivo + uploaded_file = st.file_uploader(t['file_uploader'], type=['txt', 'pdf', 'docx', 'doc', 'odt']) + if uploaded_file: + file_contents = uploaded_file.getvalue().decode('utf-8') + st.session_state.file_contents = file_contents + + # Mostrar el historial del chat + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + if "visualization" in message: + st.pyplot(message["visualization"]) + + # Input del usuario + user_input = st.chat_input(t['semantic_initial_message'], key=generate_unique_key('semantic', st.session_state.username)) + + if user_input: + # Procesar el input del usuario + response, visualization = process_semantic_analysis(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents'), t) + + # Actualizar el historial del chat + chat_history.append({"role": "user", "content": user_input}) + chat_history.append({"role": "assistant", "content": response, "visualization": visualization}) + st.session_state.semantic_chat_history = chat_history + + # Mostrar el resultado más reciente + with st.chat_message("assistant"): + st.write(response) + if visualization: + st.pyplot(visualization) + + # Guardar el resultado en la base de datos si es un análisis + if user_input.startswith('/analisis_semantico'): + result = perform_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code) + store_semantic_result(st.session_state.username, st.session_state.file_contents, result) + + # Botón para limpiar el historial del chat + if st.button(t['clear_chat'], key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_2.py b/src/modules/semantic/semantic_interface_2.py new file mode 100644 index 0000000000000000000000000000000000000000..9b24e101d56541b3f533183b78dceda8f961880c --- /dev/null +++ b/src/modules/semantic/semantic_interface_2.py @@ -0,0 +1,167 @@ +import streamlit as st +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + #st.set_page_config(layout="wide") + + # Estilo CSS personalizado + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')} +
+ """, unsafe_allow_html=True) + + # Inicializar el chatbot si no existe + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + # Contenedor para la gestión de archivos + with st.container(): + st.markdown('
', unsafe_allow_html=True) + col1, col2, col3, col4 = st.columns(4) + + with col1: + if st.button(get_translation(t, 'upload_file', 'Upload File'), key=generate_unique_key('semantic', 'upload_button')): + uploaded_file = st.file_uploader(get_translation(t, 'file_uploader', 'Choose a file'), type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved to database successfully')) + st.session_state.file_contents = file_contents + st.rerun() + else: + st.error(get_translation(t, 'file_upload_error', 'Error uploading file')) + + with col2: + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_file', 'Select a file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox(get_translation(t, 'file_list', 'File List'), options=file_options, key=generate_unique_key('semantic', 'file_selector')) + if selected_file != get_translation(t, 'select_file', 'Select a file'): + if st.button(get_translation(t, 'load_file', 'Load File'), key=generate_unique_key('semantic', 'load_file')): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + st.success(get_translation(t, 'file_loaded_success', 'File loaded successfully')) + else: + st.error(get_translation(t, 'file_load_error', 'Error loading file')) + + with col3: + if st.button(get_translation(t, 'analyze_document', 'Analyze Document'), key=generate_unique_key('semantic', 'analyze_document')): + if 'file_contents' in st.session_state: + with st.spinner(get_translation(t, 'analyzing', 'Analyzing...')): + graph, key_concepts = process_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code) + st.session_state.graph = graph + st.session_state.key_concepts = key_concepts + st.success(get_translation(t, 'analysis_completed', 'Analysis completed')) + else: + st.error(get_translation(t, 'no_file_uploaded', 'No file uploaded')) + + with col4: + if st.button(get_translation(t, 'delete_file', 'Delete File'), key=generate_unique_key('semantic', 'delete_file')): + if selected_file and selected_file != get_translation(t, 'select_file', 'Select a file'): + if delete_file(st.session_state.username, selected_file, 'semantic'): + st.success(get_translation(t, 'file_deleted_success', 'File deleted successfully')) + if 'file_contents' in st.session_state: + del st.session_state.file_contents + st.rerun() + else: + st.error(get_translation(t, 'file_delete_error', 'Error deleting file')) + else: + st.error(get_translation(t, 'no_file_selected', 'No file selected')) + + st.markdown('
', unsafe_allow_html=True) + + # Crear dos columnas: una para el chat y otra para la visualización + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat')) + # Chat interface + chat_container = st.container() + + with chat_container: + # Mostrar el historial del chat + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + + # Input del usuario + user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + # Añadir el mensaje del usuario al historial + chat_history.append({"role": "user", "content": user_input}) + + # Generar respuesta del chatbot + chatbot = st.session_state.semantic_chatbot + response = chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents')) + + # Añadir la respuesta del chatbot al historial + chat_history.append({"role": "assistant", "content": response}) + + # Actualizar el historial en session_state + st.session_state.semantic_chat_history = chat_history + + # Forzar la actualización de la interfaz + st.rerun() + + with col_graph: + st.subheader(get_translation(t, 'graph_title', 'Semantic Graph')) + + # Mostrar conceptos clave en un expander horizontal + with st.expander(get_translation(t, 'key_concepts_title', 'Key Concepts'), expanded=True): + if 'key_concepts' in st.session_state: + st.markdown('
', unsafe_allow_html=True) + for concept, freq in st.session_state.key_concepts: + st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + if 'graph' in st.session_state: + st.pyplot(st.session_state.graph) + + # Botón para limpiar el historial del chat + if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_2192024_1632.py b/src/modules/semantic/semantic_interface_2192024_1632.py new file mode 100644 index 0000000000000000000000000000000000000000..cd2aff2f6a40d46999fd4548dd5697dd09f16e80 --- /dev/null +++ b/src/modules/semantic/semantic_interface_2192024_1632.py @@ -0,0 +1,244 @@ +import streamlit as st +import logging +import time +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization --1 + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + # Create a container for the chat messages + chat_container = st.container() + + # Display chat messages from history on app rerun + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + +''' + # Accept user input + if prompt := st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')): + # Add user message to chat history + st.session_state.semantic_chat_history.append({"role": "user", "content": prompt}) + # Display user message in chat message container + with st.chat_message("user"): + st.markdown(prompt) + + # Generate and display assistant response + with st.chat_message("assistant"): + message_placeholder = st.empty() + full_response = "" + + if prompt.startswith('/analyze_current'): + assistant_response = process_semantic_chat_input(prompt, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + assistant_response = st.session_state.semantic_chatbot.generate_response(prompt, lang_code, context=st.session_state.get('file_contents', '')) + + # Simulate stream of response with milliseconds delay + for chunk in assistant_response.split(): + full_response += chunk + " " + time.sleep(0.05) + # Add a blinking cursor to simulate typing + message_placeholder.markdown(full_response + "▌") + message_placeholder.markdown(full_response) + + # Add assistant response to chat history + st.session_state.semantic_chat_history.append({"role": "assistant", "content": full_response}) + + # Add a clear chat button + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [{"role": "assistant", "content": "Chat cleared. How can I assist you?"}] + st.rerun() + +''' + +''' + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") +''' \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_3.py b/src/modules/semantic/semantic_interface_3.py new file mode 100644 index 0000000000000000000000000000000000000000..b42b4101804f09c8cf78d9458a9c4ad20f2ece4d --- /dev/null +++ b/src/modules/semantic/semantic_interface_3.py @@ -0,0 +1,182 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f""" +
+ {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')} +
+ """, unsafe_allow_html=True) + + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + # Contenedor para la gestión de archivos + with st.container(): + st.markdown('
', unsafe_allow_html=True) + col1, col2, col3, col4 = st.columns(4) + + with col1: + uploaded_file = st.file_uploader(get_translation(t, 'upload_file', 'Upload File'), type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.session_state.file_contents = file_contents + st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully')) + st.rerun() + else: + st.error(get_translation(t, 'file_upload_error', 'Error uploading file')) + + with col2: + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + st.success(get_translation(t, 'file_loaded_success', 'File loaded successfully')) + else: + st.error(get_translation(t, 'file_load_error', 'Error loading file')) + + with col3: + if st.button(get_translation(t, 'analyze_document', 'Analyze Document'), key=generate_unique_key('semantic', 'analyze_document')): + if 'file_contents' in st.session_state: + with st.spinner(get_translation(t, 'analyzing', 'Analyzing...')): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(st.session_state.file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success(get_translation(t, 'analysis_completed', 'Analysis completed')) + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error(get_translation(t, 'no_file_uploaded', 'No file uploaded')) + + with col4: + if st.button(get_translation(t, 'delete_file', 'Delete File'), key=generate_unique_key('semantic', 'delete_file')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + if delete_file(st.session_state.username, selected_file, 'semantic'): + st.success(get_translation(t, 'file_deleted_success', 'File deleted successfully')) + if 'file_contents' in st.session_state: + del st.session_state.file_contents + st.rerun() + else: + st.error(get_translation(t, 'file_delete_error', 'Error deleting file')) + else: + st.error(get_translation(t, 'no_file_selected', 'No file selected')) + + st.markdown('
', unsafe_allow_html=True) + + # Contenedor para la sección de análisis + st.markdown('
', unsafe_allow_html=True) + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat')) + chat_container = st.container() + + with chat_container: + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + + user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) + + chat_history.append({"role": "assistant", "content": response}) + st.session_state.semantic_chat_history = chat_history + + with col_graph: + st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs')) + + # Mostrar conceptos clave y entidades horizontalmente + if 'key_concepts' in st.session_state: + st.write(get_translation(t, 'key_concepts_title', 'Key Concepts')) + st.markdown('
', unsafe_allow_html=True) + for concept, freq in st.session_state.key_concepts: + st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + if 'entities' in st.session_state: + st.write(get_translation(t, 'entities_title', 'Entities')) + st.markdown('
', unsafe_allow_html=True) + for entity, type in st.session_state.entities.items(): + st.markdown(f'{entity}: {type}', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + # Usar pestañas para mostrar los gráficos + tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab1: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + + with tab2: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + + st.markdown('
', unsafe_allow_html=True) + + if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_4.py b/src/modules/semantic/semantic_interface_4.py new file mode 100644 index 0000000000000000000000000000000000000000..fab61a80830dc404e0c3d7694f93803f900061b5 --- /dev/null +++ b/src/modules/semantic/semantic_interface_4.py @@ -0,0 +1,188 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + st.markdown('
', unsafe_allow_html=True) + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) + + chat_history.append({"role": "assistant", "content": response}) + st.session_state.semantic_chat_history = chat_history + + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + st.markdown('
', unsafe_allow_html=True) + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") + st.markdown('
', unsafe_allow_html=True) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_5.py b/src/modules/semantic/semantic_interface_5.py new file mode 100644 index 0000000000000000000000000000000000000000..b9c2c13e29ee1fe2b8048e233b65bcaaa02af6fc --- /dev/null +++ b/src/modules/semantic/semantic_interface_5.py @@ -0,0 +1,195 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Estilo CSS personalizado + st.markdown(""" + + """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_6.py b/src/modules/semantic/semantic_interface_6.py new file mode 100644 index 0000000000000000000000000000000000000000..6b9e483a32c03f1fc3dbf0a6aa2e65f71a284e35 --- /dev/null +++ b/src/modules/semantic/semantic_interface_6.py @@ -0,0 +1,223 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + + # Crear el grafo flotante + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph( + content="
Loading graph...
", + width="40%", + height="60%", + position="bottom-right", + shadow=2, + transition=1 + ) + + # Actualizar el contenido del grafo flotante + update_float_content(st.session_state.graph_id, f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """) + + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + with st.expander("Chat with AI", expanded=True): + chat_container = st.container() + + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state and st.session_state.concept_graph: + st.image(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state and st.session_state.entity_graph: + st.image(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") + + # Botón para cerrar el grafo flotante + if st.button("Close Graph", key="close_graph"): + if 'graph_id' in st.session_state: + toggle_float_visibility(st.session_state.graph_id, False) + del st.session_state.graph_id \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_61.py b/src/modules/semantic/semantic_interface_61.py new file mode 100644 index 0000000000000000000000000000000000000000..a2ac1e16628009ab14da1eb7cf94c967a22805ea --- /dev/null +++ b/src/modules/semantic/semantic_interface_61.py @@ -0,0 +1,198 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + col_left, col_right = st.columns([1, 1]) + + with col_left: + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph( + content="
Loading graph...
", + width="40%", + height="60%", + position="bottom-right", + shadow=2, + transition=1 + ) + + update_float_content(st.session_state.graph_id, f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """) + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([2, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + toggle_float_visibility(st.session_state.graph_id, not st.session_state.get('graph_visible', True)) + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_right: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + with tab_concept: + if 'concept_graph' in st.session_state and st.session_state.concept_graph: + st.image(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + with tab_entity: + if 'entity_graph' in st.session_state and st.session_state.entity_graph: + st.image(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_610.py b/src/modules/semantic/semantic_interface_610.py new file mode 100644 index 0000000000000000000000000000000000000000..7584017bdca599b7345e9728e5cdd887be94c885 --- /dev/null +++ b/src/modules/semantic/semantic_interface_610.py @@ -0,0 +1,186 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import * + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Crear o actualizar el elemento flotante con el grafo + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + st.session_state.graph_id = float_graph(graph_content, width="30%", height="80%", position="center-right", shadow=2) + st.session_state.graph_visible = True + + # Depuración: Mostrar los primeros 100 caracteres del grafo + st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}") + st.write(f"Debug: Graph ID: {st.session_state.graph_id}") + + except Exception as e: + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + + +# Al final del archivo, después de todo el código: +if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + components.html(f""" + + """, height=0) + +# Añadir un botón para alternar la visibilidad del grafo +if st.button("Toggle Graph Visibility"): + st.session_state.graph_visible = not st.session_state.get('graph_visible', False) + if st.session_state.graph_visible: + st.write("Graph should be visible now") + else: + st.write("Graph should be hidden now") + st.experimental_rerun() \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_62.py b/src/modules/semantic/semantic_interface_62.py new file mode 100644 index 0000000000000000000000000000000000000000..2cf56020a9772617f5f09a69450887c7e50614a8 --- /dev/null +++ b/src/modules/semantic/semantic_interface_62.py @@ -0,0 +1,206 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + col_left, col_right = st.columns([3, 2]) + + with col_left: + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Crear o actualizar el grafo flotante + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph( + content="
Loading graph...
", + width="40%", + height="60%", + position="bottom-right", + shadow=2, + transition=1 + ) + update_float_content(st.session_state.graph_id, f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + chat_container = st.container() + with chat_container: + st.markdown('
', unsafe_allow_html=True) + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat and Graph", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + if st.session_state.semantic_chat_history: + if st.button("Do you want to export the analysis before clearing?"): + # Aquí puedes implementar la lógica para exportar el análisis + st.success("Analysis exported successfully") + st.session_state.semantic_chat_history = [] + if 'graph_id' in st.session_state: + toggle_float_visibility(st.session_state.graph_id, False) + del st.session_state.graph_id + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + st.rerun() + + with col_right: + st.subheader("Visualization") + if 'key_concepts' in st.session_state and st.session_state.key_concepts: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + with tab_concept: + if 'concept_graph' in st.session_state and st.session_state.concept_graph: + st.image(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + with tab_entity: + if 'entity_graph' in st.session_state and st.session_state.entity_graph: + st.image(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_63.py b/src/modules/semantic/semantic_interface_63.py new file mode 100644 index 0000000000000000000000000000000000000000..c32cf8d098b8ffb30163db19deef434fb2653d50 --- /dev/null +++ b/src/modules/semantic/semantic_interface_63.py @@ -0,0 +1,215 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + # Barra de progreso + progress_bar = st.progress(0) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + col_left, col_right = st.columns([2, 3]) # Invertimos las proporciones + + with col_left: + st.subheader("File Selection and Chat") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + progress_bar.progress(10) + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + progress_bar.progress(30) + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + progress_bar.progress(70) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + progress_bar.progress(100) + st.success("Analysis completed successfully") + + # Crear o actualizar el grafo flotante + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph( + content="
Loading graph...
", + width="40%", + height="60%", + position="bottom-right", + shadow=2, + transition=1 + ) + update_float_content(st.session_state.graph_id, f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + finally: + progress_bar.empty() + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + chat_container = st.container() + with chat_container: + st.markdown('
', unsafe_allow_html=True) + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat and Graph", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + if st.session_state.semantic_chat_history: + if st.button("Do you want to export the analysis before clearing?"): + # Aquí puedes implementar la lógica para exportar el análisis + st.success("Analysis exported successfully") + st.session_state.semantic_chat_history = [] + if 'graph_id' in st.session_state: + toggle_float_visibility(st.session_state.graph_id, False) + del st.session_state.graph_id + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + st.rerun() + + with col_right: + st.subheader("Visualization") + if 'key_concepts' in st.session_state and st.session_state.key_concepts: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + with tab_concept: + if 'concept_graph' in st.session_state and st.session_state.concept_graph: + st.image(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + with tab_entity: + if 'entity_graph' in st.session_state and st.session_state.entity_graph: + st.image(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_64.py b/src/modules/semantic/semantic_interface_64.py new file mode 100644 index 0000000000000000000000000000000000000000..731678c700b81bdb8043dfa75ef875544ef44860 --- /dev/null +++ b/src/modules/semantic/semantic_interface_64.py @@ -0,0 +1,170 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Actualizar el grafo flotante + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(graph_content, width="40%", height="60%", position="top-right") + else: + update_float_content(st.session_state.graph_id, graph_content) + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + chat_container = st.container() + with chat_container: + st.markdown('
', unsafe_allow_html=True) + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Botón para alternar la visibilidad del grafo flotante + if 'graph_id' in st.session_state: + if st.button("Toggle Graph Visibility"): + toggle_float_visibility(st.session_state.graph_id, not st.session_state.get('graph_visible', True)) + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_65.py b/src/modules/semantic/semantic_interface_65.py new file mode 100644 index 0000000000000000000000000000000000000000..6ea2f629e954c34ed7407e1d06241dc5040f1879 --- /dev/null +++ b/src/modules/semantic/semantic_interface_65.py @@ -0,0 +1,176 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Actualizar el grafo flotante + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(graph_content, width="40%", height="auto", position="center-right") + else: + update_float_content(st.session_state.graph_id, graph_content) + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + chat_container = st.container() + with chat_container: + st.markdown('
', unsafe_allow_html=True) + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_66.py b/src/modules/semantic/semantic_interface_66.py new file mode 100644 index 0000000000000000000000000000000000000000..cfa57fb062f09215e606e80cdbe9dfdacfcda759 --- /dev/null +++ b/src/modules/semantic/semantic_interface_66.py @@ -0,0 +1,186 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Actualizar el contenido del grafo + st.session_state.graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(st.session_state.graph_content, width="40%", height="auto", position="center-right") + else: + update_float_content(st.session_state.graph_id, st.session_state.graph_content) + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + chat_container = st.container() + with chat_container: + st.markdown('
', unsafe_allow_html=True) + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + + # Mostrar el grafo flotante si está visible + if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state: + st.markdown( + f""" +
+ {st.session_state.graph_content} +
+ """, + unsafe_allow_html=True + ) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_67.py b/src/modules/semantic/semantic_interface_67.py new file mode 100644 index 0000000000000000000000000000000000000000..952286e515d0b2aaded7d0e4ae21e5d4f6de8115 --- /dev/null +++ b/src/modules/semantic/semantic_interface_67.py @@ -0,0 +1,189 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Actualizar el contenido del grafo + st.session_state.graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right") + else: + update_float_content(st.session_state.graph_id, st.session_state.graph_content) + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + + # Mostrar el grafo flotante si está visible + if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state: + st.markdown( + f""" +
+ {st.session_state.graph_content} +
+ """, + unsafe_allow_html=True + ) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_68.py b/src/modules/semantic/semantic_interface_68.py new file mode 100644 index 0000000000000000000000000000000000000000..7d76233b4405d8e141d906c75f98c4cba2cb822e --- /dev/null +++ b/src/modules/semantic/semantic_interface_68.py @@ -0,0 +1,195 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph_base64, entity_graph_base64, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Aquí cambiamos el contenido del elemento flotante para mostrar un video de YouTube + youtube_video_id = "dQw4w9WgXcQ" # Cambia esto por el ID del video que quieras mostrar + video_content = f""" + + """ + st.session_state.graph_id = float_graph(video_content, width="800px", height="600px", position="center-right") + st.session_state.graph_visible = True + st.session_state.graph_content = video_content + + # Log para depuración + st.write(f"Debug: Graph ID: {st.session_state.get('graph_id')}") + st.write(f"Debug: Graph visible: {st.session_state.get('graph_visible')}") + + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + + # Mostrar el grafo flotante si está visible + if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state: + st.markdown( + f""" +
+ {st.session_state.graph_content} +
+ """, + unsafe_allow_html=True + ) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_681.py b/src/modules/semantic/semantic_interface_681.py new file mode 100644 index 0000000000000000000000000000000000000000..9384c9f712a4145c14d5d43a1657e11e92cbeaea --- /dev/null +++ b/src/modules/semantic/semantic_interface_681.py @@ -0,0 +1,165 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + col1, col2 = st.columns([3, 1]) + with col1: + analyze_button = st.button("Analyze Document") + with col2: + toggle_graph = st.checkbox("Show Graph", value=st.session_state.graph_visible) + + if analyze_button: + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + float_graph(graph_content) + st.session_state.graph_visible = True + toggle_float_visibility(True) + + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + if toggle_graph != st.session_state.graph_visible: + st.session_state.graph_visible = toggle_graph + toggle_float_visibility(toggle_graph) + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible si está activado + if st.session_state.graph_visible: + toggle_float_visibility(True) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_681_23-9-24.py b/src/modules/semantic/semantic_interface_681_23-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..69477b49cf6dd9be21b06e330813aa2fe274e3ec --- /dev/null +++ b/src/modules/semantic/semantic_interface_681_23-9-24.py @@ -0,0 +1,222 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import * + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(graph_content, width="800px", height="600px", position="center-right") + st.write(f"New graph created with ID: {st.session_state.graph_id}") + else: + update_float_content(st.session_state.graph_id, graph_content) + st.write(f"Existing graph updated with ID: {st.session_state.graph_id}") + + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + + # Depuración + st.write(f"Debug: Graph ID: {st.session_state.graph_id}") + st.write(f"Debug: Graph visible: {st.session_state.graph_visible}") + st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}") + + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + col1, col2, col3 = st.columns([3, 1, 1]) + + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Añadir botones para controlar el elemento flotante + col1, col2 = st.columns(2) + with col1: + if st.button("Show Graph"): + if 'graph_id' in st.session_state: + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + st.write(f"Showing graph with ID: {st.session_state.graph_id}") + else: + st.write("No graph available to show") + + with col2: + if st.button("Hide Graph"): + if 'graph_id' in st.session_state: + toggle_float_visibility(st.session_state.graph_id, False) + st.session_state.graph_visible = False + st.write(f"Hiding graph with ID: {st.session_state.graph_id}") + else: + st.write("No graph available to hide") \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_68ok copy.py b/src/modules/semantic/semantic_interface_68ok copy.py new file mode 100644 index 0000000000000000000000000000000000000000..fc16cf6f6c19e45753d432af4e13c32f5880841a --- /dev/null +++ b/src/modules/semantic/semantic_interface_68ok copy.py @@ -0,0 +1,215 @@ +import streamlit as st +import streamlit_float +import streamlit_option_menu +import streamlit_antd_components +import streamlit.components.v1 as components +import streamlit.components.v1 as stc +import logging +from .semantic_process import * +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float68ok import * + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph_base64, entity_graph_base64, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + if concept_graph_base64: + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + st.session_state.graph_id = float_graph(graph_content, width="800px", height="600px", position="center-right") + st.session_state.graph_visible = True + st.session_state.graph_content = graph_content + + if entity_graph_base64: + entity_graph_content = f""" +

Entity Graph:

+ Entity Graph + """ + st.session_state.entity_graph_id = float_graph(entity_graph_content, width="800px", height="600px", position="bottom-left") + + # Log para depuración + st.write(f"Debug: Graph ID: {st.session_state.get('graph_id')}") + st.write(f"Debug: Graph visible: {st.session_state.get('graph_visible')}") + st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph_base64[:100]}") + + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + col1, col2, col3 = st.columns([3, 1, 1]) + + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + +# Asegurarse de que el grafo flotante permanezca visible después de las interacciones +if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + +# Mostrar el grafo flotante si está visible +if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state: + components.html( + f""" +
+ {st.session_state.graph_content} +
+ """, + height=600, + scrolling=True + ) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_68ok.py b/src/modules/semantic/semantic_interface_68ok.py new file mode 100644 index 0000000000000000000000000000000000000000..8a34d56f794a81dca38b251a21fba4ca16b5a6ad --- /dev/null +++ b/src/modules/semantic/semantic_interface_68ok.py @@ -0,0 +1,98 @@ +import streamlit as st +import logging +from ..database.database_oldFromV2 import manage_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + + + +def display_semantic_interface(lang_code, nlp_models, t): + st.subheader(t['semantic_title']) + + text_input = st.text_area( + t['warning_message'], + height=150, + key=generate_unique_key("semantic", "text_area") + ) + + if st.button( + t['results_title'], + key=generate_unique_key("semantic", "analyze_button") + ): + if text_input: + # Aquí iría tu lógica de análisis morfosintáctico + # Por ahora, solo mostraremos un mensaje de placeholder + st.info(t['analysis_placeholder']) + else: + st.warning(t['no_text_warning']) + + +''' +def display_semantic_interface(lang_code, nlp_models, t): + st.title("Semantic Analysis") + + tab1, tab2 = st.tabs(["File Management", "Analysis"]) + + with tab1: + display_file_management(lang_code, t) + + with tab2: + # Aquí irá el código para el análisis semántico (lo implementaremos después) + st.write("Semantic analysis section will be implemented here.") + +def display_file_management(lang_code, t): + st.header("File Management") + + # File Upload Section + st.subheader("Upload New File") + uploaded_file = st.file_uploader( + "Choose a file to upload", + type=['txt', 'pdf', 'docx', 'doc', 'odt'], + key=generate_unique_key('semantic', 'file_uploader') + ) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if manage_file_contents(st.session_state.username, uploaded_file.name, file_contents, 'semantic'): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + + + # File Management Section + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + try: + logger.info(f"Attempting to delete file: {file['file_name']} for user: {st.session_state.username}") + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + logger.info(f"File {file['file_name']} deleted successfully for user: {st.session_state.username}") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + logger.error(f"Failed to delete file {file['file_name']} for user: {st.session_state.username}") + except Exception as e: + st.error(f"An error occurred while deleting file {file['file_name']}: {str(e)}") + logger.exception(f"Exception occurred while deleting file {file['file_name']} for user: {st.session_state.username}") + + else: + st.info("No files uploaded yet.") + +if __name__ == "__main__": + # This is just for testing purposes + class MockTranslation(dict): + def __getitem__(self, key): + return key + + display_semantic_interface('en', {}, MockTranslation()) + + ''' \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_68okBackUp.py b/src/modules/semantic/semantic_interface_68okBackUp.py new file mode 100644 index 0000000000000000000000000000000000000000..a8d8eaeafca312b1fa3d6ef2fc81bf2bf7a844ad --- /dev/null +++ b/src/modules/semantic/semantic_interface_68okBackUp.py @@ -0,0 +1,209 @@ +import streamlit as st +import streamlit.components.v1 as components +import streamlit.components.v1 as stc +import logging +from .semantic_process import * +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float68ok import * + +concept_graph_base64, entity_graph_base64, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Actualizar el contenido del grafo + st.session_state.graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right") + else: + update_float_content(st.session_state.graph_id, st.session_state.graph_content) + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + col1, col2, col3 = st.columns([3, 1, 1]) + + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + + # Mostrar el grafo flotante si está visible + if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state: + st.markdown( + f""" +
+ {st.session_state.graph_content} +
+ """, + unsafe_allow_html=True + ) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_69.py b/src/modules/semantic/semantic_interface_69.py new file mode 100644 index 0000000000000000000000000000000000000000..9491c4a0cd7e20c82eeb3bed69d2f3417e92e1d4 --- /dev/null +++ b/src/modules/semantic/semantic_interface_69.py @@ -0,0 +1,167 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import * + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Crear o actualizar el elemento flotante con el grafo + graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(graph_content, width="540px", height="540px", position="center-right") + else: + update_float_content(st.session_state.graph_id, graph_content) + + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + + # Depuración: Mostrar el grafo directamente en la interfaz + #st.image(f"data:image/png;base64,{concept_graph}", caption="Concept Graph (Debug View)", use_column_width=True) + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_6_Ok-23-9-24.py b/src/modules/semantic/semantic_interface_6_Ok-23-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..c56fcc1da26f832d7e3e5037453ed17469943284 --- /dev/null +++ b/src/modules/semantic/semantic_interface_6_Ok-23-9-24.py @@ -0,0 +1,223 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + + # Crear el grafo flotante + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph( + content="
Loading graph...
", + width="40%", + height="60%", + position="bottom-right", + shadow=2, + transition=1 + ) + + # Actualizar el contenido del grafo flotante + update_float_content(st.session_state.graph_id, f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """) + + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + with st.expander("Chat with AI", expanded=True): + chat_container = st.container() + + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state and st.session_state.concept_graph: + st.image(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state and st.session_state.entity_graph: + st.image(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") + + # Botón para cerrar el grafo flotante + if st.button("Close Graph", key="close_graph"): + if 'graph_id' in st.session_state: + toggle_float_visibility(st.session_state.graph_id, False) + del st.session_state.graph_id \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_6_StarPoint.py b/src/modules/semantic/semantic_interface_6_StarPoint.py new file mode 100644 index 0000000000000000000000000000000000000000..128c21dd4422f723c9b35a7484ab0b2af79f69d2 --- /dev/null +++ b/src/modules/semantic/semantic_interface_6_StarPoint.py @@ -0,0 +1,196 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + with st.expander("Chat with AI", expanded=True): + chat_container = st.container() + + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + col1, col2 = st.columns([3, 1]) + + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_7.py b/src/modules/semantic/semantic_interface_7.py new file mode 100644 index 0000000000000000000000000000000000000000..26893a836e36378aad6d6fbc4a259bb7a9126b22 --- /dev/null +++ b/src/modules/semantic/semantic_interface_7.py @@ -0,0 +1,201 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_BackUp_18-5-2025.py b/src/modules/semantic/semantic_interface_BackUp_18-5-2025.py new file mode 100644 index 0000000000000000000000000000000000000000..720b92ae9dca3db9f560de190b2581ae0e24bfb4 --- /dev/null +++ b/src/modules/semantic/semantic_interface_BackUp_18-5-2025.py @@ -0,0 +1,261 @@ +#modules/semantic/semantic_interface.py +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +from streamlit.components.v1 import html +import spacy_streamlit +import io +from io import BytesIO +import base64 +import matplotlib.pyplot as plt +import pandas as pd +import re +import logging + +# Configuración del logger +logger = logging.getLogger(__name__) + +# Importaciones locales +from .semantic_process import ( + process_semantic_input, + format_semantic_results +) + +from ..utils.widget_utils import generate_unique_key +from ..database.semantic_mongo_db import store_student_semantic_result +from ..database.chat_mongo_db import store_chat_history, get_chat_history + +# from ..database.semantic_export import export_user_interactions + + +############################### + +# En semantic_interface.py +def display_semantic_interface(lang_code, nlp_models, semantic_t): + try: + # 1. Inicializar el estado de la sesión + if 'semantic_state' not in st.session_state: + st.session_state.semantic_state = { + 'analysis_count': 0, + 'last_analysis': None, + 'current_file': None, + 'pending_analysis': False # Nuevo flag para controlar el análisis pendiente + } + + # 2. Área de carga de archivo con mensaje informativo + st.info(semantic_t.get('initial_instruction', + 'Para comenzar un nuevo análisis semántico, cargue un archivo de texto (.txt)')) + + uploaded_file = st.file_uploader( + semantic_t.get('semantic_file_uploader', 'Upload a text file for semantic analysis'), + type=['txt'], + key=f"semantic_file_uploader_{st.session_state.semantic_state['analysis_count']}" + ) + + # 2.1 Verificar si hay un archivo cargado y un análisis pendiente + if uploaded_file is not None and st.session_state.semantic_state.get('pending_analysis', False): + try: + with st.spinner(semantic_t.get('processing', 'Processing...')): + # Realizar análisis + text_content = uploaded_file.getvalue().decode('utf-8') + + analysis_result = process_semantic_input( + text_content, + lang_code, + nlp_models, + semantic_t + ) + + if analysis_result['success']: + # Guardar resultado + st.session_state.semantic_result = analysis_result + st.session_state.semantic_state['analysis_count'] += 1 + st.session_state.semantic_state['current_file'] = uploaded_file.name + + # Guardar en base de datos + storage_success = store_student_semantic_result( + st.session_state.username, + text_content, + analysis_result['analysis'] + ) + + if storage_success: + st.success( + semantic_t.get('analysis_complete', + 'Análisis completado y guardado. Para realizar un nuevo análisis, cargue otro archivo.') + ) + else: + st.error(semantic_t.get('error_message', 'Error saving analysis')) + else: + st.error(analysis_result['message']) + + # Restablecer el flag de análisis pendiente + st.session_state.semantic_state['pending_analysis'] = False + + except Exception as e: + logger.error(f"Error en análisis semántico: {str(e)}") + st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}')) + # Restablecer el flag de análisis pendiente en caso de error + st.session_state.semantic_state['pending_analysis'] = False + + # 3. Columnas para los botones y mensajes + col1, col2 = st.columns([1,4]) + + # 4. Botón de análisis + with col1: + analyze_button = st.button( + semantic_t.get('semantic_analyze_button', 'Analyze'), + key=f"semantic_analyze_button_{st.session_state.semantic_state['analysis_count']}", + type="primary", + icon="🔍", + disabled=uploaded_file is None, + use_container_width=True + ) + + # 5. Procesar análisis + if analyze_button and uploaded_file is not None: + # En lugar de realizar el análisis inmediatamente, establecer el flag + st.session_state.semantic_state['pending_analysis'] = True + # Forzar la recarga de la aplicación + st.rerun() + + # 6. Mostrar resultados previos o mensaje inicial + elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None: + # Mostrar mensaje sobre el análisis actual + st.info( + semantic_t.get('current_analysis_message', + 'Mostrando análisis del archivo: {}. Para realizar un nuevo análisis, cargue otro archivo.' + ).format(st.session_state.semantic_state["current_file"]) + ) + + display_semantic_results( + st.session_state.semantic_result, + lang_code, + semantic_t + ) + else: + st.info(semantic_t.get('upload_prompt', 'Cargue un archivo para comenzar el análisis')) + + except Exception as e: + logger.error(f"Error general en interfaz semántica: {str(e)}") + st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo.")) + + +####################################### + +def display_semantic_results(semantic_result, lang_code, semantic_t): + """ + Muestra los resultados del análisis semántico de conceptos clave. + """ + if semantic_result is None or not semantic_result['success']: + st.warning(semantic_t.get('no_results', 'No results available')) + return + + analysis = semantic_result['analysis'] + + # Mostrar conceptos clave en formato horizontal (se mantiene igual) + st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) + if 'key_concepts' in analysis and analysis['key_concepts']: + df = pd.DataFrame( + analysis['key_concepts'], + columns=[ + semantic_t.get('concept', 'Concept'), + semantic_t.get('frequency', 'Frequency') + ] + ) + + st.write( + """ + +
+ """ + + ''.join([ + f'
{concept}' + f'({freq:.2f})
' + for concept, freq in df.values + ]) + + "
", + unsafe_allow_html=True + ) + else: + st.info(semantic_t.get('no_concepts', 'No key concepts found')) + + # Gráfico de conceptos (versión modificada) + if 'concept_graph' in analysis and analysis['concept_graph'] is not None: + try: + # Sección del gráfico (sin div contenedor) + st.image( + analysis['concept_graph'], + use_container_width=True + ) + + # --- SOLO ESTE BLOQUE ES NUEVO --- + st.markdown(""" + + """, unsafe_allow_html=True) + # --------------------------------- + + # Expandible con la interpretación (se mantiene igual) + with st.expander("📊 " + semantic_t.get('semantic_graph_interpretation', "Interpretación del gráfico semántico")): + st.markdown(f""" + - 🔀 {semantic_t.get('semantic_arrow_meaning', 'Las flechas indican la dirección de la relación entre conceptos')} + - 🎨 {semantic_t.get('semantic_color_meaning', 'Los colores más intensos indican conceptos más centrales en el texto')} + - ⭕ {semantic_t.get('semantic_size_meaning', 'El tamaño de los nodos representa la frecuencia del concepto')} + - ↔️ {semantic_t.get('semantic_thickness_meaning', 'El grosor de las líneas indica la fuerza de la conexión')} + """) + + # Contenedor para botones (se mantiene igual pero centrado) + st.markdown(""" + +
+ """, unsafe_allow_html=True) + + st.download_button( + label="📥 " + semantic_t.get('download_semantic_network_graph', "Descargar gráfico de red semántica"), + data=analysis['concept_graph'], + file_name="semantic_graph.png", + mime="image/png", + use_container_width=True + ) + + st.markdown("
", unsafe_allow_html=True) + + except Exception as e: + logger.error(f"Error displaying graph: {str(e)}") + st.error(semantic_t.get('graph_error', 'Error displaying the graph')) + else: + st.info(semantic_t.get('no_graph', 'No concept graph available')) + diff --git "a/src/modules/semantic/semantic_interface_Despu\303\251s.py" "b/src/modules/semantic/semantic_interface_Despu\303\251s.py" new file mode 100644 index 0000000000000000000000000000000000000000..2d289197b51402d9a108eacfd06668a2394fbdfe --- /dev/null +++ "b/src/modules/semantic/semantic_interface_Despu\303\251s.py" @@ -0,0 +1,116 @@ +import streamlit as st +import logging +from io import BytesIO +import base64 +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import ( + initialize_mongodb_connection, + initialize_database_connections, + create_admin_user, + create_student_user, + get_user, + get_student_data, + store_file_contents, + retrieve_file_contents, + get_user_files, + delete_file, + store_application_request, + store_user_feedback, + store_morphosyntax_result, + store_semantic_result, + store_discourse_analysis_result, + store_chat_history, + export_analysis_and_chat, + get_user_analysis_summary, + get_user_recents_chats, + get_user_analysis_details + ) + +from ..utils.widget_utils import generate_unique_key +from .flexible_analysis_handler import FlexibleAnalysisHandler + +semantic_float_init() +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def fig_to_base64(fig): + buf = BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + img_str = base64.b64encode(buf.getvalue()).decode() + return f'' + +def display_semantic_interface(lang_code, nlp_models, t): + st.set_page_config(layout="wide") + + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + if 'show_graph' not in st.session_state: + st.session_state.show_graph = False + if 'graph_id' not in st.session_state: + st.session_state.graph_id = None + + st.header(t['title']) + + # Opción para introducir texto + text_input = st.text_area( + t['text_input_label'], + height=150, + placeholder=t['text_input_placeholder'], + ) + + # Opción para cargar archivo + uploaded_file = st.file_uploader(t['file_uploader'], type=['txt']) + + if st.button(t['analyze_button']): + if text_input or uploaded_file is not None: + if uploaded_file: + text_content = uploaded_file.getvalue().decode('utf-8') + else: + text_content = text_input + + # Realizar el análisis + analysis_result = process_semantic_analysis(text_content, nlp_models[lang_code], lang_code) + + # Guardar el resultado en el estado de la sesión + st.session_state.semantic_result = analysis_result + + # Mostrar resultados + display_semantic_results(st.session_state.semantic_result, lang_code, t) + + # Guardar el resultado del análisis + if store_semantic_result(st.session_state.username, text_content, analysis_result): + st.success(t['success_message']) + else: + st.error(t['error_message']) + else: + st.warning(t['warning_message']) + + elif 'semantic_result' in st.session_state: + + # Si hay un resultado guardado, mostrarlo + display_semantic_results(st.session_state.semantic_result, lang_code, t) + + else: + st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones + +def display_semantic_results(result, lang_code, t): + if result is None: + st.warning(t['no_results']) # Asegúrate de que 'no_results' esté en tus traducciones + return + + # Mostrar conceptos clave + with st.expander(t['key_concepts'], expanded=True): + concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']]) + st.write(concept_text) + + # Mostrar el gráfico de relaciones conceptuales + with st.expander(t['conceptual_relations'], expanded=True): + st.pyplot(result['relations_graph']) diff --git a/src/modules/semantic/semantic_interface_StreamLitChat.py b/src/modules/semantic/semantic_interface_StreamLitChat.py new file mode 100644 index 0000000000000000000000000000000000000000..e0eb527289912cd0295833c4e93cd2e91bd3b6d2 --- /dev/null +++ b/src/modules/semantic/semantic_interface_StreamLitChat.py @@ -0,0 +1,157 @@ +import streamlit as st +import logging +from streamlit_chat import message +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'messages' not in st.session_state: + st.session_state.messages = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + + st.title("Semantic Analysis") + + # Crear dos columnas principales: una para el chat y otra para la visualización + chat_col, viz_col = st.columns([1, 1]) + + with chat_col: + st.subheader("Chat with AI") + + # Contenedor para los mensajes del chat + chat_container = st.container() + + # Input para el chat + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + # Añadir mensaje del usuario + st.session_state.messages.append({"role": "user", "content": user_input}) + + # Generar respuesta del asistente + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + # Añadir respuesta del asistente + st.session_state.messages.append({"role": "assistant", "content": response}) + + # Mostrar mensajes en el contenedor del chat + with chat_container: + for i, msg in enumerate(st.session_state.messages): + message(msg['content'], is_user=msg['role'] == 'user', key=f"{i}_{msg['role']}") + + # Botón para limpiar el chat + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.messages = [] + st.rerun() + + with viz_col: + st.subheader("Visualization") + + # Selector de archivo y botón de análisis + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("Select a file to analyze", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Visualización de conceptos clave + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + # Pestañas para los gráficos + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") + + # Sección de carga de archivos + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + + # Gestión de archivos cargados + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_Test.py b/src/modules/semantic/semantic_interface_Test.py new file mode 100644 index 0000000000000000000000000000000000000000..435d574d8c6ff1b985807249e9a02061e0bd4a54 --- /dev/null +++ b/src/modules/semantic/semantic_interface_Test.py @@ -0,0 +1,22 @@ +import streamlit as st +from streamlit_float import * + +# Limpiar el caché al inicio +st.cache_data.clear() +st.cache_resource.clear() + + +# initialize float feature/capability +float_init() + +col1, col2 = st.columns(2) + +# Fix/float the whole column +col1.write("This entire column is fixed/floating") +col1.float() + +with col2: + container = st.container() + # Fix/float a single container inside + container.write("This text is in a container that is fixed") + container.float() \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_afterParty.py b/src/modules/semantic/semantic_interface_afterParty.py new file mode 100644 index 0000000000000000000000000000000000000000..2d289197b51402d9a108eacfd06668a2394fbdfe --- /dev/null +++ b/src/modules/semantic/semantic_interface_afterParty.py @@ -0,0 +1,116 @@ +import streamlit as st +import logging +from io import BytesIO +import base64 +from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import ( + initialize_mongodb_connection, + initialize_database_connections, + create_admin_user, + create_student_user, + get_user, + get_student_data, + store_file_contents, + retrieve_file_contents, + get_user_files, + delete_file, + store_application_request, + store_user_feedback, + store_morphosyntax_result, + store_semantic_result, + store_discourse_analysis_result, + store_chat_history, + export_analysis_and_chat, + get_user_analysis_summary, + get_user_recents_chats, + get_user_analysis_details + ) + +from ..utils.widget_utils import generate_unique_key +from .flexible_analysis_handler import FlexibleAnalysisHandler + +semantic_float_init() +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def fig_to_base64(fig): + buf = BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + img_str = base64.b64encode(buf.getvalue()).decode() + return f'' + +def display_semantic_interface(lang_code, nlp_models, t): + st.set_page_config(layout="wide") + + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + if 'show_graph' not in st.session_state: + st.session_state.show_graph = False + if 'graph_id' not in st.session_state: + st.session_state.graph_id = None + + st.header(t['title']) + + # Opción para introducir texto + text_input = st.text_area( + t['text_input_label'], + height=150, + placeholder=t['text_input_placeholder'], + ) + + # Opción para cargar archivo + uploaded_file = st.file_uploader(t['file_uploader'], type=['txt']) + + if st.button(t['analyze_button']): + if text_input or uploaded_file is not None: + if uploaded_file: + text_content = uploaded_file.getvalue().decode('utf-8') + else: + text_content = text_input + + # Realizar el análisis + analysis_result = process_semantic_analysis(text_content, nlp_models[lang_code], lang_code) + + # Guardar el resultado en el estado de la sesión + st.session_state.semantic_result = analysis_result + + # Mostrar resultados + display_semantic_results(st.session_state.semantic_result, lang_code, t) + + # Guardar el resultado del análisis + if store_semantic_result(st.session_state.username, text_content, analysis_result): + st.success(t['success_message']) + else: + st.error(t['error_message']) + else: + st.warning(t['warning_message']) + + elif 'semantic_result' in st.session_state: + + # Si hay un resultado guardado, mostrarlo + display_semantic_results(st.session_state.semantic_result, lang_code, t) + + else: + st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones + +def display_semantic_results(result, lang_code, t): + if result is None: + st.warning(t['no_results']) # Asegúrate de que 'no_results' esté en tus traducciones + return + + # Mostrar conceptos clave + with st.expander(t['key_concepts'], expanded=True): + concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']]) + st.write(concept_text) + + # Mostrar el gráfico de relaciones conceptuales + with st.expander(t['conceptual_relations'], expanded=True): + st.pyplot(result['relations_graph']) diff --git a/src/modules/semantic/semantic_interface_backup2092024_1930 copy.py b/src/modules/semantic/semantic_interface_backup2092024_1930 copy.py new file mode 100644 index 0000000000000000000000000000000000000000..fab61a80830dc404e0c3d7694f93803f900061b5 --- /dev/null +++ b/src/modules/semantic/semantic_interface_backup2092024_1930 copy.py @@ -0,0 +1,188 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + st.markdown('
', unsafe_allow_html=True) + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) + + chat_history.append({"role": "assistant", "content": response}) + st.session_state.semantic_chat_history = chat_history + + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + st.markdown('
', unsafe_allow_html=True) + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") + st.markdown('
', unsafe_allow_html=True) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_backup2092024_1930.py b/src/modules/semantic/semantic_interface_backup2092024_1930.py new file mode 100644 index 0000000000000000000000000000000000000000..3d97ce833c0da8a58ea642ca760ba50503b998a9 --- /dev/null +++ b/src/modules/semantic/semantic_interface_backup2092024_1930.py @@ -0,0 +1,192 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +from .flexible_analysis_handler import FlexibleAnalysisHandler # Añade esta línea + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + analysis_result = process_semantic_analysis(file_contents, nlp_model, lang_code) + + handler = FlexibleAnalysisHandler(analysis_result) + + st.session_state.concept_graph = handler.get_concept_graph() + st.session_state.entity_graph = handler.get_entity_graph() + st.session_state.key_concepts = handler.get_key_concepts() + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + st.markdown('
', unsafe_allow_html=True) + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + st.markdown('
', unsafe_allow_html=True) + + user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) + + chat_history.append({"role": "assistant", "content": response}) + st.session_state.semantic_chat_history = chat_history + + if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + st.markdown('
', unsafe_allow_html=True) + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") + st.markdown('
', unsafe_allow_html=True) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_backup_2092024.py b/src/modules/semantic/semantic_interface_backup_2092024.py new file mode 100644 index 0000000000000000000000000000000000000000..549e15f8d5e26c1ecfbe0bff01c05f539da7a296 --- /dev/null +++ b/src/modules/semantic/semantic_interface_backup_2092024.py @@ -0,0 +1,165 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f""" +
+ {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')} +
+ """, unsafe_allow_html=True) + + # File management container + st.markdown('
', unsafe_allow_html=True) + col1, col2, col3, col4 = st.columns(4) + + with col1: + if st.button("Upload File", key=generate_unique_key('semantic', 'upload_button')): + st.session_state.show_uploader = True + + with col2: + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + with col3: + analyze_button = st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')) + + with col4: + delete_button = st.button("Delete File", key=generate_unique_key('semantic', 'delete_file')) + + st.markdown('
', unsafe_allow_html=True) + + # File uploader (hidden by default) + if st.session_state.get('show_uploader', False): + uploaded_file = st.file_uploader("Choose a file", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.session_state.file_contents = file_contents + st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully')) + st.session_state.show_uploader = False # Hide uploader after successful upload + else: + st.error(get_translation(t, 'file_upload_error', 'Error uploading file')) + + + # Contenedor para la sección de análisis + st.markdown('
', unsafe_allow_html=True) + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat')) + chat_container = st.container() + + with chat_container: + chat_history = st.session_state.get('semantic_chat_history', []) + for message in chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + + user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input')) + + if user_input: + chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) + + chat_history.append({"role": "assistant", "content": response}) + st.session_state.semantic_chat_history = chat_history + + with col_graph: + st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs')) + + # Mostrar conceptos clave y entidades horizontalmente + if 'key_concepts' in st.session_state: + st.write(get_translation(t, 'key_concepts_title', 'Key Concepts')) + st.markdown('
', unsafe_allow_html=True) + for concept, freq in st.session_state.key_concepts: + st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + if 'entities' in st.session_state: + st.write(get_translation(t, 'entities_title', 'Entities')) + st.markdown('
', unsafe_allow_html=True) + for entity, type in st.session_state.entities.items(): + st.markdown(f'{entity}: {type}', unsafe_allow_html=True) + st.markdown('
', unsafe_allow_html=True) + + # Usar pestañas para mostrar los gráficos + tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab1: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + + with tab2: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + + st.markdown('
', unsafe_allow_html=True) + + if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')): + st.session_state.semantic_chat_history = [] + st.rerun() \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_backup_2192024_1230.py b/src/modules/semantic/semantic_interface_backup_2192024_1230.py new file mode 100644 index 0000000000000000000000000000000000000000..241407616ae3ce590be4cb7268b82eef2325d8a8 --- /dev/null +++ b/src/modules/semantic/semantic_interface_backup_2192024_1230.py @@ -0,0 +1,194 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + with st.expander("Chat with AI", expanded=True): + chat_container = st.container() + + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_chatforup.py b/src/modules/semantic/semantic_interface_chatforup.py new file mode 100644 index 0000000000000000000000000000000000000000..47c5d8789c4fa9de0c544bad98ecc137cfc2825c --- /dev/null +++ b/src/modules/semantic/semantic_interface_chatforup.py @@ -0,0 +1,196 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_stcontainerforchat.py b/src/modules/semantic/semantic_interface_stcontainerforchat.py new file mode 100644 index 0000000000000000000000000000000000000000..47c5d8789c4fa9de0c544bad98ecc137cfc2825c --- /dev/null +++ b/src/modules/semantic/semantic_interface_stcontainerforchat.py @@ -0,0 +1,196 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_test610.py b/src/modules/semantic/semantic_interface_test610.py new file mode 100644 index 0000000000000000000000000000000000000000..4ae439ec0086c3baa0bc74374358a81e8f865135 --- /dev/null +++ b/src/modules/semantic/semantic_interface_test610.py @@ -0,0 +1,212 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key +#from .semantic_float import semantic_float_init, float_graph, toggle_float_visibility, update_float_content +from .semantic_float_reset import * + +logger = logging.getLogger(__name__) +semantic_float_init() + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicialización del chatbot y el historial del chat + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + # Inicializar el estado del grafo si no existe + if 'graph_visible' not in st.session_state: + st.session_state.graph_visible = False + if 'graph_content' not in st.session_state: + st.session_state.graph_content = "" + + st.markdown(""" + + """, unsafe_allow_html=True) + + st.markdown(f"
{t['semantic_initial_message']}
", unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Semantic Analysis") + + st.subheader("File Selection and Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document"): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.session_state.current_file_contents = file_contents + st.success("Analysis completed successfully") + + # Depuración: Mostrar los primeros 100 caracteres del grafo + logger.debug(f"Concept graph base64 (first 100 chars): {concept_graph[:100]}") + st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}") + + # Actualizar el contenido del grafo + st.session_state.graph_content = f""" +

Key Concepts:

+

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

+ Concept Graph + """ + if 'graph_id' not in st.session_state: + st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right") + else: + update_float_content(st.session_state.graph_id, st.session_state.graph_content) + toggle_float_visibility(st.session_state.graph_id, True) + st.session_state.graph_visible = True + + # Depuración: Verificar si el grafo se está creando + logger.debug(f"Graph ID: {st.session_state.graph_id}") + logger.debug(f"Graph visible: {st.session_state.graph_visible}") + + # Mostrar el grafo directamente en la interfaz para verificación + st.image(f"data:image/png;base64,{concept_graph}", caption="Concept Graph (Debug View)", use_column_width=True) + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + st.session_state.concept_graph = None + st.session_state.entity_graph = None + st.session_state.key_concepts = [] + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + st.subheader("Chat with AI") + + # Mostrar el historial del chat + for message in st.session_state.semantic_chat_history: + message_class = "user-message" if message["role"] == "user" else "assistant-message" + st.markdown(f'
{message["content"]}
', unsafe_allow_html=True) + + # Colocar la entrada de usuario y los botones en la parte inferior + st.markdown('
', unsafe_allow_html=True) + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2, col3 = st.columns([3, 1, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + with col3: + if 'graph_id' in st.session_state: + toggle_button = st.button("Toggle Graph", key="toggle_graph") + if toggle_button: + st.session_state.graph_visible = not st.session_state.get('graph_visible', True) + toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible) + st.markdown('
', unsafe_allow_html=True) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', '')) + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + # Asegurarse de que el grafo flotante permanezca visible después de las interacciones + if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False): + toggle_float_visibility(st.session_state.graph_id, True) + + # Mostrar el grafo flotante si está visible + if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state: + st.markdown( + f""" +
+ {st.session_state.graph_content} +
+ """, + unsafe_allow_html=True + ) \ No newline at end of file diff --git a/src/modules/semantic/semantic_interface_vOk.py b/src/modules/semantic/semantic_interface_vOk.py new file mode 100644 index 0000000000000000000000000000000000000000..9b2167adff34762e28fbd9ee65c64dd371ef713c --- /dev/null +++ b/src/modules/semantic/semantic_interface_vOk.py @@ -0,0 +1,196 @@ +import streamlit as st +import logging +from .semantic_process import process_semantic_analysis +from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input +from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +def get_translation(t, key, default): + return t.get(key, default) + +def display_semantic_interface(lang_code, nlp_models, t): + # Inicializar el chatbot y el historial del chat al principio de la función + if 'semantic_chatbot' not in st.session_state: + st.session_state.semantic_chatbot = initialize_chatbot('semantic') + + if 'semantic_chat_history' not in st.session_state: + st.session_state.semantic_chat_history = [] + + st.markdown(""" + + """, unsafe_allow_html=True) + + # Mostrar el mensaje inicial como un párrafo estilizado + st.markdown(f""" +
+ {t['semantic_initial_message']} +
+ """, unsafe_allow_html=True) + + tab1, tab2 = st.tabs(["Upload", "Analyze"]) + + with tab1: + st.subheader("File Management") + uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) + if uploaded_file is not None: + file_contents = uploaded_file.getvalue().decode('utf-8') + if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): + st.success(f"File {uploaded_file.name} uploaded and saved successfully") + else: + st.error("Error uploading file") + + st.markdown("---") # Línea separadora + + st.subheader("Manage Uploaded Files") + user_files = get_user_files(st.session_state.username, 'semantic') + if user_files: + for file in user_files: + col1, col2 = st.columns([3, 1]) + with col1: + st.write(file['file_name']) + with col2: + if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): + if delete_file(st.session_state.username, file['file_name'], 'semantic'): + st.success(f"File {file['file_name']} deleted successfully") + st.rerun() + else: + st.error(f"Error deleting file {file['file_name']}") + else: + st.info("No files uploaded yet.") + + with tab2: + st.subheader("Select File for Analysis") + user_files = get_user_files(st.session_state.username, 'semantic') + file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] + selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) + + if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): + if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): + file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') + if file_contents: + st.session_state.file_contents = file_contents + with st.spinner("Analyzing..."): + try: + nlp_model = nlp_models[lang_code] + concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) + st.session_state.concept_graph = concept_graph + st.session_state.entity_graph = entity_graph + st.session_state.key_concepts = key_concepts + st.success("Analysis completed successfully") + except Exception as e: + logger.error(f"Error during analysis: {str(e)}") + st.error(f"Error during analysis: {str(e)}") + else: + st.error("Error loading file contents") + else: + st.error("Please select a file to analyze") + + # Chat and Visualization + with st.container(): + col_chat, col_graph = st.columns([1, 1]) + + with col_chat: + st.subheader("Chat with AI") + + chat_container = st.container() + with chat_container: + for message in st.session_state.semantic_chat_history: + with st.chat_message(message["role"]): + st.markdown(message["content"]) + + user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) + col1, col2 = st.columns([3, 1]) + with col1: + send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) + with col2: + clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) + + if send_button and user_input: + st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) + + if user_input.startswith('/analyze_current'): + response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) + else: + response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) + + st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) + st.rerun() + + if clear_button: + st.session_state.semantic_chat_history = [] + st.rerun() + + with col_graph: + st.subheader("Visualization") + if 'key_concepts' in st.session_state: + st.write("Key Concepts:") + st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) + + tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) + + with tab_concept: + if 'concept_graph' in st.session_state: + st.pyplot(st.session_state.concept_graph) + else: + st.info("No concept graph available. Please analyze a document first.") + + with tab_entity: + if 'entity_graph' in st.session_state: + st.pyplot(st.session_state.entity_graph) + else: + st.info("No entity graph available. Please analyze a document first.") diff --git a/src/modules/semantic/semantic_live_interface.py b/src/modules/semantic/semantic_live_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..d4251d304deda779ea88a7d1a8c784317b58db31 --- /dev/null +++ b/src/modules/semantic/semantic_live_interface.py @@ -0,0 +1,197 @@ +# modules/semantic/semantic_live_interface.py +import streamlit as st +from streamlit_float import * +from streamlit_antd_components import * +import pandas as pd +import logging + +# Configuración del logger +logger = logging.getLogger(__name__) + +# Importaciones locales +from .semantic_process import ( + process_semantic_input, + format_semantic_results +) + +from ..utils.widget_utils import generate_unique_key +from ..database.semantic_mongo_db import store_student_semantic_result +from ..database.chat_mongo_db import store_chat_history, get_chat_history + +def display_semantic_live_interface(lang_code, nlp_models, semantic_t): + """ + Interfaz para el análisis semántico en vivo con proporciones de columna ajustadas + """ + try: + # 1. Inicializar el estado de la sesión de manera más robusta + if 'semantic_live_state' not in st.session_state: + st.session_state.semantic_live_state = { + 'analysis_count': 0, + 'current_text': '', + 'last_result': None, + 'text_changed': False + } + + # 2. Función para manejar cambios en el texto + def on_text_change(): + current_text = st.session_state.semantic_live_text + st.session_state.semantic_live_state['current_text'] = current_text + st.session_state.semantic_live_state['text_changed'] = True + + # 3. Crear columnas con nueva proporción (1:3) + input_col, result_col = st.columns([1, 3]) + + # Columna izquierda: Entrada de texto + with input_col: + st.subheader(semantic_t.get('enter_text', 'Ingrese su texto')) + + # Área de texto con manejo de eventos + text_input = st.text_area( + semantic_t.get('text_input_label', 'Escriba o pegue su texto aquí'), + height=500, + key="semantic_live_text", + value=st.session_state.semantic_live_state.get('current_text', ''), + on_change=on_text_change, + label_visibility="collapsed" # Oculta el label para mayor estabilidad + ) + + # Botón de análisis y procesamiento + analyze_button = st.button( + semantic_t.get('analyze_button', 'Analizar'), + key="semantic_live_analyze", + type="primary", + icon="🔍", + disabled=not text_input, + use_container_width=True + ) + + if analyze_button and text_input: + try: + with st.spinner(semantic_t.get('processing', 'Procesando...')): + analysis_result = process_semantic_input( + text_input, + lang_code, + nlp_models, + semantic_t + ) + + if analysis_result['success']: + st.session_state.semantic_live_state['last_result'] = analysis_result + st.session_state.semantic_live_state['analysis_count'] += 1 + st.session_state.semantic_live_state['text_changed'] = False + + store_student_semantic_result( + st.session_state.username, + text_input, + analysis_result['analysis'] + ) + else: + st.error(analysis_result.get('message', 'Error en el análisis')) + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(semantic_t.get('error_processing', 'Error al procesar el texto')) + + # Columna derecha: Visualización de resultados + with result_col: + st.subheader(semantic_t.get('live_results', 'Resultados en vivo')) + + if 'last_result' in st.session_state.semantic_live_state and \ + st.session_state.semantic_live_state['last_result'] is not None: + + analysis = st.session_state.semantic_live_state['last_result']['analysis'] + + if 'key_concepts' in analysis and analysis['key_concepts'] and \ + 'concept_graph' in analysis and analysis['concept_graph'] is not None: + + st.markdown(""" + + """, unsafe_allow_html=True) + + with st.container(): + # Conceptos en una sola línea + concepts_html = """ +
+
+ """ + concepts_html += ''.join( + f'
{concept}' + f'({freq:.2f})
' + for concept, freq in analysis['key_concepts'] + ) + concepts_html += "
" + st.markdown(concepts_html, unsafe_allow_html=True) + + # Grafo + if 'concept_graph' in analysis and analysis['concept_graph'] is not None: + st.image( + analysis['concept_graph'], + use_container_width=True + ) + + # Botones y controles + button_col, spacer_col = st.columns([1,5]) + with button_col: + st.download_button( + label="📥 " + semantic_t.get('download_graph', "Download"), + data=analysis['concept_graph'], + file_name="semantic_live_graph.png", + mime="image/png", + use_container_width=True + ) + + with st.expander("📊 " + semantic_t.get('graph_help', "Graph Interpretation")): + st.markdown(""" + - 🔀 Las flechas indican la dirección de la relación entre conceptos + - 🎨 Los colores más intensos indican conceptos más centrales en el texto + - ⭕ El tamaño de los nodos representa la frecuencia del concepto + - ↔️ El grosor de las líneas indica la fuerza de la conexión + """) + else: + st.info(semantic_t.get('no_graph', 'No hay datos para mostrar')) + + except Exception as e: + logger.error(f"Error general en interfaz semántica en vivo: {str(e)}") + st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo.")) + diff --git a/src/modules/semantic/semantic_process.py b/src/modules/semantic/semantic_process.py new file mode 100644 index 0000000000000000000000000000000000000000..2af775603e809f255f4d0d5e66707c0b33ff6c48 --- /dev/null +++ b/src/modules/semantic/semantic_process.py @@ -0,0 +1,109 @@ +# modules/semantic/semantic_process.py +import streamlit as st +import matplotlib.pyplot as plt +import io +import base64 +import logging + +from ..text_analysis.semantic_analysis import ( + perform_semantic_analysis, + identify_key_concepts, + create_concept_graph, + visualize_concept_graph +) +from ..database.semantic_mongo_db import store_student_semantic_result + +logger = logging.getLogger(__name__) + +def process_semantic_input(text, lang_code, nlp_models, t): + """ + Procesa el texto ingresado para realizar el análisis semántico. + """ + try: + logger.info(f"Iniciando análisis semántico para texto de {len(text)} caracteres") + + # Realizar el análisis semántico + nlp = nlp_models[lang_code] + analysis_result = perform_semantic_analysis(text, nlp, lang_code) + + if not analysis_result['success']: + return { + 'success': False, + 'message': analysis_result['error'], + 'analysis': None + } + + logger.info("Análisis semántico completado. Guardando resultados...") + + # Intentar guardar en la base de datos + try: + store_result = store_student_semantic_result( + st.session_state.username, + text, + analysis_result, + lang_code + ) + if not store_result: + logger.warning("No se pudo guardar el análisis en la base de datos") + except Exception as db_error: + logger.error(f"Error al guardar en base de datos: {str(db_error)}") + + # Devolver el resultado incluso si falla el guardado + return { + 'success': True, + 'message': t.get('success_message', 'Analysis completed successfully'), + 'analysis': { + 'key_concepts': analysis_result['key_concepts'], + 'concept_graph': analysis_result['concept_graph'] + } + } + + except Exception as e: + logger.error(f"Error en process_semantic_input: {str(e)}") + return { + 'success': False, + 'message': str(e), + 'analysis': None + } + +def format_semantic_results(analysis_result, t): + """ + Formatea los resultados del análisis para su visualización. + """ + try: + if not analysis_result['success']: + return { + 'formatted_text': analysis_result['message'], + 'visualizations': None + } + + formatted_sections = [] + analysis = analysis_result['analysis'] + + # Formatear conceptos clave + if 'key_concepts' in analysis: + concepts_section = [f"### {t.get('key_concepts', 'Key Concepts')}"] + concepts_section.extend([ + f"- {concept}: {frequency:.2f}" + for concept, frequency in analysis['key_concepts'] + ]) + formatted_sections.append('\n'.join(concepts_section)) + + return { + 'formatted_text': '\n\n'.join(formatted_sections), + 'visualizations': { + 'concept_graph': analysis.get('concept_graph') + } + } + + except Exception as e: + logger.error(f"Error en format_semantic_results: {str(e)}") + return { + 'formatted_text': str(e), + 'visualizations': None + } + +__all__ = [ + 'process_semantic_input', + 'format_semantic_results' +] \ No newline at end of file diff --git a/src/modules/semantic/semantic_process_23-9-24.py b/src/modules/semantic/semantic_process_23-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..6f3a7adb62c8f15ccd4616fd3e4b20beddf33be3 --- /dev/null +++ b/src/modules/semantic/semantic_process_23-9-24.py @@ -0,0 +1,62 @@ +import logging +import io +import base64 +import matplotlib.pyplot as plt +from ..text_analysis.semantic_analysis import perform_semantic_analysis +from .flexible_analysis_handler import FlexibleAnalysisHandler + +logger = logging.getLogger(__name__) + +def encode_image_to_base64(image_data): + if isinstance(image_data, str): # Si es una ruta de archivo + with open(image_data, "rb") as image_file: + encoded_string = base64.b64encode(image_file.read()).decode("utf-8") + elif isinstance(image_data, bytes): # Si son datos de imagen en memoria + encoded_string = base64.b64encode(image_data).decode("utf-8") + else: + raise ValueError("Invalid image data type. Expected string (file path) or bytes.") + return encoded_string # + +def process_semantic_analysis(file_contents, nlp_model, lang_code): + logger.info(f"Starting semantic analysis processing for language: {lang_code}") + try: + result = perform_semantic_analysis(file_contents, nlp_model, lang_code) + #handler = FlexibleAnalysisHandler(result) + + #concept_graph = handler.get_graph('concept_graph') + #entity_graph = handler.get_graph('entity_graph') + #key_concepts = handler.get_key_concepts() + + concept_graph = result['concept_graph'] + entity_graph = result['entity_graph'] + key_concepts = result['key_concepts'] + + # Convertir los gráficos a base64 + concept_graph_base64 = fig_to_base64(concept_graph) if concept_graph else None + entity_graph_base64 = fig_to_base64(entity_graph) if entity_graph else None + + logger.info("Semantic analysis processing completed successfully") + return concept_graph_base64, entity_graph_base64, key_concepts + except Exception as e: + logger.error(f"Error in semantic analysis processing: {str(e)}") + return None, None, [] # Retorna valores vacíos en caso de error + +''' +logger = logging.getLogger(__name__) +logging.basicConfig(level=logging.DEBUG) + +def process_semantic_analysis(file_contents, nlp_model, lang_code): + logger.info(f"Starting semantic analysis for language: {lang_code}") + try: + logger.debug("Calling perform_semantic_analysis") + result = perform_semantic_analysis(file_contents, nlp_model, lang_code) + logger.debug(f"Result keys: {result.keys()}") + logger.debug(f"Type of concept_graph: {type(result['concept_graph'])}") + logger.debug(f"Type of entity_graph: {type(result['entity_graph'])}") + logger.debug(f"Number of key_concepts: {len(result['key_concepts'])}") + logger.info("Semantic analysis completed successfully") + return result['concept_graph'], result['entity_graph'], result['key_concepts'] + except Exception as e: + logger.error(f"Error in semantic analysis: {str(e)}") + raise +''' \ No newline at end of file diff --git a/src/modules/studentact/6-3-2025_current_situation_interface.py b/src/modules/studentact/6-3-2025_current_situation_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..d0a081ebd3cbb0846071b7ff68bfb5ee5c1e075a --- /dev/null +++ b/src/modules/studentact/6-3-2025_current_situation_interface.py @@ -0,0 +1,486 @@ +# modules/studentact/current_situation_interface-vOK.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key +import matplotlib.pyplot as plt +import numpy as np +from ..database.current_situation_mongo_db import store_current_situation_result + +# Importaciones locales +from translations import get_translations + +from .current_situation_analysis import ( + analyze_text_dimensions, + analyze_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap, + generate_recommendations +) + +# Configuración del estilo de matplotlib para el gráfico de radar +plt.rcParams['font.family'] = 'sans-serif' +plt.rcParams['axes.grid'] = True +plt.rcParams['axes.spines.top'] = False +plt.rcParams['axes.spines.right'] = False + +logger = logging.getLogger(__name__) +#################################### + +TEXT_TYPES = { + 'academic_article': { + 'name': 'Artículo Académico', + 'thresholds': { + 'vocabulary': {'min': 0.70, 'target': 0.85}, + 'structure': {'min': 0.75, 'target': 0.90}, + 'cohesion': {'min': 0.65, 'target': 0.80}, + 'clarity': {'min': 0.70, 'target': 0.85} + } + }, + 'student_essay': { + 'name': 'Trabajo Universitario', + 'thresholds': { + 'vocabulary': {'min': 0.60, 'target': 0.75}, + 'structure': {'min': 0.65, 'target': 0.80}, + 'cohesion': {'min': 0.55, 'target': 0.70}, + 'clarity': {'min': 0.60, 'target': 0.75} + } + }, + 'general_communication': { + 'name': 'Comunicación General', + 'thresholds': { + 'vocabulary': {'min': 0.50, 'target': 0.65}, + 'structure': {'min': 0.55, 'target': 0.70}, + 'cohesion': {'min': 0.45, 'target': 0.60}, + 'clarity': {'min': 0.50, 'target': 0.65} + } + } +} +#################################### + +def display_current_situation_interface(lang_code, nlp_models, t): + """ + Interfaz simplificada con gráfico de radar para visualizar métricas. + """ + # Inicializar estados si no existen + if 'text_input' not in st.session_state: + st.session_state.text_input = "" + if 'text_area' not in st.session_state: # Añadir inicialización de text_area + st.session_state.text_area = "" + if 'show_results' not in st.session_state: + st.session_state.show_results = False + if 'current_doc' not in st.session_state: + st.session_state.current_doc = None + if 'current_metrics' not in st.session_state: + st.session_state.current_metrics = None + + try: + # Container principal con dos columnas + with st.container(): + input_col, results_col = st.columns([1,2]) + + with input_col: + # Text area con manejo de estado + text_input = st.text_area( + t.get('input_prompt', "Escribe o pega tu texto aquí:"), + height=400, + key="text_area", + value=st.session_state.text_input, + help="Este texto será analizado para darte recomendaciones personalizadas" + ) + + # Función para manejar cambios de texto + if text_input != st.session_state.text_input: + st.session_state.text_input = text_input + st.session_state.show_results = False + + if st.button( + t.get('analyze_button', "Analizar mi escritura"), + type="primary", + disabled=not text_input.strip(), + use_container_width=True, + ): + try: + with st.spinner(t.get('processing', "Analizando...")): + doc = nlp_models[lang_code](text_input) + metrics = analyze_text_dimensions(doc) + + storage_success = store_current_situation_result( + username=st.session_state.username, + text=text_input, + metrics=metrics, + feedback=None + ) + + if not storage_success: + logger.warning("No se pudo guardar el análisis en la base de datos") + + st.session_state.current_doc = doc + st.session_state.current_metrics = metrics + st.session_state.show_results = True + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(t.get('analysis_error', "Error al analizar el texto")) + + # Mostrar resultados en la columna derecha + with results_col: + if st.session_state.show_results and st.session_state.current_metrics is not None: + # Primero los radio buttons para tipo de texto + st.markdown("### Tipo de texto") + text_type = st.radio( + "", + options=list(TEXT_TYPES.keys()), + format_func=lambda x: TEXT_TYPES[x]['name'], + horizontal=True, + key="text_type_radio", + help="Selecciona el tipo de texto para ajustar los criterios de evaluación" + ) + + st.session_state.current_text_type = text_type + + # Luego mostrar los resultados + display_results( + metrics=st.session_state.current_metrics, + text_type=text_type + ) + + except Exception as e: + logger.error(f"Error en interfaz principal: {str(e)}") + st.error("Ocurrió un error al cargar la interfaz") + +###################################3333 + +''' +def display_results(metrics, text_type=None): + """ + Muestra los resultados del análisis: métricas verticalmente y gráfico radar. + """ + try: + # Usar valor por defecto si no se especifica tipo + text_type = text_type or 'student_essay' + + # Obtener umbrales según el tipo de texto + thresholds = TEXT_TYPES[text_type]['thresholds'] + + # Crear dos columnas para las métricas y el gráfico + metrics_col, graph_col = st.columns([1, 1.5]) + + # Columna de métricas + with metrics_col: + metrics_config = [ + { + 'label': "Vocabulario", + 'key': 'vocabulary', + 'value': metrics['vocabulary']['normalized_score'], + 'help': "Riqueza y variedad del vocabulario", + 'thresholds': thresholds['vocabulary'] + }, + { + 'label': "Estructura", + 'key': 'structure', + 'value': metrics['structure']['normalized_score'], + 'help': "Organización y complejidad de oraciones", + 'thresholds': thresholds['structure'] + }, + { + 'label': "Cohesión", + 'key': 'cohesion', + 'value': metrics['cohesion']['normalized_score'], + 'help': "Conexión y fluidez entre ideas", + 'thresholds': thresholds['cohesion'] + }, + { + 'label': "Claridad", + 'key': 'clarity', + 'value': metrics['clarity']['normalized_score'], + 'help': "Facilidad de comprensión del texto", + 'thresholds': thresholds['clarity'] + } + ] + + # Mostrar métricas + for metric in metrics_config: + value = metric['value'] + if value < metric['thresholds']['min']: + status = "⚠️ Por mejorar" + color = "inverse" + elif value < metric['thresholds']['target']: + status = "📈 Aceptable" + color = "off" + else: + status = "✅ Óptimo" + color = "normal" + + st.metric( + metric['label'], + f"{value:.2f}", + f"{status} (Meta: {metric['thresholds']['target']:.2f})", + delta_color=color, + help=metric['help'] + ) + st.markdown("
", unsafe_allow_html=True) + + # Gráfico radar en la columna derecha + with graph_col: + display_radar_chart(metrics_config, thresholds) + + except Exception as e: + logger.error(f"Error mostrando resultados: {str(e)}") + st.error("Error al mostrar los resultados") +''' + +###################################### +###################################### +def display_results(metrics, text_type=None): + """ + Muestra los resultados del análisis: métricas verticalmente y gráfico radar. + """ + try: + # Usar valor por defecto si no se especifica tipo + text_type = text_type or 'student_essay' + + # Obtener umbrales según el tipo de texto + thresholds = TEXT_TYPES[text_type]['thresholds'] + + # Crear dos columnas para las métricas y el gráfico + metrics_col, graph_col = st.columns([1, 1.5]) + + # Columna de métricas + with metrics_col: + metrics_config = [ + { + 'label': "Vocabulario", + 'key': 'vocabulary', + 'value': metrics['vocabulary']['normalized_score'], + 'help': "Riqueza y variedad del vocabulario", + 'thresholds': thresholds['vocabulary'] + }, + { + 'label': "Estructura", + 'key': 'structure', + 'value': metrics['structure']['normalized_score'], + 'help': "Organización y complejidad de oraciones", + 'thresholds': thresholds['structure'] + }, + { + 'label': "Cohesión", + 'key': 'cohesion', + 'value': metrics['cohesion']['normalized_score'], + 'help': "Conexión y fluidez entre ideas", + 'thresholds': thresholds['cohesion'] + }, + { + 'label': "Claridad", + 'key': 'clarity', + 'value': metrics['clarity']['normalized_score'], + 'help': "Facilidad de comprensión del texto", + 'thresholds': thresholds['clarity'] + } + ] + + # Mostrar métricas + for metric in metrics_config: + value = metric['value'] + if value < metric['thresholds']['min']: + status = "⚠️ Por mejorar" + color = "inverse" + elif value < metric['thresholds']['target']: + status = "📈 Aceptable" + color = "off" + else: + status = "✅ Óptimo" + color = "normal" + + st.metric( + metric['label'], + f"{value:.2f}", + f"{status} (Meta: {metric['thresholds']['target']:.2f})", + delta_color=color, + help=metric['help'] + ) + st.markdown("
", unsafe_allow_html=True) + + # Gráfico radar en la columna derecha + with graph_col: + display_radar_chart(metrics_config, thresholds) + + recommendations = generate_recommendations( + metrics=metrics, + text_type=text_type, + lang_code=st.session_state.lang_code + ) + + # Separador visual + st.markdown("---") + + # Título para la sección de recomendaciones + st.subheader("Recomendaciones para mejorar tu escritura") + + # Mostrar las recomendaciones + display_recommendations(recommendations, get_translations(st.session_state.lang_code)) + + except Exception as e: + logger.error(f"Error mostrando resultados: {str(e)}") + st.error("Error al mostrar los resultados") + + +###################################### +###################################### +def display_radar_chart(metrics_config, thresholds): + """ + Muestra el gráfico radar con los resultados. + """ + try: + # Preparar datos para el gráfico + categories = [m['label'] for m in metrics_config] + values_user = [m['value'] for m in metrics_config] + min_values = [m['thresholds']['min'] for m in metrics_config] + target_values = [m['thresholds']['target'] for m in metrics_config] + + # Crear y configurar gráfico + fig = plt.figure(figsize=(8, 8)) + ax = fig.add_subplot(111, projection='polar') + + # Configurar radar + angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] + angles += angles[:1] + values_user += values_user[:1] + min_values += min_values[:1] + target_values += target_values[:1] + + # Configurar ejes + ax.set_xticks(angles[:-1]) + ax.set_xticklabels(categories, fontsize=10) + circle_ticks = np.arange(0, 1.1, 0.2) + ax.set_yticks(circle_ticks) + ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) + ax.set_ylim(0, 1) + + # Dibujar áreas de umbrales + ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label='Mínimo', alpha=0.5) + ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label='Meta', alpha=0.5) + ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1) + ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1) + + # Dibujar valores del usuario + ax.plot(angles, values_user, '#3498db', linewidth=2, label='Tu escritura') + ax.fill(angles, values_user, '#3498db', alpha=0.2) + + # Ajustar leyenda + ax.legend( + loc='upper right', + bbox_to_anchor=(1.3, 1.1), # Cambiado de (0.1, 0.1) a (1.3, 1.1) + fontsize=10, + frameon=True, + facecolor='white', + edgecolor='none', + shadow=True + ) + + plt.tight_layout() + st.pyplot(fig) + plt.close() + + except Exception as e: + logger.error(f"Error mostrando gráfico radar: {str(e)}") + st.error("Error al mostrar el gráfico") + +##################################################### +def display_recommendations(recommendations, t): + """ + Muestra las recomendaciones con un diseño de tarjetas. + """ + # Definir colores para cada categoría + colors = { + 'vocabulary': '#2E86C1', # Azul + 'structure': '#28B463', # Verde + 'cohesion': '#F39C12', # Naranja + 'clarity': '#9B59B6', # Púrpura + 'priority': '#E74C3C' # Rojo para la categoría prioritaria + } + + # Iconos para cada categoría + icons = { + 'vocabulary': '📚', + 'structure': '🏗️', + 'cohesion': '🔄', + 'clarity': '💡', + 'priority': '⭐' + } + + # Obtener traducciones para cada dimensión + dimension_names = { + 'vocabulary': t.get('SITUATION_ANALYSIS', {}).get('vocabulary', "Vocabulario"), + 'structure': t.get('SITUATION_ANALYSIS', {}).get('structure', "Estructura"), + 'cohesion': t.get('SITUATION_ANALYSIS', {}).get('cohesion', "Cohesión"), + 'clarity': t.get('SITUATION_ANALYSIS', {}).get('clarity', "Claridad"), + 'priority': t.get('SITUATION_ANALYSIS', {}).get('priority', "Prioridad") + } + + # Título de la sección prioritaria + priority_focus = t.get('SITUATION_ANALYSIS', {}).get('priority_focus', 'Área prioritaria para mejorar') + st.markdown(f"### {icons['priority']} {priority_focus}") + + # Determinar área prioritaria (la que tiene menor puntuación) + priority_area = recommendations.get('priority', 'vocabulary') + priority_title = dimension_names.get(priority_area, "Área prioritaria") + + # Determinar el contenido para mostrar + if isinstance(recommendations[priority_area], dict) and 'title' in recommendations[priority_area]: + priority_title = recommendations[priority_area]['title'] + priority_content = recommendations[priority_area]['content'] + else: + priority_content = recommendations[priority_area] + + # Mostrar la recomendación prioritaria con un estilo destacado + with st.container(): + st.markdown( + f""" +
+

{priority_title}

+

{priority_content}

+
+ """, + unsafe_allow_html=True + ) + + # Crear dos columnas para las tarjetas de recomendaciones restantes + col1, col2 = st.columns(2) + + # Distribuir las recomendaciones en las columnas + categories = ['vocabulary', 'structure', 'cohesion', 'clarity'] + for i, category in enumerate(categories): + # Saltar si esta categoría ya es la prioritaria + if category == priority_area: + continue + + # Determinar título y contenido + if isinstance(recommendations[category], dict) and 'title' in recommendations[category]: + category_title = recommendations[category]['title'] + category_content = recommendations[category]['content'] + else: + category_title = dimension_names.get(category, category) + category_content = recommendations[category] + + # Alternar entre columnas + with col1 if i % 2 == 0 else col2: + # Crear tarjeta para cada recomendación + st.markdown( + f""" +
+

{icons[category]} {category_title}

+

{category_content}

+
+ """, + unsafe_allow_html=True + ) \ No newline at end of file diff --git a/src/modules/studentact/__pycache__/student_activities.cpython-311.pyc b/src/modules/studentact/__pycache__/student_activities.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e2b820fda86da0621440ebd0d0aabd60e9e259d Binary files /dev/null and b/src/modules/studentact/__pycache__/student_activities.cpython-311.pyc differ diff --git a/src/modules/studentact/__pycache__/student_activities_v2.cpython-311.pyc b/src/modules/studentact/__pycache__/student_activities_v2.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6b2ea707d57df5d3e7a4171dd1065ddf0c25bdd9 Binary files /dev/null and b/src/modules/studentact/__pycache__/student_activities_v2.cpython-311.pyc differ diff --git a/src/modules/studentact/claude_recommendations.py b/src/modules/studentact/claude_recommendations.py new file mode 100644 index 0000000000000000000000000000000000000000..0663ae48abb5564fb06f9c8f0725c0bf5e36798e --- /dev/null +++ b/src/modules/studentact/claude_recommendations.py @@ -0,0 +1,347 @@ +# modules/studentact/claude_recommendations.py +import os +import anthropic +import streamlit as st +import logging +import time +import json +from datetime import datetime, timezone + +# Local imports +from ..utils.widget_utils import generate_unique_key +from ..database.current_situation_mongo_db import store_current_situation_result + +logger = logging.getLogger(__name__) + +# Define text types +TEXT_TYPES = { + 'es': { + 'academic_article': 'artículo académico', + 'university_work': 'trabajo universitario', + 'general_communication': 'comunicación general' + }, + 'en': { + 'academic_article': 'academic article', + 'university_work': 'university work', + 'general_communication': 'general communication' + }, + 'fr': { + 'academic_article': 'article académique', + 'university_work': 'travail universitaire', + 'general_communication': 'communication générale' + }, + 'pt': { + 'academic_article': 'artigo acadêmico', + 'university_work': 'trabalho universitário', + 'general_communication': 'comunicação geral' + } +} + +# Cache for recommendations to avoid redundant API calls +recommendation_cache = {} + +def get_recommendation_cache_key(text, metrics, text_type, lang_code): + """ + Generate a cache key for recommendations. + """ + # Create a simple hash based on text content and metrics + text_hash = hash(text[:1000]) # Only use first 1000 chars for hashing + metrics_hash = hash(json.dumps(metrics, sort_keys=True)) + return f"{text_hash}_{metrics_hash}_{text_type}_{lang_code}" + +def format_metrics_for_claude(metrics, lang_code, text_type): + """ + Format metrics in a way that's readable for Claude + """ + formatted_metrics = {} + for key, value in metrics.items(): + if isinstance(value, (int, float)): + formatted_metrics[key] = round(value, 2) + else: + formatted_metrics[key] = value + + # Add context about what type of text this is + text_type_label = TEXT_TYPES.get(lang_code, {}).get(text_type, text_type) + formatted_metrics['text_type'] = text_type_label + + return formatted_metrics + +def generate_claude_recommendations(text, metrics, text_type, lang_code): + """ + Generate personalized recommendations using Claude API. + """ + try: + api_key = os.environ.get("ANTHROPIC_API_KEY") + if not api_key: + logger.error("Claude API key not found in environment variables") + return get_fallback_recommendations(lang_code) + + # Check cache first + cache_key = get_recommendation_cache_key(text, metrics, text_type, lang_code) + if cache_key in recommendation_cache: + logger.info("Using cached recommendations") + return recommendation_cache[cache_key] + + # Format metrics for Claude + formatted_metrics = format_metrics_for_claude(metrics, lang_code, text_type) + + # Determine language for prompt + if lang_code == 'es': + system_prompt = """Eres un asistente especializado en análisis de textos académicos y comunicación escrita. + Tu tarea es analizar el texto del usuario y proporcionar recomendaciones personalizadas. + Usa un tono constructivo y específico. Sé claro y directo con tus sugerencias. + """ + user_prompt = f"""Por favor, analiza este texto de tipo '{formatted_metrics['text_type']}' + y proporciona recomendaciones personalizadas para mejorarlo. + + MÉTRICAS DE ANÁLISIS: + {json.dumps(formatted_metrics, indent=2, ensure_ascii=False)} + + TEXTO A ANALIZAR: + {text[:2000]} # Limitamos el texto para evitar exceder tokens + + Proporciona tu análisis con el siguiente formato: + 1. Un resumen breve (2-3 frases) del análisis general + 2. 3-4 recomendaciones específicas y accionables (cada una de 1-2 frases) + 3. Un ejemplo concreto de mejora tomado del propio texto del usuario + 4. Una sugerencia sobre qué herramienta de AIdeaText usar (Análisis Morfosintáctico, Análisis Semántico o Análisis del Discurso) + + Tu respuesta debe ser concisa y no exceder los 300 palabras.""" + + elif lang_code == 'fr': + system_prompt = """Vous êtes un assistant spécialisé dans l'analyse de textes académiques et de communication écrite. + Votre tâche est d'analyser le texte de l'utilisateur et de fournir des recommandations personnalisées. + Utilisez un ton constructif et spécifique. Soyez clair et direct dans vos suggestions. + """ + user_prompt = f"""Veuillez analyser ce texte de type '{formatted_metrics['text_type']}' + et fournir des recommandations personnalisées pour l'améliorer. + + MÉTRIQUES D'ANALYSE: + {json.dumps(formatted_metrics, indent=2, ensure_ascii=False)} + + TEXTE À ANALYSER: + {text[:2000]} + + Fournissez votre analyse avec le format suivant: + 1. Un résumé bref (2-3 phrases) de l'analyse générale + 2. 3-4 recommandations spécifiques et réalisables (chacune de 1-2 phrases) + 3. Un exemple concret d'amélioration tiré du texte même de l'utilisateur + 4. Une suggestion sur quel outil AIdeaText utiliser (Analyse Morphosyntaxique, Analyse Sémantique ou Analyse du Discours) + + Votre réponse doit être concise et ne pas dépasser 300 mots.""" + + elif lang_code == 'pt': + system_prompt = """Você é um assistente especializado na análise de textos acadêmicos e comunicação escrita. + Sua tarefa é analisar o texto do usuário e fornecer recomendações personalizadas. + Use um tom construtivo e específico. Seja claro e direto com suas sugestões. + """ + user_prompt = f"""Por favor, analise este texto do tipo '{formatted_metrics['text_type']}' + e forneça recomendações personalizadas para melhorá-lo. + + MÉTRICAS DE ANÁLISE: + {json.dumps(formatted_metrics, indent=2, ensure_ascii=False)} + + TEXTO PARA ANALISAR: + {text[:2000]} + + Forneça sua análise com o seguinte formato: + 1. Um breve resumo (2-3 frases) da análise geral + 2. 3-4 recomendações específicas e acionáveis (cada uma com 1-2 frases) + 3. Um exemplo concreto de melhoria retirado do próprio texto do usuário + 4. Uma sugestão sobre qual ferramenta do AIdeaText usar (Análise Morfossintática, Análise Semântica ou Análise do Discurso) + + Sua resposta deve ser concisa e não exceder 300 palavras.""" + + else: + # Default to English + system_prompt = """You are an assistant specialized in analyzing academic texts and written communication. + Your task is to analyze the user's text and provide personalized recommendations. + Use a constructive and specific tone. Be clear and direct with your suggestions. + """ + user_prompt = f"""Please analyze this text of type '{formatted_metrics['text_type']}' + and provide personalized recommendations to improve it. + + ANALYSIS METRICS: + {json.dumps(formatted_metrics, indent=2, ensure_ascii=False)} + + TEXT TO ANALYZE: + {text[:2000]} # Limiting text to avoid exceeding tokens + + Provide your analysis with the following format: + 1. A brief summary (2-3 sentences) of the general analysis + 2. 3-4 specific and actionable recommendations (each 1-2 sentences) + 3. A concrete example of improvement taken from the user's own text + 4. A suggestion about which AIdeaText tool to use (Morphosyntactic Analysis, Semantic Analysis or Discourse Analysis) + + Your response should be concise and not exceed 300 words.""" + + # Initialize Claude client + client = anthropic.Anthropic(api_key=api_key) + + # Call Claude API + start_time = time.time() + response = client.messages.create( + model="claude-3-5-sonnet-20241022", + max_tokens=1024, + temperature=0.7, + system=system_prompt, + messages=[ + {"role": "user", "content": user_prompt} + ] + ) + logger.info(f"Claude API call completed in {time.time() - start_time:.2f} seconds") + + # Extract recommendations + recommendations = response.content[0].text + + # Cache the result + recommendation_cache[cache_key] = recommendations + + return recommendations + except Exception as e: + logger.error(f"Error generating recommendations with Claude: {str(e)}") + return get_fallback_recommendations(lang_code) + +################################################################################## +################################################################################## +def get_fallback_recommendations(lang_code): + """ + Return fallback recommendations if Claude API fails + """ + if lang_code == 'es': + return """ + **Análisis General** + Tu texto presenta una estructura básica adecuada, pero hay áreas que pueden mejorarse para mayor claridad y cohesión. + **Recomendaciones**: + - Intenta variar tu vocabulario para evitar repeticiones innecesarias + - Considera revisar la longitud de tus oraciones para mantener un mejor ritmo + - Asegúrate de establecer conexiones claras entre las ideas principales + - Revisa la consistencia en el uso de tiempos verbales + **Herramienta recomendada**: + Te sugerimos utilizar el Análisis Morfosintáctico para identificar patrones en tu estructura de oraciones. + """ + + elif lang_code == 'fr': + return """ + **Analyse Générale** + Votre texte présente une structure de base adéquate, mais certains aspects pourraient être améliorés pour plus de clarté et de cohésion. + + **Recommandations**: + - Essayez de varier votre vocabulaire pour éviter les répétitions inutiles + - Envisagez de revoir la longueur de vos phrases pour maintenir un meilleur rythme + - Assurez-vous d'établir des liens clairs entre les idées principales + - Vérifiez la cohérence dans l'utilisation des temps verbaux + + **Outil recommandé**: + Nous vous suggérons d'utiliser l'Analyse Morphosyntaxique pour identifier les modèles dans la structure de vos phrases. + """ + + elif lang_code == 'pt': + return """ + **Análise Geral** + Seu texto apresenta uma estrutura básica adequada, mas há áreas que podem ser melhoradas para maior clareza e coesão. + + **Recomendações**: + - Tente variar seu vocabulário para evitar repetições desnecessárias + - Considere revisar o comprimento de suas frases para manter um melhor ritmo + - Certifique-se de estabelecer conexões claras entre as ideias principais + - Revise a consistência no uso dos tempos verbais + + **Ferramenta recomendada**: + Sugerimos utilizar a Análise Morfossintática para identificar padrões na sua estrutura de frases. + """ + + else: + return """ + **General Analysis** + Your text presents an adequate basic structure, but there are areas that can be improved for better clarity and cohesion. + + **Recommendations**: + - Try to vary your vocabulary to avoid unnecessary repetition + - Consider reviewing the length of your sentences to maintain a better rhythm + - Make sure to establish clear connections between main ideas + - Check consistency in the use of verb tenses + + **Recommended tool**: + We suggest using Morphosyntactic Analysis to identify patterns in your sentence structure. + """ + + +####################################### +####################################### +def store_recommendations(username, text, metrics, text_type, recommendations): + """ + Store the recommendations in the database + """ + try: + # Importar la función de almacenamiento de recomendaciones + from ..database.claude_recommendations_mongo_db import store_claude_recommendation + + # Guardar usando la nueva función especializada + result = store_claude_recommendation( + username=username, + text=text, + metrics=metrics, + text_type=text_type, + recommendations=recommendations + ) + + logger.info(f"Recommendations stored successfully: {result}") + return result + except Exception as e: + logger.error(f"Error storing recommendations: {str(e)}") + return False + + +########################################## +########################################## +def display_personalized_recommendations(text, metrics, text_type, lang_code, t): + """ + Display personalized recommendations based on text analysis + """ + try: + # Generate recommendations + recommendations = generate_claude_recommendations(text, metrics, text_type, lang_code) + + # Format and display recommendations in a nice container + st.markdown("### 📝 " + t.get('recommendations_title', 'Personalized Recommendations')) + + with st.container(): + st.markdown(f""" +
+ {recommendations} +
+ """, unsafe_allow_html=True) + + # Add prompt to use assistant + st.info("💡 **" + t.get('assistant_prompt', 'For further improvement:') + "** " + + t.get('assistant_message', 'Open the virtual assistant (powered by Claude AI) in the upper left corner by clicking the arrow next to the logo.')) + + # Add save button + col1, col2, col3 = st.columns([1,1,1]) + with col2: + if st.button( + t.get('save_button', 'Save Analysis'), + key=generate_unique_key("claude_recommendations", "save"), + type="primary", + use_container_width=True + ): + if 'username' in st.session_state: + success = store_recommendations( + st.session_state.username, + text, + metrics, + text_type, + recommendations + ) + if success: + st.success(t.get('save_success', 'Analysis saved successfully')) + else: + st.error(t.get('save_error', 'Error saving analysis')) + else: + st.error(t.get('login_required', 'Please log in to save analysis')) + + except Exception as e: + logger.error(f"Error displaying recommendations: {str(e)}") + st.error(t.get('recommendations_error', 'Error generating recommendations. Please try again later.')) \ No newline at end of file diff --git a/src/modules/studentact/current_situation_analysis-FAIL.py b/src/modules/studentact/current_situation_analysis-FAIL.py new file mode 100644 index 0000000000000000000000000000000000000000..873a8de350242c563ff7d0257be106e305927e4e --- /dev/null +++ b/src/modules/studentact/current_situation_analysis-FAIL.py @@ -0,0 +1,810 @@ +#v3/modules/studentact/current_situation_analysis.py + +import streamlit as st +import matplotlib.pyplot as plt +import networkx as nx +import seaborn as sns +from collections import Counter +from itertools import combinations +import numpy as np +import matplotlib.patches as patches +import logging + +# 2. Configuración básica del logging +logging.basicConfig( + level=logging.INFO, + format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', + handlers=[ + logging.StreamHandler(), + logging.FileHandler('app.log') + ] +) + +# 3. Obtener el logger específico para este módulo +logger = logging.getLogger(__name__) + +######################################################################### + +def correlate_metrics(scores): + """ + Ajusta los scores para mantener correlaciones lógicas entre métricas. + + Args: + scores: dict con scores iniciales de vocabulario, estructura, cohesión y claridad + + Returns: + dict con scores ajustados + """ + try: + # 1. Correlación estructura-cohesión + # La cohesión no puede ser menor que estructura * 0.7 + min_cohesion = scores['structure']['normalized_score'] * 0.7 + if scores['cohesion']['normalized_score'] < min_cohesion: + scores['cohesion']['normalized_score'] = min_cohesion + + # 2. Correlación vocabulario-cohesión + # La cohesión léxica depende del vocabulario + vocab_influence = scores['vocabulary']['normalized_score'] * 0.6 + scores['cohesion']['normalized_score'] = max( + scores['cohesion']['normalized_score'], + vocab_influence + ) + + # 3. Correlación cohesión-claridad + # La claridad no puede superar cohesión * 1.2 + max_clarity = scores['cohesion']['normalized_score'] * 1.2 + if scores['clarity']['normalized_score'] > max_clarity: + scores['clarity']['normalized_score'] = max_clarity + + # 4. Correlación estructura-claridad + # La claridad no puede superar estructura * 1.1 + struct_max_clarity = scores['structure']['normalized_score'] * 1.1 + scores['clarity']['normalized_score'] = min( + scores['clarity']['normalized_score'], + struct_max_clarity + ) + + # Normalizar todos los scores entre 0 y 1 + for metric in scores: + scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score'])) + + return scores + + except Exception as e: + logger.error(f"Error en correlate_metrics: {str(e)}") + return scores + +########################################################################## + +def analyze_text_dimensions(doc): + """ + Analiza las dimensiones principales del texto manteniendo correlaciones lógicas. + """ + try: + # Obtener scores iniciales + vocab_score, vocab_details = analyze_vocabulary_diversity(doc) + struct_score = analyze_structure(doc) + cohesion_score = analyze_cohesion(doc) + clarity_score, clarity_details = analyze_clarity(doc) + + # Crear diccionario de scores inicial + scores = { + 'vocabulary': { + 'normalized_score': vocab_score, + 'details': vocab_details + }, + 'structure': { + 'normalized_score': struct_score, + 'details': None + }, + 'cohesion': { + 'normalized_score': cohesion_score, + 'details': None + }, + 'clarity': { + 'normalized_score': clarity_score, + 'details': clarity_details + } + } + + # Ajustar correlaciones entre métricas + adjusted_scores = correlate_metrics(scores) + + # Logging para diagnóstico + logger.info(f""" + Scores originales vs ajustados: + Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f} + Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f} + Cohesión: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f} + Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f} + """) + + return adjusted_scores + + except Exception as e: + logger.error(f"Error en analyze_text_dimensions: {str(e)}") + return { + 'vocabulary': {'normalized_score': 0.0, 'details': {}}, + 'structure': {'normalized_score': 0.0, 'details': {}}, + 'cohesion': {'normalized_score': 0.0, 'details': {}}, + 'clarity': {'normalized_score': 0.0, 'details': {}} + } + + + +############################################################################################# + +def analyze_clarity(doc): + """ + Analiza la claridad del texto considerando múltiples factores. + """ + try: + sentences = list(doc.sents) + if not sentences: + return 0.0, {} + + # 1. Longitud de oraciones + sentence_lengths = [len(sent) for sent in sentences] + avg_length = sum(sentence_lengths) / len(sentences) + + # Normalizar usando los umbrales definidos para clarity + length_score = normalize_score( + value=avg_length, + metric_type='clarity', + optimal_length=20, # Una oración ideal tiene ~20 palabras + min_threshold=0.60, # Consistente con METRIC_THRESHOLDS + target_threshold=0.75 # Consistente con METRIC_THRESHOLDS + ) + + # 2. Análisis de conectores + connector_count = 0 + connector_weights = { + 'CCONJ': 1.0, # Coordinantes + 'SCONJ': 1.2, # Subordinantes + 'ADV': 0.8 # Adverbios conectivos + } + + for token in doc: + if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']: + connector_count += connector_weights[token.pos_] + + # Normalizar conectores por oración + connectors_per_sentence = connector_count / len(sentences) if sentences else 0 + connector_score = normalize_score( + value=connectors_per_sentence, + metric_type='clarity', + optimal_connections=1.5, # ~1.5 conectores por oración es óptimo + min_threshold=0.60, + target_threshold=0.75 + ) + + # 3. Complejidad estructural + clause_count = 0 + for sent in sentences: + verbs = [token for token in sent if token.pos_ == 'VERB'] + clause_count += len(verbs) + + complexity_raw = clause_count / len(sentences) if sentences else 0 + complexity_score = normalize_score( + value=complexity_raw, + metric_type='clarity', + optimal_depth=2.0, # ~2 cláusulas por oración es óptimo + min_threshold=0.60, + target_threshold=0.75 + ) + + # 4. Densidad léxica + content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']]) + total_words = len([token for token in doc if token.is_alpha]) + density = content_words / total_words if total_words > 0 else 0 + + density_score = normalize_score( + value=density, + metric_type='clarity', + optimal_connections=0.6, # 60% de palabras de contenido es óptimo + min_threshold=0.60, + target_threshold=0.75 + ) + + # Score final ponderado + weights = { + 'length': 0.3, + 'connectors': 0.3, + 'complexity': 0.2, + 'density': 0.2 + } + + clarity_score = ( + weights['length'] * length_score + + weights['connectors'] * connector_score + + weights['complexity'] * complexity_score + + weights['density'] * density_score + ) + + details = { + 'length_score': length_score, + 'connector_score': connector_score, + 'complexity_score': complexity_score, + 'density_score': density_score, + 'avg_sentence_length': avg_length, + 'connectors_per_sentence': connectors_per_sentence, + 'density': density + } + + # Agregar logging para diagnóstico + logger.info(f""" + Scores de Claridad: + - Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras) + - Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oración) + - Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cláusulas) + - Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido) + - Score Final: {clarity_score:.2f} + """) + + return clarity_score, details + + except Exception as e: + logger.error(f"Error en analyze_clarity: {str(e)}") + return 0.0, {} + + +def analyze_vocabulary_diversity(doc): + """Análisis mejorado de la diversidad y calidad del vocabulario""" + try: + # 1. Análisis básico de diversidad + unique_lemmas = {token.lemma_ for token in doc if token.is_alpha} + total_words = len([token for token in doc if token.is_alpha]) + basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0 + + # 2. Análisis de registro + academic_words = 0 + narrative_words = 0 + technical_terms = 0 + + # Clasificar palabras por registro + for token in doc: + if token.is_alpha: + # Detectar términos académicos/técnicos + if token.pos_ in ['NOUN', 'VERB', 'ADJ']: + if any(parent.pos_ == 'NOUN' for parent in token.ancestors): + technical_terms += 1 + # Detectar palabras narrativas + if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']: + narrative_words += 1 + + # 3. Análisis de complejidad sintáctica + avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents)) + + # 4. Calcular score ponderado + weights = { + 'diversity': 0.3, + 'technical': 0.3, + 'narrative': 0.2, + 'complexity': 0.2 + } + + scores = { + 'diversity': basic_diversity, + 'technical': technical_terms / total_words if total_words > 0 else 0, + 'narrative': narrative_words / total_words if total_words > 0 else 0, + 'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras + } + + # Score final ponderado + final_score = sum(weights[key] * scores[key] for key in weights) + + # Información adicional para diagnóstico + details = { + 'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic', + 'scores': scores + } + + return final_score, details + + except Exception as e: + logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}") + return 0.0, {} + +def analyze_cohesion(doc): + """Analiza la cohesión textual""" + try: + sentences = list(doc.sents) + if len(sentences) < 2: + logger.warning("Texto demasiado corto para análisis de cohesión") + return 0.0 + + # 1. Análisis de conexiones léxicas + lexical_connections = 0 + total_possible_connections = 0 + + for i in range(len(sentences)-1): + # Obtener lemmas significativos (no stopwords) + sent1_words = {token.lemma_ for token in sentences[i] + if token.is_alpha and not token.is_stop} + sent2_words = {token.lemma_ for token in sentences[i+1] + if token.is_alpha and not token.is_stop} + + if sent1_words and sent2_words: # Verificar que ambos conjuntos no estén vacíos + intersection = len(sent1_words.intersection(sent2_words)) + total_possible = min(len(sent1_words), len(sent2_words)) + + if total_possible > 0: + lexical_score = intersection / total_possible + lexical_connections += lexical_score + total_possible_connections += 1 + + # 2. Análisis de conectores + connector_count = 0 + connector_types = { + 'CCONJ': 1.0, # Coordinantes + 'SCONJ': 1.2, # Subordinantes + 'ADV': 0.8 # Adverbios conectivos + } + + for token in doc: + if (token.pos_ in connector_types and + token.dep_ in ['cc', 'mark', 'advmod'] and + not token.is_stop): + connector_count += connector_types[token.pos_] + + # 3. Cálculo de scores normalizados + if total_possible_connections > 0: + lexical_cohesion = lexical_connections / total_possible_connections + else: + lexical_cohesion = 0 + + if len(sentences) > 1: + connector_cohesion = min(1.0, connector_count / (len(sentences) - 1)) + else: + connector_cohesion = 0 + + # 4. Score final ponderado + weights = { + 'lexical': 0.7, + 'connectors': 0.3 + } + + cohesion_score = ( + weights['lexical'] * lexical_cohesion + + weights['connectors'] * connector_cohesion + ) + + # 5. Logging para diagnóstico + logger.info(f""" + Análisis de Cohesión: + - Conexiones léxicas encontradas: {lexical_connections} + - Conexiones posibles: {total_possible_connections} + - Lexical cohesion score: {lexical_cohesion} + - Conectores encontrados: {connector_count} + - Connector cohesion score: {connector_cohesion} + - Score final: {cohesion_score} + """) + + return cohesion_score + + except Exception as e: + logger.error(f"Error en analyze_cohesion: {str(e)}") + return 0.0 + +def analyze_structure(doc): + try: + if len(doc) == 0: + return 0.0 + + structure_scores = [] + for token in doc: + if token.dep_ == 'ROOT': + result = get_dependency_depths(token) + structure_scores.append(result['final_score']) + + if not structure_scores: + return 0.0 + + return min(1.0, sum(structure_scores) / len(structure_scores)) + + except Exception as e: + logger.error(f"Error en analyze_structure: {str(e)}") + return 0.0 + +# Funciones auxiliares de análisis + +def get_dependency_depths(token, depth=0, analyzed_tokens=None): + """ + Analiza la profundidad y calidad de las relaciones de dependencia. + + Args: + token: Token a analizar + depth: Profundidad actual en el árbol + analyzed_tokens: Set para evitar ciclos en el análisis + + Returns: + dict: Información detallada sobre las dependencias + - depths: Lista de profundidades + - relations: Diccionario con tipos de relaciones encontradas + - complexity_score: Puntuación de complejidad + """ + if analyzed_tokens is None: + analyzed_tokens = set() + + # Evitar ciclos + if token.i in analyzed_tokens: + return { + 'depths': [], + 'relations': {}, + 'complexity_score': 0 + } + + analyzed_tokens.add(token.i) + + # Pesos para diferentes tipos de dependencias + dependency_weights = { + # Dependencias principales + 'nsubj': 1.2, # Sujeto nominal + 'obj': 1.1, # Objeto directo + 'iobj': 1.1, # Objeto indirecto + 'ROOT': 1.3, # Raíz + + # Modificadores + 'amod': 0.8, # Modificador adjetival + 'advmod': 0.8, # Modificador adverbial + 'nmod': 0.9, # Modificador nominal + + # Estructuras complejas + 'csubj': 1.4, # Cláusula como sujeto + 'ccomp': 1.3, # Complemento clausal + 'xcomp': 1.2, # Complemento clausal abierto + 'advcl': 1.2, # Cláusula adverbial + + # Coordinación y subordinación + 'conj': 1.1, # Conjunción + 'cc': 0.7, # Coordinación + 'mark': 0.8, # Marcador + + # Otros + 'det': 0.5, # Determinante + 'case': 0.5, # Caso + 'punct': 0.1 # Puntuación + } + + # Inicializar resultados + current_result = { + 'depths': [depth], + 'relations': {token.dep_: 1}, + 'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1) + } + + # Analizar hijos recursivamente + for child in token.children: + child_result = get_dependency_depths(child, depth + 1, analyzed_tokens) + + # Combinar profundidades + current_result['depths'].extend(child_result['depths']) + + # Combinar relaciones + for rel, count in child_result['relations'].items(): + current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count + + # Acumular score de complejidad + current_result['complexity_score'] += child_result['complexity_score'] + + # Calcular métricas adicionales + current_result['max_depth'] = max(current_result['depths']) + current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths']) + current_result['relation_diversity'] = len(current_result['relations']) + + # Calcular score ponderado por tipo de estructura + structure_bonus = 0 + + # Bonus por estructuras complejas + if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']: + structure_bonus += 0.3 + + # Bonus por coordinación balanceada + if 'conj' in current_result['relations'] and 'cc' in current_result['relations']: + structure_bonus += 0.2 + + # Bonus por modificación rica + if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2: + structure_bonus += 0.2 + + current_result['final_score'] = ( + current_result['complexity_score'] * (1 + structure_bonus) + ) + + return current_result + +def normalize_score(value, metric_type, + min_threshold=0.0, target_threshold=1.0, + range_factor=2.0, optimal_length=None, + optimal_connections=None, optimal_depth=None): + """ + Normaliza un valor considerando umbrales específicos por tipo de métrica. + + Args: + value: Valor a normalizar + metric_type: Tipo de métrica ('vocabulary', 'structure', 'cohesion', 'clarity') + min_threshold: Valor mínimo aceptable + target_threshold: Valor objetivo + range_factor: Factor para ajustar el rango + optimal_length: Longitud óptima (opcional) + optimal_connections: Número óptimo de conexiones (opcional) + optimal_depth: Profundidad óptima de estructura (opcional) + + Returns: + float: Valor normalizado entre 0 y 1 + """ + try: + # Definir umbrales por tipo de métrica + METRIC_THRESHOLDS = { + 'vocabulary': { + 'min': 0.60, + 'target': 0.75, + 'range_factor': 1.5 + }, + 'structure': { + 'min': 0.65, + 'target': 0.80, + 'range_factor': 1.8 + }, + 'cohesion': { + 'min': 0.55, + 'target': 0.70, + 'range_factor': 1.6 + }, + 'clarity': { + 'min': 0.60, + 'target': 0.75, + 'range_factor': 1.7 + } + } + + # Validar valores negativos o cero + if value < 0: + logger.warning(f"Valor negativo recibido: {value}") + return 0.0 + + # Manejar caso donde el valor es cero + if value == 0: + logger.warning("Valor cero recibido") + return 0.0 + + # Obtener umbrales específicos para el tipo de métrica + thresholds = METRIC_THRESHOLDS.get(metric_type, { + 'min': min_threshold, + 'target': target_threshold, + 'range_factor': range_factor + }) + + # Identificar el valor de referencia a usar + if optimal_depth is not None: + reference = optimal_depth + elif optimal_connections is not None: + reference = optimal_connections + elif optimal_length is not None: + reference = optimal_length + else: + reference = thresholds['target'] + + # Validar valor de referencia + if reference <= 0: + logger.warning(f"Valor de referencia inválido: {reference}") + return 0.0 + + # Calcular score basado en umbrales + if value < thresholds['min']: + # Valor por debajo del mínimo + score = (value / thresholds['min']) * 0.5 # Máximo 0.5 para valores bajo el mínimo + elif value < thresholds['target']: + # Valor entre mínimo y objetivo + range_size = thresholds['target'] - thresholds['min'] + progress = (value - thresholds['min']) / range_size + score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0 + else: + # Valor alcanza o supera el objetivo + score = 1.0 + + # Penalizar valores muy por encima del objetivo + if value > (thresholds['target'] * thresholds['range_factor']): + excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor']) + score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos + + # Asegurar que el resultado esté entre 0 y 1 + return max(0.0, min(1.0, score)) + + except Exception as e: + logger.error(f"Error en normalize_score: {str(e)}") + return 0.0 + + +# Funciones de generación de gráficos +def generate_sentence_graphs(doc): + """Genera visualizaciones de estructura de oraciones""" + fig, ax = plt.subplots(figsize=(10, 6)) + # Implementar visualización + plt.close() + return fig + +def generate_word_connections(doc): + """Genera red de conexiones de palabras""" + fig, ax = plt.subplots(figsize=(10, 6)) + # Implementar visualización + plt.close() + return fig + +def generate_connection_paths(doc): + """Genera patrones de conexión""" + fig, ax = plt.subplots(figsize=(10, 6)) + # Implementar visualización + plt.close() + return fig + +def create_vocabulary_network(doc): + """ + Genera el grafo de red de vocabulario. + """ + G = nx.Graph() + + # Crear nodos para palabras significativas + words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop] + word_freq = Counter(words) + + # Añadir nodos con tamaño basado en frecuencia + for word, freq in word_freq.items(): + G.add_node(word, size=freq) + + # Crear conexiones basadas en co-ocurrencia + window_size = 5 + for i in range(len(words) - window_size): + window = words[i:i+window_size] + for w1, w2 in combinations(set(window), 2): + if G.has_edge(w1, w2): + G[w1][w2]['weight'] += 1 + else: + G.add_edge(w1, w2, weight=1) + + # Crear visualización + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + + # Dibujar nodos + nx.draw_networkx_nodes(G, pos, + node_size=[G.nodes[node]['size']*100 for node in G.nodes], + node_color='lightblue', + alpha=0.7) + + # Dibujar conexiones + nx.draw_networkx_edges(G, pos, + width=[G[u][v]['weight']*0.5 for u,v in G.edges], + alpha=0.5) + + # Añadir etiquetas + nx.draw_networkx_labels(G, pos) + + plt.title("Red de Vocabulario") + plt.axis('off') + return fig + +def create_syntax_complexity_graph(doc): + """ + Genera el diagrama de arco de complejidad sintáctica. + Muestra la estructura de dependencias con colores basados en la complejidad. + """ + try: + # Preparar datos para la visualización + sentences = list(doc.sents) + if not sentences: + return None + + # Crear figura para el gráfico + fig, ax = plt.subplots(figsize=(12, len(sentences) * 2)) + + # Colores para diferentes niveles de profundidad + depth_colors = plt.cm.viridis(np.linspace(0, 1, 6)) + + y_offset = 0 + max_x = 0 + + for sent in sentences: + words = [token.text for token in sent] + x_positions = range(len(words)) + max_x = max(max_x, len(words)) + + # Dibujar palabras + plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2) + plt.scatter(x_positions, [y_offset] * len(words), alpha=0) + + # Añadir texto + for i, word in enumerate(words): + plt.annotate(word, (i, y_offset), xytext=(0, -10), + textcoords='offset points', ha='center') + + # Dibujar arcos de dependencia + for token in sent: + if token.dep_ != "ROOT": + # Calcular profundidad de dependencia + depth = 0 + current = token + while current.head != current: + depth += 1 + current = current.head + + # Determinar posiciones para el arco + start = token.i - sent[0].i + end = token.head.i - sent[0].i + + # Altura del arco basada en la distancia entre palabras + height = 0.5 * abs(end - start) + + # Color basado en la profundidad + color = depth_colors[min(depth, len(depth_colors)-1)] + + # Crear arco + arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset), + width=abs(end - start), + height=height, + angle=0, + theta1=0, + theta2=180, + color=color, + alpha=0.6) + ax.add_patch(arc) + + y_offset -= 2 + + # Configurar el gráfico + plt.xlim(-1, max_x) + plt.ylim(y_offset - 1, 1) + plt.axis('off') + plt.title("Complejidad Sintáctica") + + return fig + + except Exception as e: + logger.error(f"Error en create_syntax_complexity_graph: {str(e)}") + return None + + +def create_cohesion_heatmap(doc): + """Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones.""" + try: + sentences = list(doc.sents) + n_sentences = len(sentences) + + if n_sentences < 2: + return None + + similarity_matrix = np.zeros((n_sentences, n_sentences)) + + for i in range(n_sentences): + for j in range(n_sentences): + sent1_lemmas = {token.lemma_ for token in sentences[i] + if token.is_alpha and not token.is_stop} + sent2_lemmas = {token.lemma_ for token in sentences[j] + if token.is_alpha and not token.is_stop} + + if sent1_lemmas and sent2_lemmas: + intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aquí + union = len(sent1_lemmas | sent2_lemmas) # Y aquí + similarity_matrix[i, j] = intersection / union if union > 0 else 0 + + # Crear visualización + fig, ax = plt.subplots(figsize=(10, 8)) + + sns.heatmap(similarity_matrix, + cmap='YlOrRd', + square=True, + xticklabels=False, + yticklabels=False, + cbar_kws={'label': 'Cohesión'}, + ax=ax) + + plt.title("Mapa de Cohesión Textual") + plt.xlabel("Oraciones") + plt.ylabel("Oraciones") + + plt.tight_layout() + return fig + + except Exception as e: + logger.error(f"Error en create_cohesion_heatmap: {str(e)}") + return None diff --git a/src/modules/studentact/current_situation_analysis.py b/src/modules/studentact/current_situation_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..bed8c89f985243da6b00f2a1f8319448a0017f16 --- /dev/null +++ b/src/modules/studentact/current_situation_analysis.py @@ -0,0 +1,1009 @@ +#v3/modules/studentact/current_situation_analysis.py + +import streamlit as st +import matplotlib.pyplot as plt +import networkx as nx +import seaborn as sns +from collections import Counter +from itertools import combinations +import numpy as np +import matplotlib.patches as patches +import logging + + +# 2. Configuración básica del logging +logging.basicConfig( + level=logging.INFO, + format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', + handlers=[ + logging.StreamHandler(), + logging.FileHandler('app.log') + ] +) + +# 3. Obtener el logger específico para este módulo +logger = logging.getLogger(__name__) + +######################################################################### + +def correlate_metrics(scores): + """ + Ajusta los scores para mantener correlaciones lógicas entre métricas. + + Args: + scores: dict con scores iniciales de vocabulario, estructura, cohesión y claridad + + Returns: + dict con scores ajustados + """ + try: + # 1. Correlación estructura-cohesión + # La cohesión no puede ser menor que estructura * 0.7 + min_cohesion = scores['structure']['normalized_score'] * 0.7 + if scores['cohesion']['normalized_score'] < min_cohesion: + scores['cohesion']['normalized_score'] = min_cohesion + + # 2. Correlación vocabulario-cohesión + # La cohesión léxica depende del vocabulario + vocab_influence = scores['vocabulary']['normalized_score'] * 0.6 + scores['cohesion']['normalized_score'] = max( + scores['cohesion']['normalized_score'], + vocab_influence + ) + + # 3. Correlación cohesión-claridad + # La claridad no puede superar cohesión * 1.2 + max_clarity = scores['cohesion']['normalized_score'] * 1.2 + if scores['clarity']['normalized_score'] > max_clarity: + scores['clarity']['normalized_score'] = max_clarity + + # 4. Correlación estructura-claridad + # La claridad no puede superar estructura * 1.1 + struct_max_clarity = scores['structure']['normalized_score'] * 1.1 + scores['clarity']['normalized_score'] = min( + scores['clarity']['normalized_score'], + struct_max_clarity + ) + + # Normalizar todos los scores entre 0 y 1 + for metric in scores: + scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score'])) + + return scores + + except Exception as e: + logger.error(f"Error en correlate_metrics: {str(e)}") + return scores + +########################################################################## + +def analyze_text_dimensions(doc): + """ + Analiza las dimensiones principales del texto manteniendo correlaciones lógicas. + """ + try: + # Obtener scores iniciales + vocab_score, vocab_details = analyze_vocabulary_diversity(doc) + struct_score = analyze_structure(doc) + cohesion_score = analyze_cohesion(doc) + clarity_score, clarity_details = analyze_clarity(doc) + + # Crear diccionario de scores inicial + scores = { + 'vocabulary': { + 'normalized_score': vocab_score, + 'details': vocab_details + }, + 'structure': { + 'normalized_score': struct_score, + 'details': None + }, + 'cohesion': { + 'normalized_score': cohesion_score, + 'details': None + }, + 'clarity': { + 'normalized_score': clarity_score, + 'details': clarity_details + } + } + + # Ajustar correlaciones entre métricas + adjusted_scores = correlate_metrics(scores) + + # Logging para diagnóstico + logger.info(f""" + Scores originales vs ajustados: + Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f} + Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f} + Cohesión: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f} + Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f} + """) + + return adjusted_scores + + except Exception as e: + logger.error(f"Error en analyze_text_dimensions: {str(e)}") + return { + 'vocabulary': {'normalized_score': 0.0, 'details': {}}, + 'structure': {'normalized_score': 0.0, 'details': {}}, + 'cohesion': {'normalized_score': 0.0, 'details': {}}, + 'clarity': {'normalized_score': 0.0, 'details': {}} + } + + + +############################################################################################# + +def analyze_clarity(doc): + """ + Analiza la claridad del texto considerando múltiples factores. + """ + try: + sentences = list(doc.sents) + if not sentences: + return 0.0, {} + + # 1. Longitud de oraciones + sentence_lengths = [len(sent) for sent in sentences] + avg_length = sum(sentence_lengths) / len(sentences) + + # Normalizar usando los umbrales definidos para clarity + length_score = normalize_score( + value=avg_length, + metric_type='clarity', + optimal_length=20, # Una oración ideal tiene ~20 palabras + min_threshold=0.60, # Consistente con METRIC_THRESHOLDS + target_threshold=0.75 # Consistente con METRIC_THRESHOLDS + ) + + # 2. Análisis de conectores + connector_count = 0 + connector_weights = { + 'CCONJ': 1.0, # Coordinantes + 'SCONJ': 1.2, # Subordinantes + 'ADV': 0.8 # Adverbios conectivos + } + + for token in doc: + if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']: + connector_count += connector_weights[token.pos_] + + # Normalizar conectores por oración + connectors_per_sentence = connector_count / len(sentences) if sentences else 0 + connector_score = normalize_score( + value=connectors_per_sentence, + metric_type='clarity', + optimal_connections=1.5, # ~1.5 conectores por oración es óptimo + min_threshold=0.60, + target_threshold=0.75 + ) + + # 3. Complejidad estructural + clause_count = 0 + for sent in sentences: + verbs = [token for token in sent if token.pos_ == 'VERB'] + clause_count += len(verbs) + + complexity_raw = clause_count / len(sentences) if sentences else 0 + complexity_score = normalize_score( + value=complexity_raw, + metric_type='clarity', + optimal_depth=2.0, # ~2 cláusulas por oración es óptimo + min_threshold=0.60, + target_threshold=0.75 + ) + + # 4. Densidad léxica + content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']]) + total_words = len([token for token in doc if token.is_alpha]) + density = content_words / total_words if total_words > 0 else 0 + + density_score = normalize_score( + value=density, + metric_type='clarity', + optimal_connections=0.6, # 60% de palabras de contenido es óptimo + min_threshold=0.60, + target_threshold=0.75 + ) + + # Score final ponderado + weights = { + 'length': 0.3, + 'connectors': 0.3, + 'complexity': 0.2, + 'density': 0.2 + } + + clarity_score = ( + weights['length'] * length_score + + weights['connectors'] * connector_score + + weights['complexity'] * complexity_score + + weights['density'] * density_score + ) + + details = { + 'length_score': length_score, + 'connector_score': connector_score, + 'complexity_score': complexity_score, + 'density_score': density_score, + 'avg_sentence_length': avg_length, + 'connectors_per_sentence': connectors_per_sentence, + 'density': density + } + + # Agregar logging para diagnóstico + logger.info(f""" + Scores de Claridad: + - Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras) + - Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oración) + - Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cláusulas) + - Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido) + - Score Final: {clarity_score:.2f} + """) + + return clarity_score, details + + except Exception as e: + logger.error(f"Error en analyze_clarity: {str(e)}") + return 0.0, {} + +######################################################################### +def analyze_vocabulary_diversity(doc): + """Análisis mejorado de la diversidad y calidad del vocabulario""" + try: + # 1. Análisis básico de diversidad + unique_lemmas = {token.lemma_ for token in doc if token.is_alpha} + total_words = len([token for token in doc if token.is_alpha]) + basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0 + + # 2. Análisis de registro + academic_words = 0 + narrative_words = 0 + technical_terms = 0 + + # Clasificar palabras por registro + for token in doc: + if token.is_alpha: + # Detectar términos académicos/técnicos + if token.pos_ in ['NOUN', 'VERB', 'ADJ']: + if any(parent.pos_ == 'NOUN' for parent in token.ancestors): + technical_terms += 1 + # Detectar palabras narrativas + if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']: + narrative_words += 1 + + # 3. Análisis de complejidad sintáctica + avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents)) + + # 4. Calcular score ponderado + weights = { + 'diversity': 0.3, + 'technical': 0.3, + 'narrative': 0.2, + 'complexity': 0.2 + } + + scores = { + 'diversity': basic_diversity, + 'technical': technical_terms / total_words if total_words > 0 else 0, + 'narrative': narrative_words / total_words if total_words > 0 else 0, + 'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras + } + + # Score final ponderado + final_score = sum(weights[key] * scores[key] for key in weights) + + # Información adicional para diagnóstico + details = { + 'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic', + 'scores': scores + } + + return final_score, details + + except Exception as e: + logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}") + return 0.0, {} + +######################################################################### +def analyze_cohesion(doc): + """Analiza la cohesión textual""" + try: + sentences = list(doc.sents) + if len(sentences) < 2: + logger.warning("Texto demasiado corto para análisis de cohesión") + return 0.0 + + # 1. Análisis de conexiones léxicas + lexical_connections = 0 + total_possible_connections = 0 + + for i in range(len(sentences)-1): + # Obtener lemmas significativos (no stopwords) + sent1_words = {token.lemma_ for token in sentences[i] + if token.is_alpha and not token.is_stop} + sent2_words = {token.lemma_ for token in sentences[i+1] + if token.is_alpha and not token.is_stop} + + if sent1_words and sent2_words: # Verificar que ambos conjuntos no estén vacíos + intersection = len(sent1_words.intersection(sent2_words)) + total_possible = min(len(sent1_words), len(sent2_words)) + + if total_possible > 0: + lexical_score = intersection / total_possible + lexical_connections += lexical_score + total_possible_connections += 1 + + # 2. Análisis de conectores + connector_count = 0 + connector_types = { + 'CCONJ': 1.0, # Coordinantes + 'SCONJ': 1.2, # Subordinantes + 'ADV': 0.8 # Adverbios conectivos + } + + for token in doc: + if (token.pos_ in connector_types and + token.dep_ in ['cc', 'mark', 'advmod'] and + not token.is_stop): + connector_count += connector_types[token.pos_] + + # 3. Cálculo de scores normalizados + if total_possible_connections > 0: + lexical_cohesion = lexical_connections / total_possible_connections + else: + lexical_cohesion = 0 + + if len(sentences) > 1: + connector_cohesion = min(1.0, connector_count / (len(sentences) - 1)) + else: + connector_cohesion = 0 + + # 4. Score final ponderado + weights = { + 'lexical': 0.7, + 'connectors': 0.3 + } + + cohesion_score = ( + weights['lexical'] * lexical_cohesion + + weights['connectors'] * connector_cohesion + ) + + # 5. Logging para diagnóstico + logger.info(f""" + Análisis de Cohesión: + - Conexiones léxicas encontradas: {lexical_connections} + - Conexiones posibles: {total_possible_connections} + - Lexical cohesion score: {lexical_cohesion} + - Conectores encontrados: {connector_count} + - Connector cohesion score: {connector_cohesion} + - Score final: {cohesion_score} + """) + + return cohesion_score + + except Exception as e: + logger.error(f"Error en analyze_cohesion: {str(e)}") + return 0.0 + +######################################################################### +def analyze_structure(doc): + try: + if len(doc) == 0: + return 0.0 + + structure_scores = [] + for token in doc: + if token.dep_ == 'ROOT': + result = get_dependency_depths(token) + structure_scores.append(result['final_score']) + + if not structure_scores: + return 0.0 + + return min(1.0, sum(structure_scores) / len(structure_scores)) + + except Exception as e: + logger.error(f"Error en analyze_structure: {str(e)}") + return 0.0 + +######################################################################### +# Funciones auxiliares de análisis +def get_dependency_depths(token, depth=0, analyzed_tokens=None): + """ + Analiza la profundidad y calidad de las relaciones de dependencia. + + Args: + token: Token a analizar + depth: Profundidad actual en el árbol + analyzed_tokens: Set para evitar ciclos en el análisis + + Returns: + dict: Información detallada sobre las dependencias + - depths: Lista de profundidades + - relations: Diccionario con tipos de relaciones encontradas + - complexity_score: Puntuación de complejidad + """ + if analyzed_tokens is None: + analyzed_tokens = set() + + # Evitar ciclos + if token.i in analyzed_tokens: + return { + 'depths': [], + 'relations': {}, + 'complexity_score': 0 + } + + analyzed_tokens.add(token.i) + + # Pesos para diferentes tipos de dependencias + dependency_weights = { + # Dependencias principales + 'nsubj': 1.2, # Sujeto nominal + 'obj': 1.1, # Objeto directo + 'iobj': 1.1, # Objeto indirecto + 'ROOT': 1.3, # Raíz + + # Modificadores + 'amod': 0.8, # Modificador adjetival + 'advmod': 0.8, # Modificador adverbial + 'nmod': 0.9, # Modificador nominal + + # Estructuras complejas + 'csubj': 1.4, # Cláusula como sujeto + 'ccomp': 1.3, # Complemento clausal + 'xcomp': 1.2, # Complemento clausal abierto + 'advcl': 1.2, # Cláusula adverbial + + # Coordinación y subordinación + 'conj': 1.1, # Conjunción + 'cc': 0.7, # Coordinación + 'mark': 0.8, # Marcador + + # Otros + 'det': 0.5, # Determinante + 'case': 0.5, # Caso + 'punct': 0.1 # Puntuación + } + + # Inicializar resultados + current_result = { + 'depths': [depth], + 'relations': {token.dep_: 1}, + 'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1) + } + + # Analizar hijos recursivamente + for child in token.children: + child_result = get_dependency_depths(child, depth + 1, analyzed_tokens) + + # Combinar profundidades + current_result['depths'].extend(child_result['depths']) + + # Combinar relaciones + for rel, count in child_result['relations'].items(): + current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count + + # Acumular score de complejidad + current_result['complexity_score'] += child_result['complexity_score'] + + # Calcular métricas adicionales + current_result['max_depth'] = max(current_result['depths']) + current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths']) + current_result['relation_diversity'] = len(current_result['relations']) + + # Calcular score ponderado por tipo de estructura + structure_bonus = 0 + + # Bonus por estructuras complejas + if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']: + structure_bonus += 0.3 + + # Bonus por coordinación balanceada + if 'conj' in current_result['relations'] and 'cc' in current_result['relations']: + structure_bonus += 0.2 + + # Bonus por modificación rica + if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2: + structure_bonus += 0.2 + + current_result['final_score'] = ( + current_result['complexity_score'] * (1 + structure_bonus) + ) + + return current_result + +######################################################################### +def normalize_score(value, metric_type, + min_threshold=0.0, target_threshold=1.0, + range_factor=2.0, optimal_length=None, + optimal_connections=None, optimal_depth=None): + """ + Normaliza un valor considerando umbrales específicos por tipo de métrica. + + Args: + value: Valor a normalizar + metric_type: Tipo de métrica ('vocabulary', 'structure', 'cohesion', 'clarity') + min_threshold: Valor mínimo aceptable + target_threshold: Valor objetivo + range_factor: Factor para ajustar el rango + optimal_length: Longitud óptima (opcional) + optimal_connections: Número óptimo de conexiones (opcional) + optimal_depth: Profundidad óptima de estructura (opcional) + + Returns: + float: Valor normalizado entre 0 y 1 + """ + try: + # Definir umbrales por tipo de métrica + METRIC_THRESHOLDS = { + 'vocabulary': { + 'min': 0.60, + 'target': 0.75, + 'range_factor': 1.5 + }, + 'structure': { + 'min': 0.65, + 'target': 0.80, + 'range_factor': 1.8 + }, + 'cohesion': { + 'min': 0.55, + 'target': 0.70, + 'range_factor': 1.6 + }, + 'clarity': { + 'min': 0.60, + 'target': 0.75, + 'range_factor': 1.7 + } + } + + # Validar valores negativos o cero + if value < 0: + logger.warning(f"Valor negativo recibido: {value}") + return 0.0 + + # Manejar caso donde el valor es cero + if value == 0: + logger.warning("Valor cero recibido") + return 0.0 + + # Obtener umbrales específicos para el tipo de métrica + thresholds = METRIC_THRESHOLDS.get(metric_type, { + 'min': min_threshold, + 'target': target_threshold, + 'range_factor': range_factor + }) + + # Identificar el valor de referencia a usar + if optimal_depth is not None: + reference = optimal_depth + elif optimal_connections is not None: + reference = optimal_connections + elif optimal_length is not None: + reference = optimal_length + else: + reference = thresholds['target'] + + # Validar valor de referencia + if reference <= 0: + logger.warning(f"Valor de referencia inválido: {reference}") + return 0.0 + + # Calcular score basado en umbrales + if value < thresholds['min']: + # Valor por debajo del mínimo + score = (value / thresholds['min']) * 0.5 # Máximo 0.5 para valores bajo el mínimo + elif value < thresholds['target']: + # Valor entre mínimo y objetivo + range_size = thresholds['target'] - thresholds['min'] + progress = (value - thresholds['min']) / range_size + score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0 + else: + # Valor alcanza o supera el objetivo + score = 1.0 + + # Penalizar valores muy por encima del objetivo + if value > (thresholds['target'] * thresholds['range_factor']): + excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor']) + score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos + + # Asegurar que el resultado esté entre 0 y 1 + return max(0.0, min(1.0, score)) + + except Exception as e: + logger.error(f"Error en normalize_score: {str(e)}") + return 0.0 + +######################################################################### +######################################################################### + +def generate_recommendations(metrics, text_type, lang_code='es'): + """ + Genera recomendaciones personalizadas basadas en las métricas del texto y el tipo de texto. + + Args: + metrics: Diccionario con las métricas analizadas + text_type: Tipo de texto ('academic_article', 'student_essay', 'general_communication') + lang_code: Código del idioma para las recomendaciones (es, en, uk) + + Returns: + dict: Recomendaciones organizadas por categoría en el idioma correspondiente + """ + try: + # Añadir debug log para verificar el código de idioma recibido + logger.info(f"generate_recommendations llamado con idioma: {lang_code}") + + # Comprobar que importamos RECOMMENDATIONS correctamente + logger.info(f"Idiomas disponibles en RECOMMENDATIONS: {list(RECOMMENDATIONS.keys())}") + + # Obtener umbrales según el tipo de texto + thresholds = TEXT_TYPES[text_type]['thresholds'] + + # Verificar que el idioma esté soportado, usar español como respaldo + if lang_code not in RECOMMENDATIONS: + logger.warning(f"Idioma {lang_code} no soportado para recomendaciones, usando español") + lang_code = 'es' + + # Obtener traducciones para el idioma seleccionado + translations = RECOMMENDATIONS[lang_code] + + # Inicializar diccionario de recomendaciones + recommendations = { + 'vocabulary': [], + 'structure': [], + 'cohesion': [], + 'clarity': [], + 'specific': [], + 'priority': { + 'area': 'general', + 'tips': [] + }, + 'text_type_name': translations['text_types'][text_type], + 'dimension_names': translations['dimension_names'], + 'ui_text': { + 'priority_intro': translations['priority_intro'], + 'detailed_recommendations': translations['detailed_recommendations'], + 'save_button': translations['save_button'], + 'save_success': translations['save_success'], + 'save_error': translations['save_error'], + 'area_priority': translations['area_priority'] + } + } + + # Determinar nivel para cada dimensión y asignar recomendaciones + dimensions = ['vocabulary', 'structure', 'cohesion', 'clarity'] + scores = {} + + for dim in dimensions: + score = metrics[dim]['normalized_score'] + scores[dim] = score + + # Determinar nivel (bajo, medio, alto) + if score < thresholds[dim]['min']: + level = 'low' + elif score < thresholds[dim]['target']: + level = 'medium' + else: + level = 'high' + + # Asignar recomendaciones para ese nivel + recommendations[dim] = translations[dim][level] + + # Asignar recomendaciones específicas por tipo de texto + recommendations['specific'] = translations[text_type] + + # Determinar área prioritaria (la que tiene menor puntuación) + priority_dimension = min(scores, key=scores.get) + recommendations['priority']['area'] = priority_dimension + recommendations['priority']['tips'] = recommendations[priority_dimension] + + logger.info(f"Generadas recomendaciones en {lang_code} para texto tipo {text_type}") + return recommendations + + except Exception as e: + logger.error(f"Error en generate_recommendations: {str(e)}") + + # Utilizar un enfoque basado en el idioma actual en lugar de casos codificados + # Esto permite manejar ucraniano y cualquier otro idioma futuro + fallback_translations = { + 'en': { + 'basic_recommendations': { + 'vocabulary': ["Try enriching your vocabulary"], + 'structure': ["Work on the structure of your sentences"], + 'cohesion': ["Improve the connection between your ideas"], + 'clarity': ["Try to express your ideas more clearly"], + 'specific': ["Adapt your text according to its purpose"], + }, + 'dimension_names': { + 'vocabulary': 'Vocabulary', + 'structure': 'Structure', + 'cohesion': 'Cohesion', + 'clarity': 'Clarity', + 'general': 'General' + }, + 'ui_text': { + 'priority_intro': "This is where you should focus your efforts.", + 'detailed_recommendations': "Detailed recommendations", + 'save_button': "Save analysis", + 'save_success': "Analysis saved successfully", + 'save_error': "Error saving analysis", + 'area_priority': "Priority area" + } + }, + 'uk': { + 'basic_recommendations': { + 'vocabulary': ["Розширте свій словниковий запас"], + 'structure': ["Покращіть структуру ваших речень"], + 'cohesion': ["Покращіть зв'язок між вашими ідеями"], + 'clarity': ["Висловлюйте свої ідеї ясніше"], + 'specific': ["Адаптуйте свій текст відповідно до його мети"], + }, + 'dimension_names': { + 'vocabulary': 'Словниковий запас', + 'structure': 'Структура', + 'cohesion': 'Зв\'язність', + 'clarity': 'Ясність', + 'general': 'Загальне' + }, + 'ui_text': { + 'priority_intro': "Це область, де ви повинні зосередити свої зусилля.", + 'detailed_recommendations': "Детальні рекомендації", + 'save_button': "Зберегти аналіз", + 'save_success': "Аналіз успішно збережено", + 'save_error': "Помилка при збереженні аналізу", + 'area_priority': "Пріоритетна область" + } + }, + 'es': { + 'basic_recommendations': { + 'vocabulary': ["Intenta enriquecer tu vocabulario"], + 'structure': ["Trabaja en la estructura de tus oraciones"], + 'cohesion': ["Mejora la conexión entre tus ideas"], + 'clarity': ["Busca expresar tus ideas con mayor claridad"], + 'specific': ["Adapta tu texto según su propósito"], + }, + 'dimension_names': { + 'vocabulary': 'Vocabulario', + 'structure': 'Estructura', + 'cohesion': 'Cohesión', + 'clarity': 'Claridad', + 'general': 'General' + }, + 'ui_text': { + 'priority_intro': "Esta es el área donde debes concentrar tus esfuerzos.", + 'detailed_recommendations': "Recomendaciones detalladas", + 'save_button': "Guardar análisis", + 'save_success': "Análisis guardado con éxito", + 'save_error': "Error al guardar el análisis", + 'area_priority': "Área prioritaria" + } + } + } + + # Usar el idioma actual si está disponible, o inglés, o español como última opción + current_lang = fallback_translations.get(lang_code, + fallback_translations.get('en', + fallback_translations['es'])) + + basic_recommendations = current_lang['basic_recommendations'] + + return { + 'vocabulary': basic_recommendations['vocabulary'], + 'structure': basic_recommendations['structure'], + 'cohesion': basic_recommendations['cohesion'], + 'clarity': basic_recommendations['clarity'], + 'specific': basic_recommendations['specific'], + 'priority': { + 'area': 'general', + 'tips': ["Busca retroalimentación específica de un tutor o profesor"] + }, + 'dimension_names': current_lang['dimension_names'], + 'ui_text': current_lang['ui_text'] + } + + + + +######################################################################### +######################################################################### +# Funciones de generación de gráficos +def generate_sentence_graphs(doc): + """Genera visualizaciones de estructura de oraciones""" + fig, ax = plt.subplots(figsize=(10, 6)) + # Implementar visualización + plt.close() + return fig + +############################################################################ +def generate_word_connections(doc): + """Genera red de conexiones de palabras""" + fig, ax = plt.subplots(figsize=(10, 6)) + # Implementar visualización + plt.close() + return fig + +############################################################################ +def generate_connection_paths(doc): + """Genera patrones de conexión""" + fig, ax = plt.subplots(figsize=(10, 6)) + # Implementar visualización + plt.close() + return fig + +############################################################################ +def create_vocabulary_network(doc): + """ + Genera el grafo de red de vocabulario. + """ + G = nx.Graph() + + # Crear nodos para palabras significativas + words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop] + word_freq = Counter(words) + + # Añadir nodos con tamaño basado en frecuencia + for word, freq in word_freq.items(): + G.add_node(word, size=freq) + + # Crear conexiones basadas en co-ocurrencia + window_size = 5 + for i in range(len(words) - window_size): + window = words[i:i+window_size] + for w1, w2 in combinations(set(window), 2): + if G.has_edge(w1, w2): + G[w1][w2]['weight'] += 1 + else: + G.add_edge(w1, w2, weight=1) + + # Crear visualización + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + + # Dibujar nodos + nx.draw_networkx_nodes(G, pos, + node_size=[G.nodes[node]['size']*100 for node in G.nodes], + node_color='lightblue', + alpha=0.7) + + # Dibujar conexiones + nx.draw_networkx_edges(G, pos, + width=[G[u][v]['weight']*0.5 for u,v in G.edges], + alpha=0.5) + + # Añadir etiquetas + nx.draw_networkx_labels(G, pos) + + plt.title("Red de Vocabulario") + plt.axis('off') + return fig + +############################################################################ +def create_syntax_complexity_graph(doc): + """ + Genera el diagrama de arco de complejidad sintáctica. + Muestra la estructura de dependencias con colores basados en la complejidad. + """ + try: + # Preparar datos para la visualización + sentences = list(doc.sents) + if not sentences: + return None + + # Crear figura para el gráfico + fig, ax = plt.subplots(figsize=(12, len(sentences) * 2)) + + # Colores para diferentes niveles de profundidad + depth_colors = plt.cm.viridis(np.linspace(0, 1, 6)) + + y_offset = 0 + max_x = 0 + + for sent in sentences: + words = [token.text for token in sent] + x_positions = range(len(words)) + max_x = max(max_x, len(words)) + + # Dibujar palabras + plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2) + plt.scatter(x_positions, [y_offset] * len(words), alpha=0) + + # Añadir texto + for i, word in enumerate(words): + plt.annotate(word, (i, y_offset), xytext=(0, -10), + textcoords='offset points', ha='center') + + # Dibujar arcos de dependencia + for token in sent: + if token.dep_ != "ROOT": + # Calcular profundidad de dependencia + depth = 0 + current = token + while current.head != current: + depth += 1 + current = current.head + + # Determinar posiciones para el arco + start = token.i - sent[0].i + end = token.head.i - sent[0].i + + # Altura del arco basada en la distancia entre palabras + height = 0.5 * abs(end - start) + + # Color basado en la profundidad + color = depth_colors[min(depth, len(depth_colors)-1)] + + # Crear arco + arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset), + width=abs(end - start), + height=height, + angle=0, + theta1=0, + theta2=180, + color=color, + alpha=0.6) + ax.add_patch(arc) + + y_offset -= 2 + + # Configurar el gráfico + plt.xlim(-1, max_x) + plt.ylim(y_offset - 1, 1) + plt.axis('off') + plt.title("Complejidad Sintáctica") + + return fig + + except Exception as e: + logger.error(f"Error en create_syntax_complexity_graph: {str(e)}") + return None + +############################################################################ +def create_cohesion_heatmap(doc): + """Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones.""" + try: + sentences = list(doc.sents) + n_sentences = len(sentences) + + if n_sentences < 2: + return None + + similarity_matrix = np.zeros((n_sentences, n_sentences)) + + for i in range(n_sentences): + for j in range(n_sentences): + sent1_lemmas = {token.lemma_ for token in sentences[i] + if token.is_alpha and not token.is_stop} + sent2_lemmas = {token.lemma_ for token in sentences[j] + if token.is_alpha and not token.is_stop} + + if sent1_lemmas and sent2_lemmas: + intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aquí + union = len(sent1_lemmas | sent2_lemmas) # Y aquí + similarity_matrix[i, j] = intersection / union if union > 0 else 0 + + # Crear visualización + fig, ax = plt.subplots(figsize=(10, 8)) + + sns.heatmap(similarity_matrix, + cmap='YlOrRd', + square=True, + xticklabels=False, + yticklabels=False, + cbar_kws={'label': 'Cohesión'}, + ax=ax) + + plt.title("Mapa de Cohesión Textual") + plt.xlabel("Oraciones") + plt.ylabel("Oraciones") + + plt.tight_layout() + return fig + + except Exception as e: + logger.error(f"Error en create_cohesion_heatmap: {str(e)}") + return None diff --git a/src/modules/studentact/current_situation_interface--FAIL.py b/src/modules/studentact/current_situation_interface--FAIL.py new file mode 100644 index 0000000000000000000000000000000000000000..cae6e5be1412c8006108b6c8c77719bd5d684e63 --- /dev/null +++ b/src/modules/studentact/current_situation_interface--FAIL.py @@ -0,0 +1,608 @@ +# modules/studentact/current_situation_interface.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key +import matplotlib.pyplot as plt +import numpy as np + +from ..database.current_situation_mongo_db import store_current_situation_result + +from ..database.writing_progress_mongo_db import ( + store_writing_baseline, + store_writing_progress, + get_writing_baseline, + get_writing_progress, + get_latest_writing_metrics +) + +from .current_situation_analysis import ( + analyze_text_dimensions, + analyze_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap +) + +# Configuración del estilo de matplotlib para el gráfico de radar +plt.rcParams['font.family'] = 'sans-serif' +plt.rcParams['axes.grid'] = True +plt.rcParams['axes.spines.top'] = False +plt.rcParams['axes.spines.right'] = False + +logger = logging.getLogger(__name__) +#################################### + +TEXT_TYPES = { + 'academic_article': { + 'name': 'Artículo Académico', + 'thresholds': { + 'vocabulary': {'min': 0.70, 'target': 0.85}, + 'structure': {'min': 0.75, 'target': 0.90}, + 'cohesion': {'min': 0.65, 'target': 0.80}, + 'clarity': {'min': 0.70, 'target': 0.85} + } + }, + 'student_essay': { + 'name': 'Trabajo Universitario', + 'thresholds': { + 'vocabulary': {'min': 0.60, 'target': 0.75}, + 'structure': {'min': 0.65, 'target': 0.80}, + 'cohesion': {'min': 0.55, 'target': 0.70}, + 'clarity': {'min': 0.60, 'target': 0.75} + } + }, + 'general_communication': { + 'name': 'Comunicación General', + 'thresholds': { + 'vocabulary': {'min': 0.50, 'target': 0.65}, + 'structure': {'min': 0.55, 'target': 0.70}, + 'cohesion': {'min': 0.45, 'target': 0.60}, + 'clarity': {'min': 0.50, 'target': 0.65} + } + } +} +#################################### + +ANALYSIS_DIMENSION_MAPPING = { + 'morphosyntactic': { + 'primary': ['vocabulary', 'clarity'], + 'secondary': ['structure'], + 'tools': ['arc_diagrams', 'word_repetition'] + }, + 'semantic': { + 'primary': ['cohesion', 'structure'], + 'secondary': ['vocabulary'], + 'tools': ['concept_graphs', 'semantic_networks'] + }, + 'discourse': { + 'primary': ['cohesion', 'structure'], + 'secondary': ['clarity'], + 'tools': ['comparative_analysis'] + } +} + +############################################################################## +# FUNCIÓN PRINCIPAL +############################################################################## +def display_current_situation_interface(lang_code, nlp_models, t): + """ + TAB: + - Expander con radio para tipo de texto + Contenedor-1 con expanders: + - Expander "Métricas de la línea base" + - Expander "Métricas de la iteración" + Contenedor-2 (2 columnas): + - Col1: Texto base + - Col2: Texto iteración + Al final, Recomendaciones en un expander (una sola “fila”). + """ + + # --- Inicializar session_state --- + if 'base_text' not in st.session_state: + st.session_state.base_text = "" + if 'iter_text' not in st.session_state: + st.session_state.iter_text = "" + if 'base_metrics' not in st.session_state: + st.session_state.base_metrics = {} + if 'iter_metrics' not in st.session_state: + st.session_state.iter_metrics = {} + if 'show_base' not in st.session_state: + st.session_state.show_base = False + if 'show_iter' not in st.session_state: + st.session_state.show_iter = False + + # Creamos un tab + tabs = st.tabs(["Análisis de Texto"]) + with tabs[0]: + # [1] Expander con radio para seleccionar tipo de texto + with st.expander("Selecciona el tipo de texto", expanded=True): + text_type = st.radio( + "¿Qué tipo de texto quieres analizar?", + options=list(TEXT_TYPES.keys()), + format_func=lambda x: TEXT_TYPES[x]['name'], + index=0 + ) + st.session_state.current_text_type = text_type + + st.markdown("---") + + # --------------------------------------------------------------------- + # CONTENEDOR-1: Expanders para métricas base e iteración + # --------------------------------------------------------------------- + with st.container(): + # --- Expander para la línea base --- + with st.expander("Métricas de la línea base", expanded=False): + if st.session_state.show_base and st.session_state.base_metrics: + # Mostramos los valores reales + display_metrics_in_one_row(st.session_state.base_metrics, text_type) + else: + # Mostramos la maqueta vacía + display_empty_metrics_row() + + # --- Expander para la iteración --- + with st.expander("Métricas de la iteración", expanded=False): + if st.session_state.show_iter and st.session_state.iter_metrics: + display_metrics_in_one_row(st.session_state.iter_metrics, text_type) + else: + display_empty_metrics_row() + + st.markdown("---") + + # --------------------------------------------------------------------- + # CONTENEDOR-2: 2 columnas (texto base | texto iteración) + # --------------------------------------------------------------------- + with st.container(): + col_left, col_right = st.columns(2) + + # Columna izquierda: Texto base + with col_left: + st.markdown("**Texto base**") + text_base = st.text_area( + label="", + value=st.session_state.base_text, + key="text_base_area", + placeholder="Pega aquí tu texto base", + ) + if st.button("Analizar Base"): + with st.spinner("Analizando texto base..."): + doc = nlp_models[lang_code](text_base) + metrics = analyze_text_dimensions(doc) + + st.session_state.base_text = text_base + st.session_state.base_metrics = metrics + st.session_state.show_base = True + # Al analizar base, reiniciamos la iteración + st.session_state.show_iter = False + + # Columna derecha: Texto iteración + with col_right: + st.markdown("**Texto de iteración**") + text_iter = st.text_area( + label="", + value=st.session_state.iter_text, + key="text_iter_area", + placeholder="Edita y mejora tu texto...", + disabled=not st.session_state.show_base + ) + if st.button("Analizar Iteración", disabled=not st.session_state.show_base): + with st.spinner("Analizando iteración..."): + doc = nlp_models[lang_code](text_iter) + metrics = analyze_text_dimensions(doc) + + st.session_state.iter_text = text_iter + st.session_state.iter_metrics = metrics + st.session_state.show_iter = True + + # --------------------------------------------------------------------- + # Recomendaciones al final en un expander (una sola “fila”) + # --------------------------------------------------------------------- + if st.session_state.show_iter: + with st.expander("Recomendaciones", expanded=False): + reco_list = [] + for dimension, values in st.session_state.iter_metrics.items(): + score = values['normalized_score'] + target = TEXT_TYPES[text_type]['thresholds'][dimension]['target'] + if score < target: + # Aquí, en lugar de get_dimension_suggestions, unificamos con: + suggestions = suggest_improvement_tools_list(dimension) + reco_list.extend(suggestions) + + if reco_list: + # Todas en una sola línea + st.write(" | ".join(reco_list)) + else: + st.info("¡No hay recomendaciones! Todas las métricas superan la meta.") + + + + + + + +#Funciones de visualización ################################## +############################################################ +# Funciones de visualización para las métricas +############################################################ + +def display_metrics_in_one_row(metrics, text_type): + """ + Muestra las cuatro dimensiones (Vocabulario, Estructura, Cohesión, Claridad) + en una sola línea, usando 4 columnas con ancho uniforme. + """ + thresholds = TEXT_TYPES[text_type]['thresholds'] + dimensions = ["vocabulary", "structure", "cohesion", "clarity"] + + col1, col2, col3, col4 = st.columns([1,1,1,1]) + cols = [col1, col2, col3, col4] + + for dim, col in zip(dimensions, cols): + score = metrics[dim]['normalized_score'] + target = thresholds[dim]['target'] + min_val = thresholds[dim]['min'] + + if score < min_val: + status = "⚠️ Por mejorar" + color = "inverse" + elif score < target: + status = "📈 Aceptable" + color = "off" + else: + status = "✅ Óptimo" + color = "normal" + + with col: + col.metric( + label=dim.capitalize(), + value=f"{score:.2f}", + delta=f"{status} (Meta: {target:.2f})", + delta_color=color, + border=True + ) + + +# ------------------------------------------------------------------------- +# Función que muestra una fila de 4 columnas “vacías” +# ------------------------------------------------------------------------- +def display_empty_metrics_row(): + """ + Muestra una fila de 4 columnas vacías (Vocabulario, Estructura, Cohesión, Claridad). + Cada columna se dibuja con st.metric en blanco (“-”). + """ + empty_cols = st.columns([1,1,1,1]) + labels = ["Vocabulario", "Estructura", "Cohesión", "Claridad"] + + for col, lbl in zip(empty_cols, labels): + with col: + col.metric( + label=lbl, + value="-", + delta="", + border=True + ) + + + +#################################################################### + +def display_metrics_analysis(metrics, text_type=None): + """ + Muestra los resultados del análisis: métricas verticalmente y gráfico radar. + """ + try: + # Usar valor por defecto si no se especifica tipo + text_type = text_type or 'student_essay' + + # Obtener umbrales según el tipo de texto + thresholds = TEXT_TYPES[text_type]['thresholds'] + + # Crear dos columnas para las métricas y el gráfico + metrics_col, graph_col = st.columns([1, 1.5]) + + # Columna de métricas + with metrics_col: + metrics_config = [ + { + 'label': "Vocabulario", + 'key': 'vocabulary', + 'value': metrics['vocabulary']['normalized_score'], + 'help': "Riqueza y variedad del vocabulario", + 'thresholds': thresholds['vocabulary'] + }, + { + 'label': "Estructura", + 'key': 'structure', + 'value': metrics['structure']['normalized_score'], + 'help': "Organización y complejidad de oraciones", + 'thresholds': thresholds['structure'] + }, + { + 'label': "Cohesión", + 'key': 'cohesion', + 'value': metrics['cohesion']['normalized_score'], + 'help': "Conexión y fluidez entre ideas", + 'thresholds': thresholds['cohesion'] + }, + { + 'label': "Claridad", + 'key': 'clarity', + 'value': metrics['clarity']['normalized_score'], + 'help': "Facilidad de comprensión del texto", + 'thresholds': thresholds['clarity'] + } + ] + + # Mostrar métricas + for metric in metrics_config: + value = metric['value'] + if value < metric['thresholds']['min']: + status = "⚠️ Por mejorar" + color = "inverse" + elif value < metric['thresholds']['target']: + status = "📈 Aceptable" + color = "off" + else: + status = "✅ Óptimo" + color = "normal" + + st.metric( + metric['label'], + f"{value:.2f}", + f"{status} (Meta: {metric['thresholds']['target']:.2f})", + delta_color=color, + help=metric['help'] + ) + st.markdown("
", unsafe_allow_html=True) + + except Exception as e: + logger.error(f"Error mostrando resultados: {str(e)}") + st.error("Error al mostrar los resultados") + +def display_comparison_results(baseline_metrics, current_metrics): + """Muestra comparación entre línea base y métricas actuales""" + + # Crear columnas para métricas y gráfico + metrics_col, graph_col = st.columns([1, 1.5]) + + with metrics_col: + for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']: + baseline = baseline_metrics[dimension]['normalized_score'] + current = current_metrics[dimension]['normalized_score'] + delta = current - baseline + + st.metric( + dimension.title(), + f"{current:.2f}", + f"{delta:+.2f}", + delta_color="normal" if delta >= 0 else "inverse" + ) + + # Sugerir herramientas de mejora + if delta < 0: + suggest_improvement_tools(dimension) + + with graph_col: + display_radar_chart_comparison( + baseline_metrics, + current_metrics + ) + +def display_metrics_and_suggestions(metrics, text_type, title, show_suggestions=False): + """ + Muestra métricas y opcionalmente sugerencias de mejora. + Args: + metrics: Diccionario con las métricas analizadas + text_type: Tipo de texto seleccionado + title: Título para las métricas ("Base" o "Iteración") + show_suggestions: Booleano para mostrar sugerencias + """ + try: + thresholds = TEXT_TYPES[text_type]['thresholds'] + + st.markdown(f"### Métricas {title}") + + for dimension, values in metrics.items(): + score = values['normalized_score'] + target = thresholds[dimension]['target'] + min_val = thresholds[dimension]['min'] + + # Determinar estado y color + if score < min_val: + status = "⚠️ Por mejorar" + color = "inverse" + elif score < target: + status = "📈 Aceptable" + color = "off" + else: + status = "✅ Óptimo" + color = "normal" + + # Mostrar métrica + st.metric( + dimension.title(), + f"{score:.2f}", + f"{status} (Meta: {target:.2f})", + delta_color=color, + help=f"Meta: {target:.2f}, Mínimo: {min_val:.2f}" + ) + + # Mostrar sugerencias si es necesario + if show_suggestions and score < target: + suggest_improvement_tools(dimension) + + # Agregar espacio entre métricas + st.markdown("
", unsafe_allow_html=True) + + except Exception as e: + logger.error(f"Error mostrando métricas: {str(e)}") + st.error("Error al mostrar métricas") + +def display_radar_chart(metrics_config, thresholds, baseline_metrics=None): + """ + Muestra el gráfico radar con los resultados. + Args: + metrics_config: Configuración actual de métricas + thresholds: Umbrales para las métricas + baseline_metrics: Métricas de línea base (opcional) + """ + try: + # Preparar datos para el gráfico + categories = [m['label'] for m in metrics_config] + values_current = [m['value'] for m in metrics_config] + min_values = [m['thresholds']['min'] for m in metrics_config] + target_values = [m['thresholds']['target'] for m in metrics_config] + + # Crear y configurar gráfico + fig = plt.figure(figsize=(8, 8)) + ax = fig.add_subplot(111, projection='polar') + + # Configurar radar + angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] + angles += angles[:1] + values_current += values_current[:1] + min_values += min_values[:1] + target_values += target_values[:1] + + # Configurar ejes + ax.set_xticks(angles[:-1]) + ax.set_xticklabels(categories, fontsize=10) + circle_ticks = np.arange(0, 1.1, 0.2) + ax.set_yticks(circle_ticks) + ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) + ax.set_ylim(0, 1) + + # Dibujar áreas de umbrales + ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, + label='Mínimo', alpha=0.5) + ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, + label='Meta', alpha=0.5) + ax.fill_between(angles, target_values, [1]*len(angles), + color='#2ecc71', alpha=0.1) + ax.fill_between(angles, [0]*len(angles), min_values, + color='#e74c3c', alpha=0.1) + + # Si hay línea base, dibujarla primero + if baseline_metrics is not None: + values_baseline = [baseline_metrics[m['key']]['normalized_score'] + for m in metrics_config] + values_baseline += values_baseline[:1] + ax.plot(angles, values_baseline, '#888888', linewidth=2, + label='Línea base', linestyle='--') + ax.fill(angles, values_baseline, '#888888', alpha=0.1) + + # Dibujar valores actuales + label = 'Actual' if baseline_metrics else 'Tu escritura' + color = '#3498db' if baseline_metrics else '#3498db' + + ax.plot(angles, values_current, color, linewidth=2, label=label) + ax.fill(angles, values_current, color, alpha=0.2) + + # Ajustar leyenda + legend_handles = [] + if baseline_metrics: + legend_handles.extend([ + plt.Line2D([], [], color='#888888', linestyle='--', + label='Línea base'), + plt.Line2D([], [], color='#3498db', label='Actual') + ]) + else: + legend_handles.extend([ + plt.Line2D([], [], color='#3498db', label='Tu escritura') + ]) + + legend_handles.extend([ + plt.Line2D([], [], color='#e74c3c', linestyle='--', label='Mínimo'), + plt.Line2D([], [], color='#2ecc71', linestyle='--', label='Meta') + ]) + + ax.legend( + handles=legend_handles, + loc='upper right', + bbox_to_anchor=(1.3, 1.1), + fontsize=10, + frameon=True, + facecolor='white', + edgecolor='none', + shadow=True + ) + + plt.tight_layout() + st.pyplot(fig) + plt.close() + + except Exception as e: + logger.error(f"Error mostrando gráfico radar: {str(e)}") + st.error("Error al mostrar el gráfico") + +#Funciones auxiliares ################################## + + +############################################################ +# Unificamos la lógica de sugerencias en una función +############################################################ +def suggest_improvement_tools_list(dimension): + """ + Retorna en forma de lista las herramientas sugeridas + basadas en 'ANALYSIS_DIMENSION_MAPPING'. + """ + suggestions = [] + for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items(): + # Verificamos si la dimensión está en primary o secondary + if dimension in mapping['primary'] or dimension in mapping['secondary']: + suggestions.extend(mapping['tools']) + # Si no hay nada, al menos retornamos un placeholder + return suggestions if suggestions else ["Sin sugerencias específicas."] + + +def prepare_metrics_config(metrics, text_type='student_essay'): + """ + Prepara la configuración de métricas en el mismo formato que display_results. + Args: + metrics: Diccionario con las métricas analizadas + text_type: Tipo de texto para los umbrales + Returns: + list: Lista de configuraciones de métricas + """ + # Obtener umbrales según el tipo de texto + thresholds = TEXT_TYPES[text_type]['thresholds'] + + # Usar la misma estructura que en display_results + return [ + { + 'label': "Vocabulario", + 'key': 'vocabulary', + 'value': metrics['vocabulary']['normalized_score'], + 'help': "Riqueza y variedad del vocabulario", + 'thresholds': thresholds['vocabulary'] + }, + { + 'label': "Estructura", + 'key': 'structure', + 'value': metrics['structure']['normalized_score'], + 'help': "Organización y complejidad de oraciones", + 'thresholds': thresholds['structure'] + }, + { + 'label': "Cohesión", + 'key': 'cohesion', + 'value': metrics['cohesion']['normalized_score'], + 'help': "Conexión y fluidez entre ideas", + 'thresholds': thresholds['cohesion'] + }, + { + 'label': "Claridad", + 'key': 'clarity', + 'value': metrics['clarity']['normalized_score'], + 'help': "Facilidad de comprensión del texto", + 'thresholds': thresholds['clarity'] + } + ] + diff --git a/src/modules/studentact/current_situation_interface-v1.py b/src/modules/studentact/current_situation_interface-v1.py new file mode 100644 index 0000000000000000000000000000000000000000..6119f6bf146976da43fe9311b5fc54551173341a --- /dev/null +++ b/src/modules/studentact/current_situation_interface-v1.py @@ -0,0 +1,272 @@ +# modules/studentact/current_situation_interface.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key +from .current_situation_analysis import ( + analyze_text_dimensions, + analyze_clarity, + analyze_reference_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap, +) + +logger = logging.getLogger(__name__) +#################################### +def display_current_situation_interface(lang_code, nlp_models, t): + """ + Interfaz simplificada para el análisis inicial, enfocada en recomendaciones directas. + """ + # Inicializar estados si no existen + if 'text_input' not in st.session_state: + st.session_state.text_input = "" + if 'show_results' not in st.session_state: + st.session_state.show_results = False + if 'current_doc' not in st.session_state: + st.session_state.current_doc = None + if 'current_metrics' not in st.session_state: + st.session_state.current_metrics = None + + st.markdown("## Análisis Inicial de Escritura") + + # Container principal con dos columnas + with st.container(): + input_col, results_col = st.columns([1,2]) + + with input_col: + st.markdown("### Ingresa tu texto") + + # Función para manejar cambios en el texto + def on_text_change(): + st.session_state.text_input = st.session_state.text_area + st.session_state.show_results = False # Resetear resultados cuando el texto cambia + + # Text area con manejo de estado + text_input = st.text_area( + t.get('input_prompt', "Escribe o pega tu texto aquí:"), + height=400, + key="text_area", + value=st.session_state.text_input, + on_change=on_text_change, + help="Este texto será analizado para darte recomendaciones personalizadas" + ) + + # Botón de análisis + if st.button( + t.get('analyze_button', "Analizar mi escritura"), + type="primary", + disabled=not text_input.strip(), + use_container_width=True, + ): + try: + with st.spinner(t.get('processing', "Analizando...")): + # Procesar texto y obtener métricas + doc = nlp_models[lang_code](text_input) + metrics = analyze_text_dimensions(doc) + + # Actualizar estado con nuevos resultados + st.session_state.current_doc = doc + st.session_state.current_metrics = metrics + st.session_state.show_results = True + + # Mantener el texto en el estado + st.session_state.text_input = text_input + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(t.get('analysis_error', "Error al analizar el texto")) + + # Mostrar resultados en la columna derecha + with results_col: + if st.session_state.show_results and st.session_state.current_metrics is not None: + display_recommendations(st.session_state.current_metrics, t) + + # Opción para ver detalles + with st.expander("🔍 Ver análisis detallado", expanded=False): + display_current_situation_visual( + st.session_state.current_doc, + st.session_state.current_metrics + ) + +def display_current_situation_visual(doc, metrics): + """ + Muestra visualizaciones detalladas del análisis. + """ + try: + st.markdown("### 📊 Visualizaciones Detalladas") + + # 1. Visualización de vocabulario + with st.expander("Análisis de Vocabulario", expanded=True): + vocab_graph = create_vocabulary_network(doc) + if vocab_graph: + st.pyplot(vocab_graph) + plt.close(vocab_graph) + + # 2. Visualización de estructura + with st.expander("Análisis de Estructura", expanded=True): + syntax_graph = create_syntax_complexity_graph(doc) + if syntax_graph: + st.pyplot(syntax_graph) + plt.close(syntax_graph) + + # 3. Visualización de cohesión + with st.expander("Análisis de Cohesión", expanded=True): + cohesion_graph = create_cohesion_heatmap(doc) + if cohesion_graph: + st.pyplot(cohesion_graph) + plt.close(cohesion_graph) + + except Exception as e: + logger.error(f"Error en visualización: {str(e)}") + st.error("Error al generar las visualizaciones") + + +#################################### +def display_recommendations(metrics, t): + """ + Muestra recomendaciones basadas en las métricas del texto. + """ + # 1. Resumen Visual con Explicación + st.markdown("### 📊 Resumen de tu Análisis") + + # Explicación del sistema de medición + st.markdown(""" + **¿Cómo interpretar los resultados?** + + Cada métrica se mide en una escala de 0.0 a 1.0, donde: + - 0.0 - 0.4: Necesita atención prioritaria + - 0.4 - 0.6: En desarrollo + - 0.6 - 0.8: Buen nivel + - 0.8 - 1.0: Nivel avanzado + """) + + # Métricas con explicaciones detalladas + col1, col2, col3, col4 = st.columns(4) + + with col1: + st.metric( + "Vocabulario", + f"{metrics['vocabulary']['normalized_score']:.2f}", + help="Mide la variedad y riqueza de tu vocabulario. Un valor alto indica un uso diverso de palabras sin repeticiones excesivas." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Vocabulario** + - Evalúa la diversidad léxica + - Considera palabras únicas vs. totales + - Detecta repeticiones innecesarias + - Valor óptimo: > 0.7 + """) + + with col2: + st.metric( + "Estructura", + f"{metrics['structure']['normalized_score']:.2f}", + help="Evalúa la complejidad y variedad de las estructuras sintácticas en tus oraciones." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Estructura** + - Analiza la complejidad sintáctica + - Mide variación en construcciones + - Evalúa longitud de oraciones + - Valor óptimo: > 0.6 + """) + + with col3: + st.metric( + "Cohesión", + f"{metrics['cohesion']['normalized_score']:.2f}", + help="Indica qué tan bien conectadas están tus ideas y párrafos entre sí." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Cohesión** + - Mide conexiones entre ideas + - Evalúa uso de conectores + - Analiza progresión temática + - Valor óptimo: > 0.65 + """) + + with col4: + st.metric( + "Claridad", + f"{metrics['clarity']['normalized_score']:.2f}", + help="Evalúa la facilidad de comprensión general de tu texto." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Claridad** + - Evalúa comprensibilidad + - Considera estructura lógica + - Mide precisión expresiva + - Valor óptimo: > 0.7 + """) + + st.markdown("---") + + # 2. Recomendaciones basadas en puntuaciones + st.markdown("### 💡 Recomendaciones Personalizadas") + + # Recomendaciones morfosintácticas + if metrics['structure']['normalized_score'] < 0.6: + st.warning(""" + #### 📝 Análisis Morfosintáctico Recomendado + + **Tu nivel actual sugiere que sería beneficioso:** + 1. Realizar el análisis morfosintáctico de 3 párrafos diferentes + 2. Practicar la combinación de oraciones simples en compuestas + 3. Identificar y clasificar tipos de oraciones en textos académicos + 4. Ejercitar la variación sintáctica + + *Hacer clic en "Comenzar ejercicios" para acceder al módulo morfosintáctico* + """) + + # Recomendaciones semánticas + if metrics['vocabulary']['normalized_score'] < 0.7: + st.warning(""" + #### 📚 Análisis Semántico Recomendado + + **Para mejorar tu vocabulario y expresión:** + A. Realiza el análisis semántico de un texto académico + B. Identifica y agrupa campos semánticos relacionados + C. Practica la sustitución léxica en tus párrafos + D. Construye redes de conceptos sobre tu tema + E. Analiza las relaciones entre ideas principales + + *Hacer clic en "Comenzar ejercicios" para acceder al módulo semántico* + """) + + # Recomendaciones de cohesión + if metrics['cohesion']['normalized_score'] < 0.65: + st.warning(""" + #### 🔄 Análisis del Discurso Recomendado + + **Para mejorar la conexión entre ideas:** + 1. Realizar el análisis del discurso de un texto modelo + 2. Practicar el uso de diferentes conectores textuales + 3. Identificar cadenas de referencia en textos académicos + 4. Ejercitar la progresión temática en tus escritos + + *Hacer clic en "Comenzar ejercicios" para acceder al módulo de análisis del discurso* + """) + + # Botón de acción + st.markdown("---") + col1, col2, col3 = st.columns([1,2,1]) + with col2: + st.button( + "🎯 Comenzar ejercicios recomendados", + type="primary", + use_container_width=True, + key="start_exercises" + ) \ No newline at end of file diff --git a/src/modules/studentact/current_situation_interface-v2.py b/src/modules/studentact/current_situation_interface-v2.py new file mode 100644 index 0000000000000000000000000000000000000000..64316c76a1bc41b01bdfd35d76e7f47117aefa24 --- /dev/null +++ b/src/modules/studentact/current_situation_interface-v2.py @@ -0,0 +1,291 @@ +# modules/studentact/current_situation_interface.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key + +from ..database.current_situation_mongo_db import store_current_situation_result + +from .current_situation_analysis import ( + analyze_text_dimensions, + analyze_clarity, + analyze_reference_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap, +) + +logger = logging.getLogger(__name__) +#################################### + +def display_current_situation_interface(lang_code, nlp_models, t): + """ + Interfaz simplificada para el análisis inicial, enfocada en recomendaciones directas. + """ + try: + # Inicializar estados si no existen + if 'text_input' not in st.session_state: + st.session_state.text_input = "" + if 'show_results' not in st.session_state: + st.session_state.show_results = False + if 'current_doc' not in st.session_state: + st.session_state.current_doc = None + if 'current_metrics' not in st.session_state: + st.session_state.current_metrics = None + + st.markdown("## Análisis Inicial de Escritura") + + # Container principal con dos columnas + with st.container(): + input_col, results_col = st.columns([1,2]) + + with input_col: + st.markdown("### Ingresa tu texto") + + # Función para manejar cambios en el texto + def on_text_change(): + st.session_state.text_input = st.session_state.text_area + st.session_state.show_results = False # Resetear resultados cuando el texto cambia + + # Text area con manejo de estado + text_input = st.text_area( + t.get('input_prompt', "Escribe o pega tu texto aquí:"), + height=400, + key="text_area", + value=st.session_state.text_input, + on_change=on_text_change, + help="Este texto será analizado para darte recomendaciones personalizadas" + ) + + if st.button( + t.get('analyze_button', "Analizar mi escritura"), + type="primary", + disabled=not text_input.strip(), + use_container_width=True, + ): + try: + with st.spinner(t.get('processing', "Analizando...")): + # Procesar texto y obtener métricas + doc = nlp_models[lang_code](text_input) + metrics = analyze_text_dimensions(doc) + + # Guardar en MongoDB + storage_success = store_current_situation_result( + username=st.session_state.username, + text=text_input, + metrics=metrics, + feedback=None # Por ahora sin feedback + ) + + if not storage_success: + logger.warning("No se pudo guardar el análisis en la base de datos") + + # Actualizar estado + st.session_state.current_doc = doc + st.session_state.current_metrics = metrics + st.session_state.show_results = True + st.session_state.text_input = text_input + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(t.get('analysis_error', "Error al analizar el texto")) + + # Mostrar resultados en la columna derecha + with results_col: + if st.session_state.show_results and st.session_state.current_metrics is not None: + display_recommendations(st.session_state.current_metrics, t) + + # Opción para ver detalles + with st.expander("🔍 Ver análisis detallado", expanded=False): + display_current_situation_visual( + st.session_state.current_doc, + st.session_state.current_metrics + ) + + except Exception as e: + logger.error(f"Error en interfaz: {str(e)}") + st.error("Ocurrió un error. Por favor, intente de nuevo.") + + + +def display_current_situation_visual(doc, metrics): + """ + Muestra visualizaciones detalladas del análisis. + """ + try: + st.markdown("### 📊 Visualizaciones Detalladas") + + # 1. Visualización de vocabulario + with st.expander("Análisis de Vocabulario", expanded=True): + vocab_graph = create_vocabulary_network(doc) + if vocab_graph: + st.pyplot(vocab_graph) + plt.close(vocab_graph) + + # 2. Visualización de estructura + with st.expander("Análisis de Estructura", expanded=True): + syntax_graph = create_syntax_complexity_graph(doc) + if syntax_graph: + st.pyplot(syntax_graph) + plt.close(syntax_graph) + + # 3. Visualización de cohesión + with st.expander("Análisis de Cohesión", expanded=True): + cohesion_graph = create_cohesion_heatmap(doc) + if cohesion_graph: + st.pyplot(cohesion_graph) + plt.close(cohesion_graph) + + except Exception as e: + logger.error(f"Error en visualización: {str(e)}") + st.error("Error al generar las visualizaciones") + + +#################################### +def display_recommendations(metrics, t): + """ + Muestra recomendaciones basadas en las métricas del texto. + """ + # 1. Resumen Visual con Explicación + st.markdown("### 📊 Resumen de tu Análisis") + + # Explicación del sistema de medición + st.markdown(""" + **¿Cómo interpretar los resultados?** + + Cada métrica se mide en una escala de 0.0 a 1.0, donde: + - 0.0 - 0.4: Necesita atención prioritaria + - 0.4 - 0.6: En desarrollo + - 0.6 - 0.8: Buen nivel + - 0.8 - 1.0: Nivel avanzado + """) + + # Métricas con explicaciones detalladas + col1, col2, col3, col4 = st.columns(4) + + with col1: + st.metric( + "Vocabulario", + f"{metrics['vocabulary']['normalized_score']:.2f}", + help="Mide la variedad y riqueza de tu vocabulario. Un valor alto indica un uso diverso de palabras sin repeticiones excesivas." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Vocabulario** + - Evalúa la diversidad léxica + - Considera palabras únicas vs. totales + - Detecta repeticiones innecesarias + - Valor óptimo: > 0.7 + """) + + with col2: + st.metric( + "Estructura", + f"{metrics['structure']['normalized_score']:.2f}", + help="Evalúa la complejidad y variedad de las estructuras sintácticas en tus oraciones." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Estructura** + - Analiza la complejidad sintáctica + - Mide variación en construcciones + - Evalúa longitud de oraciones + - Valor óptimo: > 0.6 + """) + + with col3: + st.metric( + "Cohesión", + f"{metrics['cohesion']['normalized_score']:.2f}", + help="Indica qué tan bien conectadas están tus ideas y párrafos entre sí." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Cohesión** + - Mide conexiones entre ideas + - Evalúa uso de conectores + - Analiza progresión temática + - Valor óptimo: > 0.65 + """) + + with col4: + st.metric( + "Claridad", + f"{metrics['clarity']['normalized_score']:.2f}", + help="Evalúa la facilidad de comprensión general de tu texto." + ) + with st.expander("ℹ️ Detalles"): + st.write(""" + **Claridad** + - Evalúa comprensibilidad + - Considera estructura lógica + - Mide precisión expresiva + - Valor óptimo: > 0.7 + """) + + st.markdown("---") + + # 2. Recomendaciones basadas en puntuaciones + st.markdown("### 💡 Recomendaciones Personalizadas") + + # Recomendaciones morfosintácticas + if metrics['structure']['normalized_score'] < 0.6: + st.warning(""" + #### 📝 Análisis Morfosintáctico Recomendado + + **Tu nivel actual sugiere que sería beneficioso:** + 1. Realizar el análisis morfosintáctico de 3 párrafos diferentes + 2. Practicar la combinación de oraciones simples en compuestas + 3. Identificar y clasificar tipos de oraciones en textos académicos + 4. Ejercitar la variación sintáctica + + *Hacer clic en "Comenzar ejercicios" para acceder al módulo morfosintáctico* + """) + + # Recomendaciones semánticas + if metrics['vocabulary']['normalized_score'] < 0.7: + st.warning(""" + #### 📚 Análisis Semántico Recomendado + + **Para mejorar tu vocabulario y expresión:** + A. Realiza el análisis semántico de un texto académico + B. Identifica y agrupa campos semánticos relacionados + C. Practica la sustitución léxica en tus párrafos + D. Construye redes de conceptos sobre tu tema + E. Analiza las relaciones entre ideas principales + + *Hacer clic en "Comenzar ejercicios" para acceder al módulo semántico* + """) + + # Recomendaciones de cohesión + if metrics['cohesion']['normalized_score'] < 0.65: + st.warning(""" + #### 🔄 Análisis del Discurso Recomendado + + **Para mejorar la conexión entre ideas:** + 1. Realizar el análisis del discurso de un texto modelo + 2. Practicar el uso de diferentes conectores textuales + 3. Identificar cadenas de referencia en textos académicos + 4. Ejercitar la progresión temática en tus escritos + + *Hacer clic en "Comenzar ejercicios" para acceder al módulo de análisis del discurso* + """) + + # Botón de acción + st.markdown("---") + col1, col2, col3 = st.columns([1,2,1]) + with col2: + st.button( + "🎯 Comenzar ejercicios recomendados", + type="primary", + use_container_width=True, + key="start_exercises" + ) diff --git a/src/modules/studentact/current_situation_interface-v3.py b/src/modules/studentact/current_situation_interface-v3.py new file mode 100644 index 0000000000000000000000000000000000000000..599801971ea94f92e107469154a201bf248825cd --- /dev/null +++ b/src/modules/studentact/current_situation_interface-v3.py @@ -0,0 +1,190 @@ +# modules/studentact/current_situation_interface.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key +import matplotlib.pyplot as plt +import numpy as np +from ..database.current_situation_mongo_db import store_current_situation_result + +from .current_situation_analysis import ( + analyze_text_dimensions, + analyze_clarity, + analyze_reference_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap, +) + +# Configuración del estilo de matplotlib para el gráfico de radar +plt.rcParams['font.family'] = 'sans-serif' +plt.rcParams['axes.grid'] = True +plt.rcParams['axes.spines.top'] = False +plt.rcParams['axes.spines.right'] = False + +logger = logging.getLogger(__name__) +#################################### + +def display_current_situation_interface(lang_code, nlp_models, t): + """ + Interfaz simplificada con gráfico de radar para visualizar métricas. + """ + try: + # Inicializar estados si no existen + if 'text_input' not in st.session_state: + st.session_state.text_input = "" + if 'show_results' not in st.session_state: + st.session_state.show_results = False + if 'current_doc' not in st.session_state: + st.session_state.current_doc = None + if 'current_metrics' not in st.session_state: + st.session_state.current_metrics = None + + st.markdown("## Análisis Inicial de Escritura") + + # Container principal con dos columnas + with st.container(): + input_col, results_col = st.columns([1,2]) + + with input_col: + #st.markdown("### Ingresa tu texto") + + # Función para manejar cambios en el texto + def on_text_change(): + st.session_state.text_input = st.session_state.text_area + st.session_state.show_results = False + + # Text area con manejo de estado + text_input = st.text_area( + t.get('input_prompt', "Escribe o pega tu texto aquí:"), + height=400, + key="text_area", + value=st.session_state.text_input, + on_change=on_text_change, + help="Este texto será analizado para darte recomendaciones personalizadas" + ) + + if st.button( + t.get('analyze_button', "Analizar mi escritura"), + type="primary", + disabled=not text_input.strip(), + use_container_width=True, + ): + try: + with st.spinner(t.get('processing', "Analizando...")): + doc = nlp_models[lang_code](text_input) + metrics = analyze_text_dimensions(doc) + + # Guardar en MongoDB + storage_success = store_current_situation_result( + username=st.session_state.username, + text=text_input, + metrics=metrics, + feedback=None + ) + + if not storage_success: + logger.warning("No se pudo guardar el análisis en la base de datos") + + st.session_state.current_doc = doc + st.session_state.current_metrics = metrics + st.session_state.show_results = True + st.session_state.text_input = text_input + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(t.get('analysis_error', "Error al analizar el texto")) + + # Mostrar resultados en la columna derecha + with results_col: + if st.session_state.show_results and st.session_state.current_metrics is not None: + display_radar_chart(st.session_state.current_metrics) + + except Exception as e: + logger.error(f"Error en interfaz: {str(e)}") + st.error("Ocurrió un error. Por favor, intente de nuevo.") + +def display_radar_chart(metrics): + """ + Muestra un gráfico de radar con las métricas del usuario y el patrón ideal. + """ + try: + # Container con proporción reducida + with st.container(): + # Métricas en la parte superior + col1, col2, col3, col4 = st.columns(4) + with col1: + st.metric("Vocabulario", f"{metrics['vocabulary']['normalized_score']:.2f}", "1.00") + with col2: + st.metric("Estructura", f"{metrics['structure']['normalized_score']:.2f}", "1.00") + with col3: + st.metric("Cohesión", f"{metrics['cohesion']['normalized_score']:.2f}", "1.00") + with col4: + st.metric("Claridad", f"{metrics['clarity']['normalized_score']:.2f}", "1.00") + + # Contenedor para el gráfico con ancho controlado + _, graph_col, _ = st.columns([1,2,1]) + + with graph_col: + # Preparar datos + categories = ['Vocabulario', 'Estructura', 'Cohesión', 'Claridad'] + values_user = [ + metrics['vocabulary']['normalized_score'], + metrics['structure']['normalized_score'], + metrics['cohesion']['normalized_score'], + metrics['clarity']['normalized_score'] + ] + values_pattern = [1.0, 1.0, 1.0, 1.0] # Patrón ideal + + # Crear figura más compacta + fig = plt.figure(figsize=(6, 6)) + ax = fig.add_subplot(111, projection='polar') + + # Número de variables + num_vars = len(categories) + + # Calcular ángulos + angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)] + angles += angles[:1] + + # Extender valores para cerrar polígonos + values_user += values_user[:1] + values_pattern += values_pattern[:1] + + # Configurar ejes y etiquetas + ax.set_xticks(angles[:-1]) + ax.set_xticklabels(categories, fontsize=8) + + # Círculos concéntricos y etiquetas + circle_ticks = np.arange(0, 1.1, 0.2) # Reducido a 5 niveles + ax.set_yticks(circle_ticks) + ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) + ax.set_ylim(0, 1) + + # Dibujar patrón ideal + ax.plot(angles, values_pattern, 'g--', linewidth=1, label='Patrón', alpha=0.5) + ax.fill(angles, values_pattern, 'g', alpha=0.1) + + # Dibujar valores del usuario + ax.plot(angles, values_user, 'b-', linewidth=2, label='Tu escritura') + ax.fill(angles, values_user, 'b', alpha=0.2) + + # Leyenda + ax.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1), fontsize=8) + + # Ajustes finales + plt.tight_layout() + st.pyplot(fig) + plt.close() + + except Exception as e: + logger.error(f"Error generando gráfico de radar: {str(e)}") + st.error("Error al generar la visualización") \ No newline at end of file diff --git a/src/modules/studentact/current_situation_interface.py b/src/modules/studentact/current_situation_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..27d522bea7a017121700e993e9155d787f3e3aea --- /dev/null +++ b/src/modules/studentact/current_situation_interface.py @@ -0,0 +1,448 @@ +# modules/studentact/current_situation_interface.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key +import matplotlib.pyplot as plt +import numpy as np +from ..database.current_situation_mongo_db import store_current_situation_result + +# Importaciones locales +from translations import get_translations + +# Importamos la función de recomendaciones personalizadas si existe +try: + from .claude_recommendations import display_personalized_recommendations +except ImportError: + # Si no existe el módulo, definimos una función placeholder + def display_personalized_recommendations(text, metrics, text_type, lang_code, t): + # Obtener el mensaje de advertencia traducido si está disponible + warning = t.get('module_not_available', "Módulo de recomendaciones personalizadas no disponible. Por favor, contacte al administrador.") + st.warning(warning) + +from .current_situation_analysis import ( + analyze_text_dimensions, + analyze_clarity, + analyze_vocabulary_diversity, + analyze_cohesion, + analyze_structure, + get_dependency_depths, + normalize_score, + generate_sentence_graphs, + generate_word_connections, + generate_connection_paths, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap +) + +# Configuración del estilo de matplotlib para el gráfico de radar +plt.rcParams['font.family'] = 'sans-serif' +plt.rcParams['axes.grid'] = True +plt.rcParams['axes.spines.top'] = False +plt.rcParams['axes.spines.right'] = False + +logger = logging.getLogger(__name__) + +# Definición de tipos de texto con umbrales +TEXT_TYPES = { + 'academic_article': { + # Los nombres se obtendrán de las traducciones + 'thresholds': { + 'vocabulary': {'min': 0.70, 'target': 0.85}, + 'structure': {'min': 0.75, 'target': 0.90}, + 'cohesion': {'min': 0.65, 'target': 0.80}, + 'clarity': {'min': 0.70, 'target': 0.85} + } + }, + 'student_essay': { + 'thresholds': { + 'vocabulary': {'min': 0.60, 'target': 0.75}, + 'structure': {'min': 0.65, 'target': 0.80}, + 'cohesion': {'min': 0.55, 'target': 0.70}, + 'clarity': {'min': 0.60, 'target': 0.75} + } + }, + 'general_communication': { + 'thresholds': { + 'vocabulary': {'min': 0.50, 'target': 0.65}, + 'structure': {'min': 0.55, 'target': 0.70}, + 'cohesion': {'min': 0.45, 'target': 0.60}, + 'clarity': {'min': 0.50, 'target': 0.65} + } + } +} + +#################################################### +#################################################### +def display_current_situation_interface(lang_code, nlp_models, t): + """ + Interfaz simplificada con gráfico de radar para visualizar métricas. + """ + # Agregar logs para depuración + logger.info(f"Idioma: {lang_code}") + logger.info(f"Claves en t: {list(t.keys())}") + + # Inicializar estados si no existen + if 'text_input' not in st.session_state: + st.session_state.text_input = "" + if 'text_area' not in st.session_state: + st.session_state.text_area = "" + if 'show_results' not in st.session_state: + st.session_state.show_results = False + if 'current_doc' not in st.session_state: + st.session_state.current_doc = None + if 'current_metrics' not in st.session_state: + st.session_state.current_metrics = None + if 'current_recommendations' not in st.session_state: + st.session_state.current_recommendations = None + + try: + # Container principal con dos columnas + with st.container(): + input_col, results_col = st.columns([1,2]) + +############################################################################################### + # CSS personalizado para que el formulario ocupe todo el alto disponible + st.markdown(""" + + """, unsafe_allow_html=True) + +############################################################################################### + with input_col: + with st.form(key=f"text_input_form_{lang_code}"): + text_input = st.text_area( + t.get('input_prompt', "Escribe o pega tu texto aquí:"), + height=800, + key=f"text_area_{lang_code}", + value=st.session_state.text_input, + help=t.get('help', "Este texto será analizado para darte recomendaciones personalizadas") + ) + + submit_button = st.form_submit_button( + t.get('analyze_button', "Analizar mi escritura"), + type="primary", + use_container_width=True + ) + + if submit_button: + if text_input.strip(): + st.session_state.text_input = text_input + +####################################################################### + # Código para análisis... + try: + with st.spinner(t.get('processing', "Analizando...")): # Usando t.get directamente + doc = nlp_models[lang_code](text_input) + metrics = analyze_text_dimensions(doc) + + storage_success = store_current_situation_result( + username=st.session_state.username, + text=text_input, + metrics=metrics, + feedback=None + ) + + if not storage_success: + logger.warning("No se pudo guardar el análisis en la base de datos") + + st.session_state.current_doc = doc + st.session_state.current_metrics = metrics + st.session_state.show_results = True + + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error(t.get('analysis_error', "Error al analizar el texto")) # Usando t.get directamente + + # Mostrar resultados en la columna derecha + with results_col: + if st.session_state.show_results and st.session_state.current_metrics is not None: + # Primero los radio buttons para tipo de texto - usando t.get directamente + st.markdown(f"### {t.get('text_type_header', 'Tipo de texto')}") + + # Preparar opciones de tipos de texto con nombres traducidos + text_type_options = {} + for text_type_key in TEXT_TYPES.keys(): + # Fallback a nombres genéricos si no hay traducción + default_names = { + 'academic_article': 'Academic Article' if lang_code == 'en' else 'Article Académique' if lang_code == 'fr' else 'Artigo Acadêmico' if lang_code == 'pt' else 'Artículo Académico', + 'student_essay': 'Student Essay' if lang_code == 'en' else 'Devoir Universitaire' if lang_code == 'fr' else 'Trabalho Universitário' if lang_code == 'pt' else 'Trabajo Universitario', + 'general_communication': 'General Communication' if lang_code == 'en' else 'Communication Générale' if lang_code == 'fr' else 'Comunicação Geral' if lang_code == 'pt' else 'Comunicación General' + } + text_type_options[text_type_key] = default_names.get(text_type_key, text_type_key) + + text_type = st.radio( + label=t.get('text_type_header', "Tipo de texto"), # Usando t.get directamente + options=list(TEXT_TYPES.keys()), + format_func=lambda x: text_type_options.get(x, x), + horizontal=True, + key="text_type_radio", + label_visibility="collapsed", + help=t.get('text_type_help', "Selecciona el tipo de texto para ajustar los criterios de evaluación") # Usando t.get directamente + ) + + st.session_state.current_text_type = text_type + + # Crear subtabs con nombres traducidos + diagnosis_tab = "Diagnosis" if lang_code == 'en' else "Diagnostic" if lang_code == 'fr' else "Diagnóstico" if lang_code == 'pt' else "Diagnóstico" + recommendations_tab = "Recommendations" if lang_code == 'en' else "Recommandations" if lang_code == 'fr' else "Recomendações" if lang_code == 'pt' else "Recomendaciones" + + subtab1, subtab2 = st.tabs([diagnosis_tab, recommendations_tab]) + + # Mostrar resultados en el primer subtab + with subtab1: + display_diagnosis( + metrics=st.session_state.current_metrics, + text_type=text_type, + lang_code=lang_code, + t=t # Pasar t directamente, no current_situation_t + ) + + # Mostrar recomendaciones en el segundo subtab + with subtab2: + # Llamar directamente a la función de recomendaciones personalizadas + display_personalized_recommendations( + text=text_input, + metrics=st.session_state.current_metrics, + text_type=text_type, + lang_code=lang_code, + t=t + ) + + except Exception as e: + logger.error(f"Error en interfaz principal: {str(e)}") + st.error(t.get('error_interface', "Ocurrió un error al cargar la interfaz")) # Usando t.get directamente + +################################################################# +################################################################# +def display_diagnosis(metrics, text_type=None, lang_code='es', t=None): + """ + Muestra los resultados del análisis: métricas verticalmente y gráfico radar. + """ + try: + # Asegurar que tenemos traducciones + if t is None: + t = {} + + # Traducciones para títulos y etiquetas + dimension_labels = { + 'es': { + 'title': "Tipo de texto", + 'vocabulary': "Vocabulario", + 'structure': "Estructura", + 'cohesion': "Cohesión", + 'clarity': "Claridad", + 'improvement': "⚠️ Por mejorar", + 'acceptable': "📈 Aceptable", + 'optimal': "✅ Óptimo", + 'target': "Meta: {:.2f}" + }, + 'en': { + 'title': "Text Type", + 'vocabulary': "Vocabulary", + 'structure': "Structure", + 'cohesion': "Cohesion", + 'clarity': "Clarity", + 'improvement': "⚠️ Needs improvement", + 'acceptable': "📈 Acceptable", + 'optimal': "✅ Optimal", + 'target': "Target: {:.2f}" + }, + 'fr': { + 'title': "Type de texte", + 'vocabulary': "Vocabulaire", + 'structure': "Structure", + 'cohesion': "Cohésion", + 'clarity': "Clarté", + 'improvement': "⚠️ À améliorer", + 'acceptable': "📈 Acceptable", + 'optimal': "✅ Optimal", + 'target': "Objectif: {:.2f}" + }, + 'pt': { + 'title': "Tipo de texto", + 'vocabulary': "Vocabulário", + 'structure': "Estrutura", + 'cohesion': "Coesão", + 'clarity': "Clareza", + 'improvement': "⚠️ Precisa melhorar", + 'acceptable': "📈 Aceitável", + 'optimal': "✅ Ótimo", + 'target': "Meta: {:.2f}" + } + } + + # Obtener traducciones para el idioma actual, con fallback a español + labels = dimension_labels.get(lang_code, dimension_labels['es']) + + # Usar valor por defecto si no se especifica tipo + text_type = text_type or 'student_essay' + + # Obtener umbrales según el tipo de texto + thresholds = TEXT_TYPES[text_type]['thresholds'] + + # Crear dos columnas para las métricas y el gráfico + metrics_col, graph_col = st.columns([1, 1.5]) + + # Columna de métricas + with metrics_col: + metrics_config = [ + { + 'label': labels['vocabulary'], + 'key': 'vocabulary', + 'value': metrics['vocabulary']['normalized_score'], + 'help': t.get('vocabulary_help', "Riqueza y variedad del vocabulario"), + 'thresholds': thresholds['vocabulary'] + }, + { + 'label': labels['structure'], + 'key': 'structure', + 'value': metrics['structure']['normalized_score'], + 'help': t.get('structure_help', "Organización y complejidad de oraciones"), + 'thresholds': thresholds['structure'] + }, + { + 'label': labels['cohesion'], + 'key': 'cohesion', + 'value': metrics['cohesion']['normalized_score'], + 'help': t.get('cohesion_help', "Conexión y fluidez entre ideas"), + 'thresholds': thresholds['cohesion'] + }, + { + 'label': labels['clarity'], + 'key': 'clarity', + 'value': metrics['clarity']['normalized_score'], + 'help': t.get('clarity_help', "Facilidad de comprensión del texto"), + 'thresholds': thresholds['clarity'] + } + ] + + # Mostrar métricas con textos traducidos + for metric in metrics_config: + value = metric['value'] + if value < metric['thresholds']['min']: + status = labels['improvement'] + color = "inverse" + elif value < metric['thresholds']['target']: + status = labels['acceptable'] + color = "off" + else: + status = labels['optimal'] + color = "normal" + + target_text = labels['target'].format(metric['thresholds']['target']) + + st.metric( + metric['label'], + f"{value:.2f}", + f"{status} ({target_text})", + delta_color=color, + help=metric['help'] + ) + st.markdown("
", unsafe_allow_html=True) + + # Gráfico radar en la columna derecha + with graph_col: + display_radar_chart(metrics_config, thresholds, lang_code) # Pasar el parámetro lang_code + + except Exception as e: + logger.error(f"Error mostrando resultados: {str(e)}") + st.error(t.get('error_results', "Error al mostrar los resultados")) + +################################################################## +################################################################## +def display_radar_chart(metrics_config, thresholds, lang_code='es'): + """ + Muestra el gráfico radar con los resultados. + """ + try: + # Traducción de las etiquetas de leyenda según el idioma + legend_translations = { + 'es': {'min': 'Mínimo', 'target': 'Meta', 'user': 'Tu escritura'}, + 'en': {'min': 'Minimum', 'target': 'Target', 'user': 'Your writing'}, + 'fr': {'min': 'Minimum', 'target': 'Objectif', 'user': 'Votre écriture'}, + 'pt': {'min': 'Mínimo', 'target': 'Meta', 'user': 'Sua escrita'} + } + + # Usar español por defecto si el idioma no está soportado + translations = legend_translations.get(lang_code, legend_translations['es']) + + # Preparar datos para el gráfico + categories = [m['label'] for m in metrics_config] + values_user = [m['value'] for m in metrics_config] + min_values = [m['thresholds']['min'] for m in metrics_config] + target_values = [m['thresholds']['target'] for m in metrics_config] + + # Crear y configurar gráfico + fig = plt.figure(figsize=(8, 8)) + ax = fig.add_subplot(111, projection='polar') + + # Configurar radar + angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] + angles += angles[:1] + values_user += values_user[:1] + min_values += min_values[:1] + target_values += target_values[:1] + + # Configurar ejes + ax.set_xticks(angles[:-1]) + ax.set_xticklabels(categories, fontsize=10) + circle_ticks = np.arange(0, 1.1, 0.2) + ax.set_yticks(circle_ticks) + ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) + ax.set_ylim(0, 1) + + # Dibujar áreas de umbrales con etiquetas traducidas + ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label=translations['min'], alpha=0.5) + ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label=translations['target'], alpha=0.5) + ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1) + ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1) + + # Dibujar valores del usuario con etiqueta traducida + ax.plot(angles, values_user, '#3498db', linewidth=2, label=translations['user']) + ax.fill(angles, values_user, '#3498db', alpha=0.2) + + # Ajustar leyenda + ax.legend( + loc='upper right', + bbox_to_anchor=(1.3, 1.1), + fontsize=10, + frameon=True, + facecolor='white', + edgecolor='none', + shadow=True + ) + + plt.tight_layout() + st.pyplot(fig) + plt.close() + + except Exception as e: + logger.error(f"Error mostrando gráfico radar: {str(e)}") + st.error("Error al mostrar el gráfico") \ No newline at end of file diff --git a/src/modules/studentact/student_activities.py b/src/modules/studentact/student_activities.py new file mode 100644 index 0000000000000000000000000000000000000000..40b8e2a4ed849660561e2e7fb030d269f9080c07 --- /dev/null +++ b/src/modules/studentact/student_activities.py @@ -0,0 +1,111 @@ +#modules/studentact/student_activities.py + +import streamlit as st +import pandas as pd +import matplotlib.pyplot as plt +import seaborn as sns +import base64 +from io import BytesIO +from reportlab.pdfgen import canvas +from reportlab.lib.pagesizes import letter +from docx import Document +from odf.opendocument import OpenDocumentText +from odf.text import P +from datetime import datetime, timedelta +import pytz +import logging + +# Configuración de logging +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger(__name__) + +# Importaciones locales +try: + from ..database.morphosintax_mongo_db import get_student_morphosyntax_data + from ..database.semantic_mongo_db import get_student_semantic_data + from ..database.discourse_mongo_db import get_student_discourse_data + + from ..database.chat_mongo_db import get_chat_history + + logger.info("Importaciones locales exitosas") +except ImportError as e: + logger.error(f"Error en las importaciones locales: {e}") + +def display_student_progress(username, lang_code, t): + logger.debug(f"Iniciando display_student_progress para {username}") + + st.title(f"{t.get('progress_of', 'Progreso de')} {username}") + + # Obtener los datos del estudiante + student_data = get_student_morphosyntax_data(username) + + if not student_data or len(student_data.get('entries', [])) == 0: + logger.warning(f"No se encontraron datos para el estudiante {username}") + st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante.")) + st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero.")) + return + + logger.debug(f"Datos del estudiante obtenidos: {len(student_data['entries'])} entradas") + + # Resumen de actividades + with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True): + total_entries = len(student_data['entries']) + st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}") + + # Gráfico de tipos de análisis + try: + analysis_types = [entry.get('analysis_type', 'unknown') for entry in student_data['entries']] + analysis_counts = pd.Series(analysis_types).value_counts() + fig, ax = plt.subplots() + sns.barplot(x=analysis_counts.index, y=analysis_counts.values, ax=ax) + ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados")) + ax.set_xlabel(t.get("analysis_type", "Tipo de análisis")) + ax.set_ylabel(t.get("count", "Cantidad")) + st.pyplot(fig) + except Exception as e: + logger.error(f"Error al crear el gráfico: {e}") + st.error("No se pudo crear el gráfico de tipos de análisis.") + + # Función para generar el contenido del archivo de actividades de las últimas 48 horas + def generate_activity_content_48h(): + content = f"Actividades de {username} en las últimas 48 horas\n\n" + + two_days_ago = datetime.now(pytz.utc) - timedelta(days=2) + + try: + morphosyntax_analyses = get_student_morphosyntax_data(username) + recent_morphosyntax = [a for a in morphosyntax_analyses if datetime.fromisoformat(a['timestamp']) > two_days_ago] + + content += f"Análisis morfosintácticos: {len(recent_morphosyntax)}\n" + for analysis in recent_morphosyntax: + content += f"- Análisis del {analysis['timestamp']}: {analysis['text'][:50]}...\n" + + chat_history = get_chat_history(username, None) + recent_chats = [c for c in chat_history if datetime.fromisoformat(c['timestamp']) > two_days_ago] + + content += f"\nConversaciones de chat: {len(recent_chats)}\n" + for chat in recent_chats: + content += f"- Chat del {chat['timestamp']}: {len(chat['messages'])} mensajes\n" + except Exception as e: + logger.error(f"Error al generar el contenido de actividades: {e}") + content += "Error al recuperar los datos de actividades.\n" + + return content + + # Botones para descargar el histórico de actividades de las últimas 48 horas + st.subheader(t.get("download_history_48h", "Descargar Histórico de Actividades (Últimas 48 horas)")) + if st.button("Generar reporte de 48 horas"): + try: + report_content = generate_activity_content_48h() + st.text_area("Reporte de 48 horas", report_content, height=300) + st.download_button( + label="Descargar TXT (48h)", + data=report_content, + file_name="actividades_48h.txt", + mime="text/plain" + ) + except Exception as e: + logger.error(f"Error al generar el reporte: {e}") + st.error("No se pudo generar el reporte. Por favor, verifica los logs para más detalles.") + + logger.debug("Finalizando display_student_progress") \ No newline at end of file diff --git a/src/modules/studentact/student_activities_v2-complet.py b/src/modules/studentact/student_activities_v2-complet.py new file mode 100644 index 0000000000000000000000000000000000000000..638797e45d311fa223873be6058fb6093a4fbcc8 --- /dev/null +++ b/src/modules/studentact/student_activities_v2-complet.py @@ -0,0 +1,794 @@ +############## +###modules/studentact/student_activities_v2.py + +import streamlit as st +import re +import io +from io import BytesIO +import pandas as pd +import numpy as np +import time +import matplotlib.pyplot as plt +from datetime import datetime +from spacy import displacy +import random +import base64 +import seaborn as sns +import logging + +# Importaciones de la base de datos +from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis +from ..database.semantic_mongo_db import get_student_semantic_analysis +from ..database.discourse_mongo_db import get_student_discourse_analysis +from ..database.chat_mongo_db import get_chat_history + +logger = logging.getLogger(__name__) + +################################################################################### + +def display_student_activities(username: str, lang_code: str, t: dict): + """ + Muestra todas las actividades del estudiante + Args: + username: Nombre del estudiante + lang_code: Código del idioma + t: Diccionario de traducciones + """ + try: + st.header(t.get('activities_title', 'Mis Actividades')) + + # Tabs para diferentes tipos de análisis + tabs = st.tabs([ + t.get('morpho_activities', 'Análisis Morfosintáctico'), + t.get('semantic_activities', 'Análisis Semántico'), + t.get('discourse_activities', 'Análisis del Discurso'), + t.get('chat_activities', 'Conversaciones con el Asistente') + ]) + + # Tab de Análisis Morfosintáctico + with tabs[0]: + display_morphosyntax_activities(username, t) + + # Tab de Análisis Semántico + with tabs[1]: + display_semantic_activities(username, t) + + # Tab de Análisis del Discurso + with tabs[2]: + display_discourse_activities(username, t) + + # Tab de Conversaciones del Chat + with tabs[3]: + display_chat_activities(username, t) + + except Exception as e: + logger.error(f"Error mostrando actividades: {str(e)}") + st.error(t.get('error_loading_activities', 'Error al cargar las actividades')) + + +############################################################################################### +def display_morphosyntax_activities(username: str, t: dict): + """Muestra actividades de análisis morfosintáctico""" + try: + analyses = get_student_morphosyntax_analysis(username) + if not analyses: + st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados')) + return + + for analysis in analyses: + with st.expander( + f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}", + expanded=False + ): + st.text(f"{t.get('analyzed_text', 'Texto analizado')}:") + st.write(analysis['text']) + + if 'arc_diagrams' in analysis: + st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos')) + for diagram in analysis['arc_diagrams']: + st.write(diagram, unsafe_allow_html=True) + + except Exception as e: + logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}") + st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico')) + + +############################################################################################### +def display_semantic_activities(username: str, t: dict): + """Muestra actividades de análisis semántico""" + try: + logger.info(f"Recuperando análisis semántico para {username}") + analyses = get_student_semantic_analysis(username) + + if not analyses: + logger.info("No se encontraron análisis semánticos") + st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados')) + return + + logger.info(f"Procesando {len(analyses)} análisis semánticos") + for analysis in analyses: + try: + # Verificar campos mínimos necesarios + if not all(key in analysis for key in ['timestamp', 'concept_graph']): + logger.warning(f"Análisis incompleto: {analysis.keys()}") + continue + + # Formatear fecha + timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): + if analysis['concept_graph']: + logger.debug("Decodificando gráfico de conceptos") + try: + image_bytes = base64.b64decode(analysis['concept_graph']) + st.image(image_bytes, use_column_width=True) + logger.debug("Gráfico mostrado exitosamente") + except Exception as img_error: + logger.error(f"Error decodificando imagen: {str(img_error)}") + st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) + else: + st.info(t.get('no_graph', 'No hay visualización disponible')) + + except Exception as e: + logger.error(f"Error procesando análisis individual: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando análisis semántico: {str(e)}") + st.error(t.get('error_semantic', 'Error al mostrar análisis semántico')) + + +################################################################################################### +def display_discourse_activities(username: str, t: dict): + """Muestra actividades de análisis del discurso""" + try: + logger.info(f"Recuperando análisis del discurso para {username}") + analyses = get_student_discourse_analysis(username) + + if not analyses: + logger.info("No se encontraron análisis del discurso") + st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados')) + return + + logger.info(f"Procesando {len(analyses)} análisis del discurso") + for analysis in analyses: + try: + # Verificar campos mínimos necesarios + if not all(key in analysis for key in ['timestamp', 'combined_graph']): + logger.warning(f"Análisis incompleto: {analysis.keys()}") + continue + + # Formatear fecha + timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): + if analysis['combined_graph']: + logger.debug("Decodificando gráfico combinado") + try: + image_bytes = base64.b64decode(analysis['combined_graph']) + st.image(image_bytes, use_column_width=True) + logger.debug("Gráfico mostrado exitosamente") + except Exception as img_error: + logger.error(f"Error decodificando imagen: {str(img_error)}") + st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) + else: + st.info(t.get('no_visualization', 'No hay visualización comparativa disponible')) + + except Exception as e: + logger.error(f"Error procesando análisis individual: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando análisis del discurso: {str(e)}") + st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso')) + +################################################################################# +def display_discourse_comparison(analysis: dict, t: dict): + """Muestra la comparación de análisis del discurso""" + st.subheader(t.get('comparison_results', 'Resultados de la comparación')) + + col1, col2 = st.columns(2) + with col1: + st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**") + df1 = pd.DataFrame(analysis['key_concepts1']) + st.dataframe(df1) + + with col2: + st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**") + df2 = pd.DataFrame(analysis['key_concepts2']) + st.dataframe(df2) + +################################################################################# +def display_chat_activities(username: str, t: dict): + """ + Muestra historial de conversaciones del chat + """ + try: + # Obtener historial del chat + chat_history = get_chat_history( + username=username, + analysis_type='sidebar', + limit=50 + ) + + if not chat_history: + st.info(t.get('no_chat_history', 'No hay conversaciones registradas')) + return + + for chat in reversed(chat_history): # Mostrar las más recientes primero + try: + # Convertir timestamp a datetime para formato + timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + with st.expander( + f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}", + expanded=False + ): + if 'messages' in chat and chat['messages']: + # Mostrar cada mensaje en la conversación + for message in chat['messages']: + role = message.get('role', 'unknown') + content = message.get('content', '') + + # Usar el componente de chat de Streamlit + with st.chat_message(role): + st.markdown(content) + + # Agregar separador entre mensajes + st.divider() + else: + st.warning(t.get('invalid_chat_format', 'Formato de chat no válido')) + + except Exception as e: + logger.error(f"Error mostrando conversación: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando historial del chat: {str(e)}") + st.error(t.get('error_chat', 'Error al mostrar historial del chat')) + + + + + + + + + +''' +##########versión 25-9-2024---02:30 ################ OK (username)#################### + +def display_student_progress(username, lang_code, t, student_data): + st.title(f"{t.get('progress_of', 'Progreso de')} {username}") + + if not student_data or len(student_data.get('entries', [])) == 0: + st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante.")) + st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero.")) + return + + with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True): + total_entries = len(student_data['entries']) + st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}") + + # Gráfico de tipos de análisis + analysis_types = [entry['analysis_type'] for entry in student_data['entries']] + analysis_counts = pd.Series(analysis_types).value_counts() + fig, ax = plt.subplots() + analysis_counts.plot(kind='bar', ax=ax) + ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados")) + ax.set_xlabel(t.get("analysis_type", "Tipo de análisis")) + ax.set_ylabel(t.get("count", "Cantidad")) + st.pyplot(fig) + + # Mostrar los últimos análisis morfosintácticos + with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")): + morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax'] + for entry in morphosyntax_entries[:5]: # Mostrar los últimos 5 + st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}") + if 'arc_diagrams' in entry and entry['arc_diagrams']: + st.components.v1.html(entry['arc_diagrams'][0], height=300, scrolling=True) + + # Añadir secciones similares para análisis semánticos y discursivos si es necesario + + # Mostrar el historial de chat + with st.expander(t.get("chat_history", "Historial de Chat")): + if 'chat_history' in student_data: + for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones + st.subheader(f"{t.get('chat_from', 'Chat del')} {chat['timestamp']}") + for message in chat['messages']: + st.write(f"{message['role'].capitalize()}: {message['content']}") + st.write("---") + else: + st.write(t.get("no_chat_history", "No hay historial de chat disponible.")) + + +##########versión 24-9-2024---17:30 ################ OK FROM--V2 de def get_student_data(username)#################### + +def display_student_progress(username, lang_code, t, student_data): + if not student_data or len(student_data['entries']) == 0: + st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante.")) + st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero.")) + return + + st.title(f"{t.get('progress_of', 'Progreso de')} {username}") + + with st.expander(t.get("activities_summary", "Resumen de Actividades y Progreso"), expanded=True): + total_entries = len(student_data['entries']) + st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}") + + # Gráfico de tipos de análisis + analysis_types = [entry['analysis_type'] for entry in student_data['entries']] + analysis_counts = pd.Series(analysis_types).value_counts() + + fig, ax = plt.subplots(figsize=(8, 4)) + analysis_counts.plot(kind='bar', ax=ax) + ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados")) + ax.set_xlabel(t.get("analysis_type", "Tipo de análisis")) + ax.set_ylabel(t.get("count", "Cantidad")) + st.pyplot(fig) + + # Histórico de Análisis Morfosintácticos + with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")): + morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax'] + if not morphosyntax_entries: + st.warning("No se encontraron análisis morfosintácticos.") + for entry in morphosyntax_entries: + st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}") + if 'arc_diagrams' in entry and entry['arc_diagrams']: + try: + st.write(entry['arc_diagrams'][0], unsafe_allow_html=True) + except Exception as e: + logger.error(f"Error al mostrar diagrama de arco: {str(e)}") + st.error("Error al mostrar el diagrama de arco.") + else: + st.write(t.get("no_arc_diagram", "No se encontró diagrama de arco para este análisis.")) + + # Histórico de Análisis Semánticos + with st.expander(t.get("semantic_history", "Histórico de Análisis Semánticos")): + semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic'] + if not semantic_entries: + st.warning("No se encontraron análisis semánticos.") + for entry in semantic_entries: + st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}") + if 'key_concepts' in entry: + st.write(t.get("key_concepts", "Conceptos clave:")) + concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']]) + st.markdown(f"
{concepts_str}
", unsafe_allow_html=True) + if 'graph' in entry: + try: + img_bytes = base64.b64decode(entry['graph']) + st.image(img_bytes, caption=t.get("conceptual_relations_graph", "Gráfico de relaciones conceptuales")) + except Exception as e: + logger.error(f"Error al mostrar gráfico semántico: {str(e)}") + st.error(t.get("graph_display_error", f"No se pudo mostrar el gráfico: {str(e)}")) + + # Histórico de Análisis Discursivos + with st.expander(t.get("discourse_history", "Histórico de Análisis Discursivos")): + discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] + for entry in discourse_entries: + st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}") + for i in [1, 2]: + if f'key_concepts{i}' in entry: + st.write(f"{t.get('key_concepts', 'Conceptos clave')} {t.get('document', 'documento')} {i}:") + concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry[f'key_concepts{i}']]) + st.markdown(f"
{concepts_str}
", unsafe_allow_html=True) + try: + if 'combined_graph' in entry and entry['combined_graph']: + img_bytes = base64.b64decode(entry['combined_graph']) + st.image(img_bytes, caption=t.get("combined_graph", "Gráfico combinado")) + elif 'graph1' in entry and 'graph2' in entry: + col1, col2 = st.columns(2) + with col1: + if entry['graph1']: + img_bytes1 = base64.b64decode(entry['graph1']) + st.image(img_bytes1, caption=t.get("graph_doc1", "Gráfico documento 1")) + with col2: + if entry['graph2']: + img_bytes2 = base64.b64decode(entry['graph2']) + st.image(img_bytes2, caption=t.get("graph_doc2", "Gráfico documento 2")) + except Exception as e: + st.error(t.get("graph_display_error", f"No se pudieron mostrar los gráficos: {str(e)}")) + + # Histórico de Conversaciones con el ChatBot + with st.expander(t.get("chatbot_history", "Histórico de Conversaciones con el ChatBot")): + if 'chat_history' in student_data and student_data['chat_history']: + for i, chat in enumerate(student_data['chat_history']): + st.subheader(f"{t.get('conversation', 'Conversación')} {i+1} - {chat['timestamp']}") + for message in chat['messages']: + if message['role'] == 'user': + st.write(f"{t.get('user', 'Usuario')}: {message['content']}") + else: + st.write(f"{t.get('assistant', 'Asistente')}: {message['content']}") + st.write("---") + else: + st.write(t.get("no_chat_history", "No se encontraron conversaciones con el ChatBot.")) + + # Añadir logs para depuración + if st.checkbox(t.get("show_debug_data", "Mostrar datos de depuración")): + st.write(t.get("student_debug_data", "Datos del estudiante (para depuración):")) + st.json(student_data) + + # Mostrar conteo de tipos de análisis + analysis_types = [entry['analysis_type'] for entry in student_data['entries']] + type_counts = {t: analysis_types.count(t) for t in set(analysis_types)} + st.write("Conteo de tipos de análisis:") + st.write(type_counts) + + +#############################--- Update 16:00 24-9 ######################################### +def display_student_progress(username, lang_code, t, student_data): + try: + st.subheader(t.get('student_activities', 'Student Activitie')) + + if not student_data or all(len(student_data.get(key, [])) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']): + st.warning(t.get('no_data_warning', 'No analysis data found for this student.')) + return + + # Resumen de actividades + total_analyses = sum(len(student_data.get(key, [])) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']) + st.write(f"{t.get('total_analyses', 'Total analyses performed')}: {total_analyses}") + + # Gráfico de tipos de análisis + analysis_counts = { + t.get('morpho_analyses', 'Morphosyntactic Analyses'): len(student_data.get('morphosyntax_analyses', [])), + t.get('semantic_analyses', 'Semantic Analyses'): len(student_data.get('semantic_analyses', [])), + t.get('discourse_analyses', 'Discourse Analyses'): len(student_data.get('discourse_analyses', [])) + } + # Configurar el estilo de seaborn para un aspecto más atractivo + sns.set_style("whitegrid") + + # Crear una figura más pequeña + fig, ax = plt.subplots(figsize=(6, 4)) + + # Usar colores más atractivos + colors = ['#ff9999', '#66b3ff', '#99ff99'] + + # Crear el gráfico de barras + bars = ax.bar(analysis_counts.keys(), analysis_counts.values(), color=colors) + + # Añadir etiquetas de valor encima de cada barra + for bar in bars: + height = bar.get_height() + ax.text(bar.get_x() + bar.get_width()/2., height, + f'{height}', + ha='center', va='bottom') + + # Configurar el título y las etiquetas + ax.set_title(t.get('analysis_types_chart', 'Types of analyses performed'), fontsize=12) + ax.set_ylabel(t.get('count', 'Count'), fontsize=10) + + # Rotar las etiquetas del eje x para mejor legibilidad + plt.xticks(rotation=45, ha='right') + + # Ajustar el diseño para que todo quepa + plt.tight_layout() + + # Mostrar el gráfico en Streamlit + st.pyplot(fig) + + # Mostrar los últimos análisis + for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']: + with st.expander(t.get(f'{analysis_type}_expander', f'{analysis_type.capitalize()} History')): + for analysis in student_data.get(analysis_type, [])[:5]: # Mostrar los últimos 5 + st.subheader(f"{t.get('analysis_from', 'Analysis from')} {analysis.get('timestamp', 'N/A')}") + if analysis_type == 'morphosyntax_analyses': + if 'arc_diagrams' in analysis: + st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True) + elif analysis_type == 'semantic_analyses': + if 'key_concepts' in analysis: + st.write(t.get('key_concepts', 'Key concepts')) + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']])) + if 'graph' in analysis: + st.image(base64.b64decode(analysis['graph'])) + elif analysis_type == 'discourse_analyses': + for i in [1, 2]: + if f'key_concepts{i}' in analysis: + st.write(f"{t.get('key_concepts', 'Key concepts')} {t.get('document', 'Document')} {i}") + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']])) + if 'combined_graph' in analysis: + st.image(base64.b64decode(analysis['combined_graph'])) + + # Mostrar el historial de chat + with st.expander(t.get('chat_history_expander', 'Chat History')): + for chat in student_data.get('chat_history', [])[:5]: # Mostrar las últimas 5 conversaciones + st.subheader(f"{t.get('chat_from', 'Chat from')} {chat.get('timestamp', 'N/A')}") + for message in chat.get('messages', []): + st.write(f"{message.get('role', 'Unknown').capitalize()}: {message.get('content', 'No content')}") + st.write("---") + + except Exception as e: + logger.error(f"Error in display_student_progress: {str(e)}", exc_info=True) + st.error(t.get('error_loading_progress', 'Error loading student progress. Please try again later.')) + + + + + + + + + + + + + + + + + + + + + + + + + + + +##################################################################### +def display_student_progress(username, lang_code, t, student_data): + st.subheader(t['student_progress']) + + if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']): + st.warning(t['no_data_warning']) + return + + # Resumen de actividades + total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']) + st.write(f"{t['total_analyses']}: {total_analyses}") + + # Gráfico de tipos de análisis + analysis_counts = { + t['morpho_analyses']: len(student_data['morphosyntax_analyses']), + t['semantic_analyses']: len(student_data['semantic_analyses']), + t['discourse_analyses']: len(student_data['discourse_analyses']) + } + fig, ax = plt.subplots() + ax.bar(analysis_counts.keys(), analysis_counts.values()) + ax.set_title(t['analysis_types_chart']) + st.pyplot(fig) + + # Mostrar los últimos análisis + for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']: + with st.expander(t[f'{analysis_type}_expander']): + for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5 + st.subheader(f"{t['analysis_from']} {analysis['timestamp']}") + if analysis_type == 'morphosyntax_analyses': + if 'arc_diagrams' in analysis: + st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True) + elif analysis_type == 'semantic_analyses': + if 'key_concepts' in analysis: + st.write(t['key_concepts']) + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']])) + if 'graph' in analysis: + st.image(base64.b64decode(analysis['graph'])) + elif analysis_type == 'discourse_analyses': + for i in [1, 2]: + if f'key_concepts{i}' in analysis: + st.write(f"{t['key_concepts']} {t['document']} {i}") + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']])) + if 'combined_graph' in analysis: + st.image(base64.b64decode(analysis['combined_graph'])) + + # Mostrar el historial de chat + with st.expander(t['chat_history_expander']): + for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones + st.subheader(f"{t['chat_from']} {chat['timestamp']}") + for message in chat['messages']: + st.write(f"{message['role'].capitalize()}: {message['content']}") + st.write("---") + + + +def display_student_progress(username, lang_code, t, student_data): + st.subheader(t['student_activities']) + + if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']): + st.warning(t['no_data_warning']) + return + + # Resumen de actividades + total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']) + st.write(f"{t['total_analyses']}: {total_analyses}") + + # Gráfico de tipos de análisis + analysis_counts = { + t['morphological_analysis']: len(student_data['morphosyntax_analyses']), + t['semantic_analyses']: len(student_data['semantic_analyses']), + t['discourse_analyses']: len(student_data['discourse_analyses']) + } + fig, ax = plt.subplots() + ax.bar(analysis_counts.keys(), analysis_counts.values()) + ax.set_title(t['analysis_types_chart']) + st.pyplot(fig) + + # Mostrar los últimos análisis + for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']: + with st.expander(t[f'{analysis_type}_expander']): + for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5 + st.subheader(f"{t['analysis_from']} {analysis['timestamp']}") + if analysis_type == 'morphosyntax_analyses': + if 'arc_diagrams' in analysis: + st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True) + elif analysis_type == 'semantic_analyses': + if 'key_concepts' in analysis: + st.write(t['key_concepts']) + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']])) + if 'graph' in analysis: + st.image(base64.b64decode(analysis['graph'])) + elif analysis_type == 'discourse_analyses': + for i in [1, 2]: + if f'key_concepts{i}' in analysis: + st.write(f"{t['key_concepts']} {t['document']} {i}") + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']])) + if 'combined_graph' in analysis: + st.image(base64.b64decode(analysis['combined_graph'])) + + # Mostrar el historial de chat + with st.expander(t['chat_history_expander']): + for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones + st.subheader(f"{t['chat_from']} {chat['timestamp']}") + for message in chat['messages']: + st.write(f"{message['role'].capitalize()}: {message['content']}") + st.write("---") + + + + +def display_student_progress(username, lang_code, t, student_data): + st.subheader(t['student_activities']) + + if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']): + st.warning(t['no_data_warning']) + return + + # Resumen de actividades + total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']) + st.write(f"{t['total_analyses']}: {total_analyses}") + + # Gráfico de tipos de análisis + analysis_counts = { + t['morphological_analysis']: len(student_data['morphosyntax_analyses']), + t['semantic_analyses']: len(student_data['semantic_analyses']), + t['discourse_analyses']: len(student_data['discourse_analyses']) + } + fig, ax = plt.subplots() + ax.bar(analysis_counts.keys(), analysis_counts.values()) + ax.set_title(t['analysis_types_chart']) + st.pyplot(fig) + + # Mostrar los últimos análisis + for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']: + with st.expander(t[f'{analysis_type}_expander']): + for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5 + st.subheader(f"{t['analysis_from']} {analysis['timestamp']}") + if analysis_type == 'morphosyntax_analyses': + if 'arc_diagrams' in analysis: + st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True) + elif analysis_type == 'semantic_analyses': + if 'key_concepts' in analysis: + st.write(t['key_concepts']) + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']])) + if 'graph' in analysis: + st.image(base64.b64decode(analysis['graph'])) + elif analysis_type == 'discourse_analyses': + for i in [1, 2]: + if f'key_concepts{i}' in analysis: + st.write(f"{t['key_concepts']} {t['document']} {i}") + st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']])) + if 'combined_graph' in analysis: + st.image(base64.b64decode(analysis['combined_graph'])) + + # Mostrar el historial de chat + with st.expander(t['chat_history_expander']): + for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones + st.subheader(f"{t['chat_from']} {chat['timestamp']}") + for message in chat['messages']: + st.write(f"{message['role'].capitalize()}: {message['content']}") + st.write("---") + + + + +def display_student_progress(username, lang_code, t): + st.subheader(t['student_activities']) + st.write(f"{t['activities_message']} {username}") + + # Aquí puedes agregar más contenido estático o placeholder + st.info(t['activities_placeholder']) + + # Si necesitas mostrar algún dato, puedes usar datos de ejemplo o placeholders + col1, col2, col3 = st.columns(3) + col1.metric(t['morpho_analyses'], "5") # Ejemplo de dato + col2.metric(t['semantic_analyses'], "3") # Ejemplo de dato + col3.metric(t['discourse_analyses'], "2") # Ejemplo de dato + + + +def display_student_progress(username, lang_code, t): + st.title(f"Actividades de {username}") + + # Obtener todos los datos del estudiante + student_data = get_student_data(username) + + if not student_data or len(student_data.get('entries', [])) == 0: + st.warning("No se encontraron datos de análisis para este estudiante.") + st.info("Intenta realizar algunos análisis de texto primero.") + return + + # Resumen de actividades + with st.expander("Resumen de Actividades", expanded=True): + total_entries = len(student_data['entries']) + st.write(f"Total de análisis realizados: {total_entries}") + + # Gráfico de tipos de análisis + analysis_types = [entry['analysis_type'] for entry in student_data['entries']] + analysis_counts = pd.Series(analysis_types).value_counts() + fig, ax = plt.subplots() + analysis_counts.plot(kind='bar', ax=ax) + ax.set_title("Tipos de análisis realizados") + ax.set_xlabel("Tipo de análisis") + ax.set_ylabel("Cantidad") + st.pyplot(fig) + + # Histórico de Análisis Morfosintácticos + with st.expander("Histórico de Análisis Morfosintácticos"): + morpho_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax'] + for analysis in morpho_analyses[:5]: # Mostrar los últimos 5 + st.subheader(f"Análisis del {analysis['timestamp']}") + if 'arc_diagrams' in analysis: + st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True) + + # Histórico de Análisis Semánticos + with st.expander("Histórico de Análisis Semánticos"): + semantic_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic'] + for analysis in semantic_analyses[:5]: # Mostrar los últimos 5 + st.subheader(f"Análisis del {analysis['timestamp']}") + if 'key_concepts' in analysis: + concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis['key_concepts']]) + st.markdown(f"
{concepts_str}
", unsafe_allow_html=True) + if 'graph' in analysis: + try: + img_bytes = base64.b64decode(analysis['graph']) + st.image(img_bytes, caption="Gráfico de relaciones conceptuales") + except Exception as e: + st.error(f"No se pudo mostrar el gráfico: {str(e)}") + + # Histórico de Análisis Discursivos + with st.expander("Histórico de Análisis Discursivos"): + discourse_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] + for analysis in discourse_analyses[:5]: # Mostrar los últimos 5 + st.subheader(f"Análisis del {analysis['timestamp']}") + for i in [1, 2]: + if f'key_concepts{i}' in analysis: + concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis[f'key_concepts{i}']]) + st.write(f"Conceptos clave del documento {i}:") + st.markdown(f"
{concepts_str}
", unsafe_allow_html=True) + if 'combined_graph' in analysis: + try: + img_bytes = base64.b64decode(analysis['combined_graph']) + st.image(img_bytes) + except Exception as e: + st.error(f"No se pudo mostrar el gráfico combinado: {str(e)}") + + # Histórico de Conversaciones con el ChatBot + with st.expander("Histórico de Conversaciones con el ChatBot"): + if 'chat_history' in student_data: + for i, chat in enumerate(student_data['chat_history'][:5]): # Mostrar las últimas 5 conversaciones + st.subheader(f"Conversación {i+1} - {chat['timestamp']}") + for message in chat['messages']: + st.write(f"{message['role'].capitalize()}: {message['content']}") + st.write("---") + else: + st.write("No se encontraron conversaciones con el ChatBot.") + + # Opción para mostrar datos de depuración + if st.checkbox("Mostrar datos de depuración"): + st.write("Datos del estudiante (para depuración):") + st.json(student_data) + +''' \ No newline at end of file diff --git a/src/modules/studentact/student_activities_v2-error.py b/src/modules/studentact/student_activities_v2-error.py new file mode 100644 index 0000000000000000000000000000000000000000..864574edcf68c27f3fd935eda8799efa8308d28e --- /dev/null +++ b/src/modules/studentact/student_activities_v2-error.py @@ -0,0 +1,251 @@ +############## +###modules/studentact/student_activities_v2.py + +import streamlit as st +import re +import io +from io import BytesIO +import pandas as pd +import numpy as np +import time +import matplotlib.pyplot as plt +from datetime import datetime +from spacy import displacy +import random +import base64 +import seaborn as sns +import logging + +# Importaciones de la base de datos +from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis +from ..database.semantic_mongo_db import get_student_semantic_analysis +from ..database.discourse_mongo_db import get_student_discourse_analysis +from ..database.chat_mongo_db import get_chat_history + +logger = logging.getLogger(__name__) + +################################################################################### +def display_student_activities(username: str, lang_code: str, t: dict): + """ + Muestra todas las actividades del estudiante + Args: + username: Nombre del estudiante + lang_code: Código del idioma + t: Diccionario de traducciones + """ + try: + st.header(t.get('activities_title', 'Mis Actividades')) + + # Tabs para diferentes tipos de análisis + tabs = st.tabs([ + t.get('morpho_activities', 'Análisis Morfosintáctico'), + t.get('semantic_activities', 'Análisis Semántico'), + t.get('discourse_activities', 'Análisis del Discurso'), + t.get('chat_activities', 'Conversaciones con el Asistente') + ]) + + # Tab de Análisis Morfosintáctico + with tabs[0]: + display_morphosyntax_activities(username, t) + + # Tab de Análisis Semántico + with tabs[1]: + display_semantic_activities(username, t) + + # Tab de Análisis del Discurso + with tabs[2]: + display_discourse_activities(username, t) + + # Tab de Conversaciones del Chat + with tabs[3]: + display_chat_activities(username, t) + + except Exception as e: + logger.error(f"Error mostrando actividades: {str(e)}") + st.error(t.get('error_loading_activities', 'Error al cargar las actividades')) + +################################################################################### +def display_morphosyntax_activities(username: str, t: dict): + """Muestra actividades de análisis morfosintáctico""" + try: + analyses = get_student_morphosyntax_analysis(username) + if not analyses: + st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados')) + return + + for analysis in analyses: + with st.expander( + f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}", + expanded=False + ): + st.text(f"{t.get('analyzed_text', 'Texto analizado')}:") + st.write(analysis['text']) + + if 'arc_diagrams' in analysis: + st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos')) + for diagram in analysis['arc_diagrams']: + st.write(diagram, unsafe_allow_html=True) + + except Exception as e: + logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}") + st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico')) + +################################################################################### +def display_semantic_activities(username: str, t: dict): + """Muestra actividades de análisis semántico""" + try: + analyses = get_student_semantic_analysis(username) + if not analyses: + st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados')) + return + + for analysis in analyses: + with st.expander( + f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}", + expanded=False + ): + + # Mostrar conceptos clave + if 'key_concepts' in analysis: + st.subheader(t.get('key_concepts', 'Conceptos clave')) + df = pd.DataFrame( + analysis['key_concepts'], + columns=['Concepto', 'Frecuencia'] + ) + st.dataframe(df) + + # Mostrar gráfico de conceptos + if 'concept_graph' in analysis and analysis['concept_graph']: + st.subheader(t.get('concept_graph', 'Grafo de conceptos')) + image_bytes = base64.b64decode(analysis['concept_graph']) + st.image(image_bytes) + + except Exception as e: + logger.error(f"Error mostrando análisis semántico: {str(e)}") + st.error(t.get('error_semantic', 'Error al mostrar análisis semántico')) + +################################################################################### + +def display_discourse_activities(username: str, t: dict): + """Muestra actividades de análisis del discurso""" + try: + analyses = get_student_discourse_analysis(username) + if not analyses: + st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados')) + return + + for analysis in analyses: + with st.expander( + f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}", + expanded=False + ): + + # Mostrar conceptos clave + if 'key_concepts1' in analysis and 'key_concepts2' in analysis: + st.subheader(t.get('comparison_results', 'Resultados de la comparación')) + + col1, col2 = st.columns(2) + with col1: + st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**") + df1 = pd.DataFrame( + analysis['key_concepts1'], + columns=['Concepto', 'Frecuencia'] + ) + st.dataframe(df1) + + with col2: + st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**") + df2 = pd.DataFrame( + analysis['key_concepts2'], + columns=['Concepto', 'Frecuencia'] + ) + st.dataframe(df2) + + # Mostrar gráficos + if all(key in analysis for key in ['graph1', 'graph2']): + st.subheader(t.get('visualizations', 'Visualizaciones')) + + col1, col2 = st.columns(2) + with col1: + st.markdown(f"**{t.get('graph_text_1', 'Grafo Texto 1')}**") + if analysis['graph1']: + image_bytes = base64.b64decode(analysis['graph1']) + st.image(image_bytes) + + with col2: + st.markdown(f"**{t.get('graph_text_2', 'Grafo Texto 2')}**") + if analysis['graph2']: + image_bytes = base64.b64decode(analysis['graph2']) + st.image(image_bytes) + + except Exception as e: + logger.error(f"Error mostrando análisis del discurso: {str(e)}") + st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso')) +################################################################################# + +def display_discourse_comparison(analysis: dict, t: dict): + """Muestra la comparación de análisis del discurso""" + st.subheader(t.get('comparison_results', 'Resultados de la comparación')) + + col1, col2 = st.columns(2) + with col1: + st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**") + df1 = pd.DataFrame(analysis['key_concepts1']) + st.dataframe(df1) + + with col2: + st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**") + df2 = pd.DataFrame(analysis['key_concepts2']) + st.dataframe(df2) + +################################################################################# + + +def display_chat_activities(username: str, t: dict): + """ + Muestra historial de conversaciones del chat + """ + try: + # Obtener historial del chat + chat_history = get_chat_history( + username=username, + analysis_type='sidebar', + limit=50 + ) + + if not chat_history: + st.info(t.get('no_chat_history', 'No hay conversaciones registradas')) + return + + for chat in reversed(chat_history): # Mostrar las más recientes primero + try: + # Convertir timestamp a datetime para formato + timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + with st.expander( + f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}", + expanded=False + ): + if 'messages' in chat and chat['messages']: + # Mostrar cada mensaje en la conversación + for message in chat['messages']: + role = message.get('role', 'unknown') + content = message.get('content', '') + + # Usar el componente de chat de Streamlit + with st.chat_message(role): + st.markdown(content) + + # Agregar separador entre mensajes + st.divider() + else: + st.warning(t.get('invalid_chat_format', 'Formato de chat no válido')) + + except Exception as e: + logger.error(f"Error mostrando conversación: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando historial del chat: {str(e)}") + st.error(t.get('error_chat', 'Error al mostrar historial del chat')) \ No newline at end of file diff --git a/src/modules/studentact/student_activities_v2.py b/src/modules/studentact/student_activities_v2.py new file mode 100644 index 0000000000000000000000000000000000000000..9f8eac7f06cd9d1ee1ba97b59dea5d31f03873c2 --- /dev/null +++ b/src/modules/studentact/student_activities_v2.py @@ -0,0 +1,780 @@ +############## +###modules/studentact/student_activities_v2.py + +import streamlit as st +import re +import io +from io import BytesIO +import pandas as pd +import numpy as np +import time +import matplotlib.pyplot as plt +from datetime import datetime, timedelta +from spacy import displacy +import random +import base64 +import seaborn as sns +import logging + +# Importaciones de la base de datos +from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis +from ..database.semantic_mongo_db import get_student_semantic_analysis +from ..database.discourse_mongo_db import get_student_discourse_analysis +from ..database.chat_mongo_db import get_chat_history +from ..database.current_situation_mongo_db import get_current_situation_analysis +from ..database.claude_recommendations_mongo_db import get_claude_recommendations + +# Importar la función generate_unique_key +from ..utils.widget_utils import generate_unique_key + +logger = logging.getLogger(__name__) + +################################################################################### + +def display_student_activities(username: str, lang_code: str, t: dict): + """ + Muestra todas las actividades del estudiante + Args: + username: Nombre del estudiante + lang_code: Código del idioma + t: Diccionario de traducciones + """ + try: + # Cambiado de "Mis Actividades" a "Registro de mis actividades" + #st.header(t.get('activities_title', 'Registro de mis actividades')) + + # Tabs para diferentes tipos de análisis + # Cambiado "Análisis del Discurso" a "Análisis comparado de textos" + tabs = st.tabs([ + t.get('current_situation_activities', 'Registros de la función: Mi Situación Actual'), + t.get('morpho_activities', 'Registros de mis análisis morfosintácticos'), + t.get('semantic_activities', 'Registros de mis análisis semánticos'), + t.get('discourse_activities', 'Registros de mis análisis comparado de textos'), + t.get('chat_activities', 'Registros de mis conversaciones con el tutor virtual') + ]) + + # Tab de Situación Actual + with tabs[0]: + display_current_situation_activities(username, t) + + # Tab de Análisis Morfosintáctico + with tabs[1]: + display_morphosyntax_activities(username, t) + + # Tab de Análisis Semántico + with tabs[2]: + display_semantic_activities(username, t) + + # Tab de Análisis del Discurso (mantiene nombre interno pero UI muestra "Análisis comparado de textos") + with tabs[3]: + display_discourse_activities(username, t) + + # Tab de Conversaciones del Chat + with tabs[4]: + display_chat_activities(username, t) + + except Exception as e: + logger.error(f"Error mostrando actividades: {str(e)}") + st.error(t.get('error_loading_activities', 'Error al cargar las actividades')) + + +############################################################################################### + +def display_current_situation_activities(username: str, t: dict): + """ + Muestra análisis de situación actual junto con las recomendaciones de Claude + unificando la información de ambas colecciones y emparejándolas por cercanía temporal. + """ + try: + # Recuperar datos de ambas colecciones + logger.info(f"Recuperando análisis de situación actual para {username}") + situation_analyses = get_current_situation_analysis(username, limit=10) + + # Verificar si hay datos + if situation_analyses: + logger.info(f"Recuperados {len(situation_analyses)} análisis de situación") + # Depurar para ver la estructura de datos + for i, analysis in enumerate(situation_analyses): + logger.info(f"Análisis #{i+1}: Claves disponibles: {list(analysis.keys())}") + if 'metrics' in analysis: + logger.info(f"Métricas disponibles: {list(analysis['metrics'].keys())}") + else: + logger.warning("No se encontraron análisis de situación actual") + + logger.info(f"Recuperando recomendaciones de Claude para {username}") + claude_recommendations = get_claude_recommendations(username) + + if claude_recommendations: + logger.info(f"Recuperadas {len(claude_recommendations)} recomendaciones de Claude") + else: + logger.warning("No se encontraron recomendaciones de Claude") + + # Verificar si hay algún tipo de análisis disponible + if not situation_analyses and not claude_recommendations: + logger.info("No se encontraron análisis de situación actual ni recomendaciones") + st.info(t.get('no_current_situation', 'No hay análisis de situación actual registrados')) + return + + # Crear pares combinados emparejando diagnósticos y recomendaciones cercanos en tiempo + logger.info("Creando emparejamientos temporales de análisis") + + # Convertir timestamps a objetos datetime para comparación + situation_times = [] + for analysis in situation_analyses: + if 'timestamp' in analysis: + try: + timestamp_str = analysis['timestamp'] + dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00')) + situation_times.append((dt, analysis)) + except Exception as e: + logger.error(f"Error parseando timestamp de situación: {str(e)}") + + recommendation_times = [] + for recommendation in claude_recommendations: + if 'timestamp' in recommendation: + try: + timestamp_str = recommendation['timestamp'] + dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00')) + recommendation_times.append((dt, recommendation)) + except Exception as e: + logger.error(f"Error parseando timestamp de recomendación: {str(e)}") + + # Ordenar por tiempo + situation_times.sort(key=lambda x: x[0], reverse=True) + recommendation_times.sort(key=lambda x: x[0], reverse=True) + + # Crear pares combinados + combined_items = [] + + # Primero, procesar todas las situaciones encontrando la recomendación más cercana + for sit_time, situation in situation_times: + # Buscar la recomendación más cercana en tiempo + best_match = None + min_diff = timedelta(minutes=30) # Máxima diferencia de tiempo aceptable (30 minutos) + best_rec_time = None + + for rec_time, recommendation in recommendation_times: + time_diff = abs(sit_time - rec_time) + if time_diff < min_diff: + min_diff = time_diff + best_match = recommendation + best_rec_time = rec_time + + # Crear un elemento combinado + if best_match: + timestamp_key = sit_time.isoformat() + combined_items.append((timestamp_key, { + 'situation': situation, + 'recommendation': best_match, + 'time_diff': min_diff.total_seconds() + })) + # Eliminar la recomendación usada para no reutilizarla + recommendation_times = [(t, r) for t, r in recommendation_times if t != best_rec_time] + logger.info(f"Emparejado: Diagnóstico {sit_time} con Recomendación {best_rec_time} (diferencia: {min_diff})") + else: + # Si no hay recomendación cercana, solo incluir la situación + timestamp_key = sit_time.isoformat() + combined_items.append((timestamp_key, { + 'situation': situation + })) + logger.info(f"Sin emparejar: Diagnóstico {sit_time} sin recomendación cercana") + + # Agregar recomendaciones restantes sin situación + for rec_time, recommendation in recommendation_times: + timestamp_key = rec_time.isoformat() + combined_items.append((timestamp_key, { + 'recommendation': recommendation + })) + logger.info(f"Sin emparejar: Recomendación {rec_time} sin diagnóstico cercano") + + # Ordenar por tiempo (más reciente primero) + combined_items.sort(key=lambda x: x[0], reverse=True) + + logger.info(f"Procesando {len(combined_items)} elementos combinados") + + # Mostrar cada par combinado + for i, (timestamp_key, analysis_pair) in enumerate(combined_items): + try: + # Obtener datos de situación y recomendación + situation_data = analysis_pair.get('situation', {}) + recommendation_data = analysis_pair.get('recommendation', {}) + time_diff = analysis_pair.get('time_diff') + + # Si no hay ningún dato, continuar al siguiente + if not situation_data and not recommendation_data: + continue + + # Determinar qué texto mostrar (priorizar el de la situación) + text_to_show = situation_data.get('text', recommendation_data.get('text', '')) + text_type = situation_data.get('text_type', recommendation_data.get('text_type', '')) + + # Formatear fecha para mostrar + try: + # Usar timestamp del key que ya es un formato ISO + dt = datetime.fromisoformat(timestamp_key) + formatted_date = dt.strftime("%d/%m/%Y %H:%M:%S") + except Exception as date_error: + logger.error(f"Error formateando fecha: {str(date_error)}") + formatted_date = timestamp_key + + # Determinar el título del expander + title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}" + if text_type: + text_type_display = { + 'academic_article': t.get('academic_article', 'Artículo académico'), + 'student_essay': t.get('student_essay', 'Trabajo universitario'), + 'general_communication': t.get('general_communication', 'Comunicación general') + }.get(text_type, text_type) + title += f" - {text_type_display}" + + # Añadir indicador de emparejamiento si existe + if time_diff is not None: + if time_diff < 60: # menos de un minuto + title += f" 🔄 (emparejados)" + else: + title += f" 🔄 (emparejados, diferencia: {int(time_diff//60)} min)" + + # Usar un ID único para cada expander + expander_id = f"analysis_{i}_{timestamp_key.replace(':', '_')}" + + # Mostrar el análisis en un expander + with st.expander(title, expanded=False): + # Mostrar texto analizado con key único + st.subheader(t.get('analyzed_text', 'Texto analizado')) + st.text_area( + "Text Content", + value=text_to_show, + height=100, + disabled=True, + label_visibility="collapsed", + key=f"text_area_{expander_id}" + ) + + # Crear tabs para separar diagnóstico y recomendaciones + diagnosis_tab, recommendations_tab = st.tabs([ + t.get('diagnosis_tab', 'Diagnóstico'), + t.get('recommendations_tab', 'Recomendaciones') + ]) + + # Tab de diagnóstico + with diagnosis_tab: + if situation_data and 'metrics' in situation_data: + metrics = situation_data['metrics'] + + # Dividir en dos columnas + col1, col2 = st.columns(2) + + # Principales métricas en formato de tarjetas + with col1: + st.subheader(t.get('key_metrics', 'Métricas clave')) + + # Mostrar cada métrica principal + for metric_name, metric_data in metrics.items(): + try: + # Determinar la puntuación + score = None + if isinstance(metric_data, dict): + # Intentar diferentes nombres de campo + if 'normalized_score' in metric_data: + score = metric_data['normalized_score'] + elif 'score' in metric_data: + score = metric_data['score'] + elif 'value' in metric_data: + score = metric_data['value'] + elif isinstance(metric_data, (int, float)): + score = metric_data + + if score is not None: + # Asegurarse de que score es numérico + if isinstance(score, (int, float)): + # Determinar color y emoji basado en la puntuación + if score < 0.5: + emoji = "🔴" + color = "#ffcccc" # light red + elif score < 0.75: + emoji = "🟡" + color = "#ffffcc" # light yellow + else: + emoji = "🟢" + color = "#ccffcc" # light green + + # Mostrar la métrica con estilo + st.markdown(f""" +
+ {emoji} {metric_name.capitalize()}: {score:.2f} +
+ """, unsafe_allow_html=True) + else: + # Si no es numérico, mostrar como texto + st.markdown(f""" +
+ ℹ️ {metric_name.capitalize()}: {str(score)} +
+ """, unsafe_allow_html=True) + except Exception as e: + logger.error(f"Error procesando métrica {metric_name}: {str(e)}") + + # Mostrar detalles adicionales si están disponibles + with col2: + st.subheader(t.get('details', 'Detalles')) + + # Para cada métrica, mostrar sus detalles si existen + for metric_name, metric_data in metrics.items(): + try: + if isinstance(metric_data, dict): + # Mostrar detalles directamente o buscar en subcampos + details = None + if 'details' in metric_data and metric_data['details']: + details = metric_data['details'] + else: + # Crear un diccionario con los detalles excluyendo 'normalized_score' y similares + details = {k: v for k, v in metric_data.items() + if k not in ['normalized_score', 'score', 'value']} + + if details: + st.write(f"**{metric_name.capitalize()}**") + st.json(details, expanded=False) + except Exception as e: + logger.error(f"Error mostrando detalles de {metric_name}: {str(e)}") + else: + st.info(t.get('no_diagnosis', 'No hay datos de diagnóstico disponibles')) + + # Tab de recomendaciones + with recommendations_tab: + if recommendation_data and 'recommendations' in recommendation_data: + st.markdown(f""" +
+ {recommendation_data['recommendations']} +
+ """, unsafe_allow_html=True) + elif recommendation_data and 'feedback' in recommendation_data: + st.markdown(f""" +
+ {recommendation_data['feedback']} +
+ """, unsafe_allow_html=True) + else: + st.info(t.get('no_recommendations', 'No hay recomendaciones disponibles')) + + except Exception as e: + logger.error(f"Error procesando par de análisis: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando actividades de situación actual: {str(e)}") + st.error(t.get('error_current_situation', 'Error al mostrar análisis de situación actual')) + +############################################################################################### + +def display_morphosyntax_activities(username: str, t: dict): + """ + Muestra actividades de análisis morfosintáctico, incluyendo base e iteraciones + desde las nuevas colecciones: student_morphosyntax_analysis_base y student_morphosyntax_iterations + """ + try: + # Importación inline para evitar problemas de circularidad + # Utilizamos la función de la nueva estructura de DB iterativa + from ..database.morphosyntax_iterative_mongo_db import get_student_morphosyntax_analysis + + logger.info(f"Recuperando análisis morfosintáctico para {username}") + + # Esta función ahora trae tanto las bases como sus iteraciones + base_analyses = get_student_morphosyntax_analysis(username) + + if not base_analyses: + logger.info("No se encontraron análisis morfosintácticos") + st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados')) + return + + logger.info(f"Procesando {len(base_analyses)} análisis morfosintácticos base") + + # Procesar cada análisis base con sus iteraciones + for base_analysis in base_analyses: + try: + # Formatear fecha + timestamp = datetime.fromisoformat(base_analysis['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + # Título del expander: incluir información de si tiene iteraciones + expander_title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}" + if base_analysis.get('has_iterations', False): + expander_title += f" ({t.get('has_iterations', 'Con iteraciones')})" + + with st.expander(expander_title, expanded=False): + # Mostrar texto base + st.subheader(t.get('base_text', 'Texto original')) + st.text_area( + "Base Text Content", + value=base_analysis.get('text', ''), + height=100, + disabled=True, + label_visibility="collapsed", + key=f"base_text_{str(base_analysis['_id'])}" + ) + + # Mostrar diagrama de arco base si existe + if 'arc_diagrams' in base_analysis and base_analysis['arc_diagrams']: + st.subheader(t.get('syntactic_diagrams', 'Diagrama sintáctico (original)')) + # Mostrar cada diagrama (normalmente solo uno por oración) + for diagram in base_analysis['arc_diagrams']: + st.write(diagram, unsafe_allow_html=True) + + # Procesar iteraciones si existen + if 'iterations' in base_analysis and base_analysis['iterations']: + st.markdown("---") # Línea divisoria + st.subheader(t.get('iterations', 'Versiones mejoradas')) + + # Crear tabs para cada iteración + iteration_tabs = st.tabs([ + f"{t.get('iteration', 'Versión')} {i+1}" + for i in range(len(base_analysis['iterations'])) + ]) + + # Mostrar cada iteración en su propia pestaña + for i, (tab, iteration) in enumerate(zip(iteration_tabs, base_analysis['iterations'])): + with tab: + # Timestamp de la iteración + iter_timestamp = datetime.fromisoformat( + iteration['timestamp'].replace('Z', '+00:00')) + iter_formatted_date = iter_timestamp.strftime("%d/%m/%Y %H:%M:%S") + st.caption(f"{t.get('iteration_date', 'Fecha de versión')}: {iter_formatted_date}") + + # Texto de la iteración + st.text_area( + f"Iteration Text {i+1}", + value=iteration.get('iteration_text', ''), + height=100, + disabled=True, + label_visibility="collapsed", + key=f"iter_text_{str(iteration['_id'])}" + ) + + # Diagrama de arco de la iteración + if 'arc_diagrams' in iteration and iteration['arc_diagrams']: + st.subheader(t.get('iteration_diagram', 'Diagrama sintáctico (mejorado)')) + for diagram in iteration['arc_diagrams']: + st.write(diagram, unsafe_allow_html=True) + + except Exception as e: + logger.error(f"Error procesando análisis morfosintáctico: {str(e)}") + st.error(t.get('error_processing_analysis', 'Error procesando este análisis')) + continue + + except Exception as e: + logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}") + st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico')) + + +############################################################################################### + +def display_semantic_activities(username: str, t: dict): + """Muestra actividades de análisis semántico""" + try: + logger.info(f"Recuperando análisis semántico para {username}") + analyses = get_student_semantic_analysis(username) + + if not analyses: + logger.info("No se encontraron análisis semánticos") + st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados')) + return + + logger.info(f"Procesando {len(analyses)} análisis semánticos") + + for analysis in analyses: + try: + # Verificar campos necesarios + if not all(key in analysis for key in ['timestamp', 'concept_graph']): + logger.warning(f"Análisis incompleto: {analysis.keys()}") + continue + + # Formatear fecha + timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + # Crear expander + with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): + # Procesar y mostrar gráfico + if analysis.get('concept_graph'): + try: + # Convertir de base64 a bytes + logger.debug("Decodificando gráfico de conceptos") + image_data = analysis['concept_graph'] + + # Si el gráfico ya es bytes, usarlo directamente + if isinstance(image_data, bytes): + image_bytes = image_data + else: + # Si es string base64, decodificar + image_bytes = base64.b64decode(image_data) + + logger.debug(f"Longitud de bytes de imagen: {len(image_bytes)}") + + # Mostrar imagen + st.image( + image_bytes, + caption=t.get('concept_network', 'Red de Conceptos'), + use_container_width=True + ) + logger.debug("Gráfico mostrado exitosamente") + + except Exception as img_error: + logger.error(f"Error procesando gráfico: {str(img_error)}") + st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) + else: + st.info(t.get('no_graph', 'No hay visualización disponible')) + + except Exception as e: + logger.error(f"Error procesando análisis individual: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando análisis semántico: {str(e)}") + st.error(t.get('error_semantic', 'Error al mostrar análisis semántico')) + + +################################################################################################### + +def display_discourse_activities(username: str, t: dict): + """Muestra actividades de análisis del discurso (mostrado como 'Análisis comparado de textos' en la UI)""" + try: + logger.info(f"Recuperando análisis del discurso para {username}") + analyses = get_student_discourse_analysis(username) + + if not analyses: + logger.info("No se encontraron análisis del discurso") + # Usamos el término "análisis comparado de textos" en la UI + st.info(t.get('no_discourse_analyses', 'No hay análisis comparados de textos registrados')) + return + + logger.info(f"Procesando {len(analyses)} análisis del discurso") + for analysis in analyses: + try: + # Verificar campos mínimos necesarios + if not all(key in analysis for key in ['timestamp']): + logger.warning(f"Análisis incompleto: {analysis.keys()}") + continue + + # Formatear fecha + timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): + # Crear dos columnas para mostrar los documentos lado a lado + col1, col2 = st.columns(2) + + # Documento 1 - Columna izquierda + with col1: + st.subheader(t.get('doc1_title', 'Documento 1')) + st.markdown(t.get('key_concepts', 'Conceptos Clave')) + + # Mostrar conceptos clave en formato de etiquetas + if 'key_concepts1' in analysis and analysis['key_concepts1']: + concepts_html = f""" +
+ {''.join([ + f'
' + f'{concept}' + f'({freq:.2f})
' + for concept, freq in analysis['key_concepts1'] + ])} +
+ """ + st.markdown(concepts_html, unsafe_allow_html=True) + else: + st.info(t.get('no_concepts', 'No hay conceptos disponibles')) + + # Mostrar grafo 1 + if 'graph1' in analysis: + try: + if isinstance(analysis['graph1'], bytes): + st.image( + analysis['graph1'], + use_container_width=True + ) + else: + logger.warning(f"graph1 no es bytes: {type(analysis['graph1'])}") + st.warning(t.get('graph_not_available', 'Gráfico no disponible')) + except Exception as e: + logger.error(f"Error mostrando graph1: {str(e)}") + st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) + else: + st.info(t.get('no_visualization', 'No hay visualización disponible')) + + # Interpretación del grafo + st.markdown("**📊 Interpretación del grafo:**") + st.markdown(""" + - 🔀 Las flechas indican la dirección de la relación entre conceptos + - 🎨 Los colores más intensos indican conceptos más centrales en el texto + - ⭕ El tamaño de los nodos representa la frecuencia del concepto + - ↔️ El grosor de las líneas indica la fuerza de la conexión + """) + + # Documento 2 - Columna derecha + with col2: + st.subheader(t.get('doc2_title', 'Documento 2')) + st.markdown(t.get('key_concepts', 'Conceptos Clave')) + + # Mostrar conceptos clave en formato de etiquetas + if 'key_concepts2' in analysis and analysis['key_concepts2']: + concepts_html = f""" +
+ {''.join([ + f'
' + f'{concept}' + f'({freq:.2f})
' + for concept, freq in analysis['key_concepts2'] + ])} +
+ """ + st.markdown(concepts_html, unsafe_allow_html=True) + else: + st.info(t.get('no_concepts', 'No hay conceptos disponibles')) + + # Mostrar grafo 2 + if 'graph2' in analysis: + try: + if isinstance(analysis['graph2'], bytes): + st.image( + analysis['graph2'], + use_container_width=True + ) + else: + logger.warning(f"graph2 no es bytes: {type(analysis['graph2'])}") + st.warning(t.get('graph_not_available', 'Gráfico no disponible')) + except Exception as e: + logger.error(f"Error mostrando graph2: {str(e)}") + st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) + else: + st.info(t.get('no_visualization', 'No hay visualización disponible')) + + # Interpretación del grafo + st.markdown("**📊 Interpretación del grafo:**") + st.markdown(""" + - 🔀 Las flechas indican la dirección de la relación entre conceptos + - 🎨 Los colores más intensos indican conceptos más centrales en el texto + - ⭕ El tamaño de los nodos representa la frecuencia del concepto + - ↔️ El grosor de las líneas indica la fuerza de la conexión + """) + + except Exception as e: + logger.error(f"Error procesando análisis individual: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando análisis del discurso: {str(e)}") + # Usamos el término "análisis comparado de textos" en la UI + st.error(t.get('error_discourse', 'Error al mostrar análisis comparado de textos')) + + + +################################################################################# + +def display_discourse_comparison(analysis: dict, t: dict): + """ + Muestra la comparación de conceptos clave en análisis del discurso. + Formato horizontal simplificado. + """ + st.subheader(t.get('comparison_results', 'Resultados de la comparación')) + + # Verificar si tenemos los conceptos necesarios + if not ('key_concepts1' in analysis and analysis['key_concepts1']): + st.info(t.get('no_concepts', 'No hay conceptos disponibles para comparar')) + return + + # Conceptos del Texto 1 - Formato horizontal + st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}:**") + try: + # Comprobar formato y mostrar horizontalmente + if isinstance(analysis['key_concepts1'], list) and len(analysis['key_concepts1']) > 0: + if isinstance(analysis['key_concepts1'][0], list) and len(analysis['key_concepts1'][0]) == 2: + # Formatear como "concepto (valor), concepto2 (valor2), ..." + concepts_text = ", ".join([f"{c[0]} ({c[1]})" for c in analysis['key_concepts1'][:10]]) + st.markdown(f"*{concepts_text}*") + else: + # Si no tiene el formato esperado, mostrar como lista simple + st.markdown(", ".join(str(c) for c in analysis['key_concepts1'][:10])) + else: + st.write(str(analysis['key_concepts1'])) + except Exception as e: + logger.error(f"Error mostrando key_concepts1: {str(e)}") + st.error(t.get('error_concepts1', 'Error mostrando conceptos del Texto 1')) + + # Conceptos del Texto 2 - Formato horizontal + st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}:**") + if 'key_concepts2' in analysis and analysis['key_concepts2']: + try: + # Comprobar formato y mostrar horizontalmente + if isinstance(analysis['key_concepts2'], list) and len(analysis['key_concepts2']) > 0: + if isinstance(analysis['key_concepts2'][0], list) and len(analysis['key_concepts2'][0]) == 2: + # Formatear como "concepto (valor), concepto2 (valor2), ..." + concepts_text = ", ".join([f"{c[0]} ({c[1]})" for c in analysis['key_concepts2'][:10]]) + st.markdown(f"*{concepts_text}*") + else: + # Si no tiene el formato esperado, mostrar como lista simple + st.markdown(", ".join(str(c) for c in analysis['key_concepts2'][:10])) + else: + st.write(str(analysis['key_concepts2'])) + except Exception as e: + logger.error(f"Error mostrando key_concepts2: {str(e)}") + st.error(t.get('error_concepts2', 'Error mostrando conceptos del Texto 2')) + else: + st.info(t.get('no_concepts2', 'No hay conceptos disponibles para el Texto 2')) + + +################################################################################# +def display_chat_activities(username: str, t: dict): + """ + Muestra historial de conversaciones del chat + """ + try: + # Obtener historial del chat + chat_history = get_chat_history( + username=username, + analysis_type='sidebar', + limit=50 + ) + + if not chat_history: + st.info(t.get('no_chat_history', 'No hay conversaciones registradas')) + return + + for chat in reversed(chat_history): # Mostrar las más recientes primero + try: + # Convertir timestamp a datetime para formato + timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00')) + formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") + + with st.expander( + f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}", + expanded=False + ): + if 'messages' in chat and chat['messages']: + # Mostrar cada mensaje en la conversación + for message in chat['messages']: + role = message.get('role', 'unknown') + content = message.get('content', '') + + # Usar el componente de chat de Streamlit + with st.chat_message(role): + st.markdown(content) + + # Agregar separador entre mensajes + st.divider() + else: + st.warning(t.get('invalid_chat_format', 'Formato de chat no válido')) + + except Exception as e: + logger.error(f"Error mostrando conversación: {str(e)}") + continue + + except Exception as e: + logger.error(f"Error mostrando historial del chat: {str(e)}") + st.error(t.get('error_chat', 'Error al mostrar historial del chat')) + +################################################################################# diff --git a/src/modules/studentact/temp_current_situation_interface.py b/src/modules/studentact/temp_current_situation_interface.py new file mode 100644 index 0000000000000000000000000000000000000000..c5c62f53c8f66bfd658f68862f06b5624f34b0bf --- /dev/null +++ b/src/modules/studentact/temp_current_situation_interface.py @@ -0,0 +1,311 @@ +# modules/studentact/current_situation_interface.py + +import streamlit as st +import logging +from ..utils.widget_utils import generate_unique_key +from .current_situation_analysis import ( + analyze_text_dimensions, + create_vocabulary_network, + create_syntax_complexity_graph, + create_cohesion_heatmap +) + +logger = logging.getLogger(__name__) + +def display_current_situation_interface(lang_code, nlp_models, t): + """ + Interfaz modular para el análisis de la situación actual del estudiante. + Esta función maneja la presentación y la interacción con el usuario. + + Args: + lang_code: Código del idioma actual + nlp_models: Diccionario de modelos de spaCy cargados + t: Diccionario de traducciones + """ + st.markdown("## Mi Situación Actual de Escritura") + + # Container principal para mejor organización visual + with st.container(): + # Columnas para entrada y visualización + text_col, visual_col = st.columns([1,2]) + + with text_col: + # Área de entrada de texto + text_input = st.text_area( + t.get('current_situation_input', "Ingresa tu texto para analizar:"), + height=400, + key=generate_unique_key("current_situation", "input") + ) + + # Botón de análisis + if st.button( + t.get('analyze_button', "Explorar mi escritura"), + type="primary", + disabled=not text_input, + key=generate_unique_key("current_situation", "analyze") + ): + try: + with st.spinner(t.get('processing', "Analizando texto...")): + # 1. Procesar el texto + doc = nlp_models[lang_code](text_input) + metrics = analyze_text_dimensions(doc) + + # 2. Mostrar visualizaciones en la columna derecha + with visual_col: + display_current_situation_visual(doc, metrics) + + # 3. Obtener retroalimentación de Claude + feedback = get_claude_feedback(metrics, text_input) + + # 4. Guardar los resultados + from ..database.current_situation_mongo_db import store_current_situation_result + + if st.button(t.get('analyze_button', "Explorar mi escritura")): + with st.spinner(t.get('processing', "Analizando texto...")): + # Procesar y analizar + doc = nlp_models[lang_code](text_input) + + # Obtener métricas con manejo de errores + try: + metrics = analyze_text_dimensions(doc) + except Exception as e: + logger.error(f"Error en análisis: {str(e)}") + st.error("Error en el análisis de dimensiones") + return + + # Obtener feedback + try: + feedback = get_claude_feedback(metrics, text_input) + except Exception as e: + logger.error(f"Error obteniendo feedback: {str(e)}") + st.error("Error obteniendo retroalimentación") + return + + # Guardar resultados con verificación + if store_current_situation_result( + st.session_state.username, + text_input, + metrics, + feedback + ): + st.success(t.get('save_success', "Análisis guardado")) + + # Mostrar visualizaciones y recomendaciones + display_current_situation_visual(doc, metrics) + show_recommendations(feedback, t) + else: + st.error("Error al guardar el análisis") + + except Exception as e: + logger.error(f"Error en interfaz: {str(e)}") + st.error("Error general en la interfaz") + +################################################################ +def display_current_situation_visual(doc, metrics): + """Visualización mejorada de resultados con interpretaciones""" + try: + with st.container(): + # Estilos CSS mejorados para los contenedores + st.markdown(""" + + """, unsafe_allow_html=True) + + # 1. Riqueza de Vocabulario + with st.expander("📚 Riqueza de Vocabulario", expanded=True): + st.markdown('
', unsafe_allow_html=True) + vocabulary_graph = create_vocabulary_network(doc) + if vocabulary_graph: + # Mostrar gráfico + st.pyplot(vocabulary_graph) + plt.close(vocabulary_graph) + + # Interpretación + st.markdown('
', unsafe_allow_html=True) + st.markdown("**¿Qué significa este gráfico?**") + st.markdown(""" + - 🔵 Los nodos azules representan palabras clave en tu texto + - 📏 El tamaño de cada nodo indica su frecuencia de uso + - 🔗 Las líneas conectan palabras que aparecen juntas frecuentemente + - 🎨 Los colores más intensos indican palabras más centrales + """) + st.markdown("
", unsafe_allow_html=True) + st.markdown("
", unsafe_allow_html=True) + + # 2. Estructura de Oraciones + with st.expander("🏗️ Complejidad Estructural", expanded=True): + st.markdown('
', unsafe_allow_html=True) + syntax_graph = create_syntax_complexity_graph(doc) + if syntax_graph: + st.pyplot(syntax_graph) + plt.close(syntax_graph) + + st.markdown('
', unsafe_allow_html=True) + st.markdown("**Análisis de la estructura:**") + st.markdown(""" + - 📊 Las barras muestran la complejidad de cada oración + - 📈 Mayor altura indica estructuras más elaboradas + - 🎯 La línea punteada indica el nivel óptimo de complejidad + - 🔄 Variación en las alturas sugiere dinamismo en la escritura + """) + st.markdown("
", unsafe_allow_html=True) + st.markdown("
", unsafe_allow_html=True) + + # 3. Cohesión Textual + with st.expander("🔄 Cohesión del Texto", expanded=True): + st.markdown('
', unsafe_allow_html=True) + cohesion_map = create_cohesion_heatmap(doc) + if cohesion_map: + st.pyplot(cohesion_map) + plt.close(cohesion_map) + + st.markdown('
', unsafe_allow_html=True) + st.markdown("**¿Cómo leer el mapa de calor?**") + st.markdown(""" + - 🌈 Colores más intensos indican mayor conexión entre oraciones + - 📝 La diagonal muestra la coherencia interna de cada oración + - 🔗 Las zonas claras sugieren oportunidades de mejorar conexiones + - 🎯 Un buen texto muestra patrones de color consistentes + """) + st.markdown("
", unsafe_allow_html=True) + st.markdown("
", unsafe_allow_html=True) + + # 4. Métricas Generales + with st.expander("📊 Resumen de Métricas", expanded=True): + col1, col2, col3 = st.columns(3) + + with col1: + st.metric( + "Diversidad Léxica", + f"{metrics['vocabulary_richness']:.2f}/1.0", + help="Mide la variedad de palabras diferentes utilizadas" + ) + + with col2: + st.metric( + "Complejidad Estructural", + f"{metrics['structural_complexity']:.2f}/1.0", + help="Indica qué tan elaboradas son las estructuras de las oraciones" + ) + + with col3: + st.metric( + "Cohesión Textual", + f"{metrics['cohesion_score']:.2f}/1.0", + help="Evalúa qué tan bien conectadas están las ideas entre sí" + ) + + except Exception as e: + logger.error(f"Error en visualización: {str(e)}") + st.error("Error al generar las visualizaciones") + +################################################################ +def show_recommendations(feedback, t): + """ + Muestra las recomendaciones y ejercicios personalizados para el estudiante, + permitiendo el seguimiento de su progreso. + + Args: + feedback: Diccionario con retroalimentación y ejercicios recomendados + t: Diccionario de traducciones + """ + st.markdown("### " + t.get('recommendations_title', "Recomendaciones para mejorar")) + + for area, exercises in feedback['recommendations'].items(): + with st.expander(f"💡 {area}"): + try: + # Descripción del área de mejora + st.markdown(exercises['description']) + + # Obtener el historial de ejercicios del estudiante + from ..database.current_situation_mongo_db import get_student_exercises_history + exercises_history = get_student_exercises_history(st.session_state.username) + + # Separar ejercicios en completados y pendientes + completed = exercises_history.get(area, []) + + # Mostrar estado actual + progress_col1, progress_col2 = st.columns([3,1]) + with progress_col1: + st.markdown("**Ejercicio sugerido:**") + st.markdown(exercises['activity']) + + with progress_col2: + # Verificar si el ejercicio ya está completado + exercise_key = f"{area}_{exercises['activity']}" + is_completed = exercise_key in completed + + if is_completed: + st.success("✅ Completado") + else: + # Botón para marcar ejercicio como completado + if st.button( + t.get('mark_complete', "Marcar como completado"), + key=generate_unique_key("exercise", area), + type="primary" + ): + try: + from ..database.current_situation_mongo_db import update_exercise_status + + # Actualizar estado del ejercicio + success = update_exercise_status( + username=st.session_state.username, + area=area, + exercise=exercises['activity'], + completed=True + ) + + if success: + st.success(t.get( + 'exercise_completed', + "¡Ejercicio marcado como completado!" + )) + st.rerun() + else: + st.error(t.get( + 'exercise_error', + "Error al actualizar el estado del ejercicio" + )) + except Exception as e: + logger.error(f"Error actualizando estado del ejercicio: {str(e)}") + st.error(t.get('update_error', "Error al actualizar el ejercicio")) + + # Mostrar recursos adicionales si existen + if 'resources' in exercises: + st.markdown("**Recursos adicionales:**") + for resource in exercises['resources']: + st.markdown(f"- {resource}") + + # Mostrar fecha de finalización si está completado + if is_completed: + completion_date = exercises_history[exercise_key].get('completion_date') + if completion_date: + st.caption( + t.get('completed_on', "Completado el") + + f": {completion_date.strftime('%d/%m/%Y %H:%M')}" + ) + + except Exception as e: + logger.error(f"Error mostrando recomendaciones para {area}: {str(e)}") + st.error(t.get( + 'recommendations_error', + f"Error al mostrar las recomendaciones para {area}" + )) \ No newline at end of file diff --git a/src/modules/text_analysis/__init__.py b/src/modules/text_analysis/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a8781ff2d1a28dde08cad6688e7efb909aeabaa9 --- /dev/null +++ b/src/modules/text_analysis/__init__.py @@ -0,0 +1,29 @@ +# modules/text_analysis/__init__.py +import logging + +logging.basicConfig( + level=logging.INFO, + format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' +) + +# Importaciones de morpho_analysis +from .morpho_analysis import ( + perform_advanced_morphosyntactic_analysis, + get_repeated_words_colors, + highlight_repeated_words, + generate_arc_diagram, + get_detailed_pos_analysis, + get_morphological_analysis, + get_sentence_structure_analysis, + POS_COLORS, + POS_TRANSLATIONS +) + +# Importaciones de semantic_analysis +from .semantic_analysis import ( + create_concept_graph, + visualize_concept_graph, + identify_key_concepts +) + + diff --git a/src/modules/text_analysis/__pycache__/__init__.cpython-311.pyc b/src/modules/text_analysis/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3e7768ec60cb4a06cdaec79228f7036c906df7b0 Binary files /dev/null and b/src/modules/text_analysis/__pycache__/__init__.cpython-311.pyc differ diff --git a/src/modules/text_analysis/__pycache__/discourse_analysis.cpython-311.pyc b/src/modules/text_analysis/__pycache__/discourse_analysis.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5f526ab04a41ca07b198c4e4aaf1337b595c5f33 Binary files /dev/null and b/src/modules/text_analysis/__pycache__/discourse_analysis.cpython-311.pyc differ diff --git a/src/modules/text_analysis/__pycache__/morpho_analysis.cpython-311.pyc b/src/modules/text_analysis/__pycache__/morpho_analysis.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d74855a63b98e328d11eb2b08352b26f31a23655 Binary files /dev/null and b/src/modules/text_analysis/__pycache__/morpho_analysis.cpython-311.pyc differ diff --git a/src/modules/text_analysis/__pycache__/semantic_analysis.cpython-311.pyc b/src/modules/text_analysis/__pycache__/semantic_analysis.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..53c63e092b99349668b992be27100905c36bb707 Binary files /dev/null and b/src/modules/text_analysis/__pycache__/semantic_analysis.cpython-311.pyc differ diff --git a/src/modules/text_analysis/coherence_analysis.py b/src/modules/text_analysis/coherence_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..d3f5a12faa99758192ecc4ed3fc22c9249232e86 --- /dev/null +++ b/src/modules/text_analysis/coherence_analysis.py @@ -0,0 +1 @@ + diff --git a/src/modules/text_analysis/complex_structures.py b/src/modules/text_analysis/complex_structures.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/text_analysis/discourse_analysis.py b/src/modules/text_analysis/discourse_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..d674ff959495afc8ef0cf2541bfa9115f1edd500 --- /dev/null +++ b/src/modules/text_analysis/discourse_analysis.py @@ -0,0 +1,286 @@ +# modules/text_analysis/discourse_analysis.py +# Configuración de matplotlib + +import streamlit as st +import spacy +import networkx as nx +import matplotlib.pyplot as plt +import pandas as pd +import numpy as np +import logging +import io +import base64 +from collections import Counter, defaultdict +import logging + + +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + + +from .semantic_analysis import ( + create_concept_graph, + visualize_concept_graph, + identify_key_concepts +) + + +from .stopwords import ( + get_custom_stopwords, + process_text, + get_stopwords_for_spacy +) + + +##################### +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', + 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', + 'VERB': 'Verb', 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', + 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', + 'VERB': 'Verbe', 'X': 'Autre', + }, + 'pt': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposição', 'ADV': 'Advérbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunção Coordenativa', 'DET': 'Determinante', 'INTJ': 'Interjeição', + 'NOUN': 'Substantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronome', + 'PROPN': 'Nome Próprio', 'SCONJ': 'Conjunção Subordinativa', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Outro', + } +} + +ENTITY_LABELS = { + 'es': { + "Personas": "lightblue", + "Lugares": "lightcoral", + "Inventos": "lightgreen", + "Fechas": "lightyellow", + "Conceptos": "lightpink" + }, + 'en': { + "People": "lightblue", + "Places": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + }, + 'fr': { + "Personnes": "lightblue", + "Lieux": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + }, + 'pt': { + "Pessoas": "lightblue", + "Lugares": "lightcoral", + "Invenções": "lightgreen", + "Datas": "lightyellow", + "Conceitos": "lightpink" + } +} + +################# + +def fig_to_bytes(fig, dpi=100): + """Convierte una figura de matplotlib a bytes.""" + try: + buf = io.BytesIO() + fig.savefig(buf, format='png', dpi=dpi, bbox_inches='tight') # Sin compression + buf.seek(0) + return buf.getvalue() + except Exception as e: + logger.error(f"Error en fig_to_bytes: {str(e)}") + return None + +################################################################################################ +def compare_semantic_analysis(text1, text2, nlp, lang): + """ + Realiza el análisis semántico comparativo entre dos textos + """ + try: + # Diccionario de traducciones para los títulos de los gráficos COMPARATIVOS + COMPARE_GRAPH_TITLES = { + 'es': { + 'doc1_network': 'Relaciones entre conceptos clave del documento 1', + 'doc1_centrality': 'Centralidad de los conceptos clave del documento 1', + 'doc2_network': 'Relaciones entre conceptos clave del documento 2', + 'doc2_centrality': 'Centralidad de los conceptos clave del documento 2' + }, + 'en': { + 'doc1_network': 'Key concept relationships in document 1', + 'doc1_centrality': 'Key concept centrality in document 1', + 'doc2_network': 'Key concept relationships in document 2', + 'doc2_centrality': 'Key concept centrality in document 2' + }, + 'fr': { + 'doc1_network': 'Relations entre concepts clés du document 1', + 'doc1_centrality': 'Centralité des concepts clés du document 1', + 'doc2_network': 'Relations entre concepts clés du document 2', + 'doc2_centrality': 'Centralité des concepts clés du document 2' + }, + 'pt': { + 'doc1_network': 'Relações entre conceitos-chave do documento 1', + 'doc1_centrality': 'Centralidade dos conceitos-chave do documento 1', + 'doc2_network': 'Relações entre conceitos-chave do documento 2', + 'doc2_centrality': 'Centralidade dos conceitos-chave do documento 2' + } + } + + # Obtener traducciones (inglés por defecto) + titles = COMPARE_GRAPH_TITLES.get(lang, COMPARE_GRAPH_TITLES['en']) + + logger.info(f"Iniciando análisis comparativo para idioma: {lang}") + + # Resto del código permanece exactamente igual... + stopwords = get_custom_stopwords(lang) + logger.info(f"Obtenidas {len(stopwords)} stopwords para el idioma {lang}") + + doc1 = nlp(text1) + doc2 = nlp(text2) + + key_concepts1 = identify_key_concepts(doc1, stopwords=stopwords, min_freq=2, min_length=3) + key_concepts2 = identify_key_concepts(doc2, stopwords=stopwords, min_freq=2, min_length=3) + + if not key_concepts1 or not key_concepts2: + raise ValueError("No se pudieron identificar conceptos clave en uno o ambos textos") + + G1 = create_concept_graph(doc1, key_concepts1) + G2 = create_concept_graph(doc2, key_concepts2) + + # Primer grafo con título traducido + plt.figure(figsize=(12, 8)) + fig1 = visualize_concept_graph(G1, lang) + plt.title(titles['doc1_network'], pad=20) + plt.tight_layout() + + # Segundo grafo con título traducido + plt.figure(figsize=(12, 8)) + fig2 = visualize_concept_graph(G2, lang) + plt.title(titles['doc2_network'], pad=20) + plt.tight_layout() + + return fig1, fig2, key_concepts1, key_concepts2 + + except Exception as e: + logger.error(f"Error en compare_semantic_analysis: {str(e)}") + plt.close('all') + raise + finally: + plt.close('all') + +############################################ +def create_concept_table(key_concepts): + """ + Crea una tabla de conceptos clave con sus frecuencias + Args: + key_concepts: Lista de tuplas (concepto, frecuencia) + Returns: + pandas.DataFrame: Tabla formateada de conceptos + """ + try: + if not key_concepts: + logger.warning("Lista de conceptos vacía") + return pd.DataFrame(columns=['Concepto', 'Frecuencia']) + + df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia']) + df['Frecuencia'] = df['Frecuencia'].round(2) + return df + except Exception as e: + logger.error(f"Error en create_concept_table: {str(e)}") + return pd.DataFrame(columns=['Concepto', 'Frecuencia']) + + +########################################################## + +def perform_discourse_analysis(text1, text2, nlp, lang): + """ + Realiza el análisis completo del discurso + Args: + text1: Primer texto a analizar + text2: Segundo texto a analizar + nlp: Modelo de spaCy cargado + lang: Código de idioma + Returns: + dict: Resultados del análisis con gráficos convertidos a bytes + """ + try: + logger.info("Iniciando análisis del discurso...") + + # Verificar inputs + if not text1 or not text2: + raise ValueError("Los textos de entrada no pueden estar vacíos") + + if not nlp: + raise ValueError("Modelo de lenguaje no inicializado") + + # Realizar análisis comparativo + fig1, fig2, key_concepts1, key_concepts2 = compare_semantic_analysis( + text1, text2, nlp, lang + ) + + logger.info("Análisis comparativo completado, convirtiendo figuras a bytes...") + + # Convertir figuras a bytes para almacenamiento + graph1_bytes = fig_to_bytes(fig1) + graph2_bytes = fig_to_bytes(fig2) + + logger.info(f"Figura 1 convertida a {len(graph1_bytes) if graph1_bytes else 0} bytes") + logger.info(f"Figura 2 convertida a {len(graph2_bytes) if graph2_bytes else 0} bytes") + + # Verificar que las conversiones fueron exitosas antes de continuar + if not graph1_bytes or not graph2_bytes: + logger.error("Error al convertir figuras a bytes - obteniendo 0 bytes") + # Opción 1: Devolver error + raise ValueError("No se pudieron convertir las figuras a bytes") + + # Crear tablas de resultados + table1 = create_concept_table(key_concepts1) + table2 = create_concept_table(key_concepts2) + + # Cerrar figuras para liberar memoria + plt.close(fig1) + plt.close(fig2) + + result = { + 'graph1': graph1_bytes, # Bytes en lugar de figura + 'graph2': graph2_bytes, # Bytes en lugar de figura + 'combined_graph': None, # No hay gráfico combinado por ahora + 'key_concepts1': key_concepts1, + 'key_concepts2': key_concepts2, + 'table1': table1, + 'table2': table2, + 'success': True + } + + logger.info("Análisis del discurso completado y listo para almacenamiento") + return result + + except Exception as e: + logger.error(f"Error en perform_discourse_analysis: {str(e)}") + # Asegurar limpieza de recursos + plt.close('all') + return { + 'success': False, + 'error': str(e) + } + finally: + # Asegurar limpieza en todos los casos + plt.close('all') + +################################################################# \ No newline at end of file diff --git a/src/modules/text_analysis/entity_analysis.py b/src/modules/text_analysis/entity_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/text_analysis/idiom_detection.py b/src/modules/text_analysis/idiom_detection.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/text_analysis/intertextual_analysis.py b/src/modules/text_analysis/intertextual_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/text_analysis/morpho_analysis-Back1910-25-9-24.py b/src/modules/text_analysis/morpho_analysis-Back1910-25-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..7a0823063d965ac2ca3715fc1484046dd8be39a6 --- /dev/null +++ b/src/modules/text_analysis/morpho_analysis-Back1910-25-9-24.py @@ -0,0 +1,253 @@ +import spacy +from spacy import displacy +from streamlit.components.v1 import html +import base64 + +from collections import Counter +import re +from ..utils.widget_utils import generate_unique_key + +import logging +logger = logging.getLogger(__name__) + + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', # Light Salmon + 'ADP': '#98FB98', # Pale Green + 'ADV': '#87CEFA', # Light Sky Blue + 'AUX': '#DDA0DD', # Plum + 'CCONJ': '#F0E68C', # Khaki + 'DET': '#FFB6C1', # Light Pink + 'INTJ': '#FF6347', # Tomato + 'NOUN': '#90EE90', # Light Green + 'NUM': '#FAFAD2', # Light Goldenrod Yellow + 'PART': '#D3D3D3', # Light Gray + 'PRON': '#FFA500', # Orange + 'PROPN': '#20B2AA', # Light Sea Green + 'SCONJ': '#DEB887', # Burlywood + 'SYM': '#7B68EE', # Medium Slate Blue + 'VERB': '#FF69B4', # Hot Pink + 'X': '#A9A9A9', # Dark Gray +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', + 'ADP': 'Preposición', + 'ADV': 'Adverbio', + 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', + 'DET': 'Determinante', + 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', + 'NUM': 'Número', + 'PART': 'Partícula', + 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', + 'SCONJ': 'Conjunción Subordinante', + 'SYM': 'Símbolo', + 'VERB': 'Verbo', + 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', + 'ADP': 'Preposition', + 'ADV': 'Adverb', + 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', + 'DET': 'Determiner', + 'INTJ': 'Interjection', + 'NOUN': 'Noun', + 'NUM': 'Number', + 'PART': 'Particle', + 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', + 'SCONJ': 'Subordinating Conjunction', + 'SYM': 'Symbol', + 'VERB': 'Verb', + 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', + 'ADP': 'Préposition', + 'ADV': 'Adverbe', + 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', + 'DET': 'Déterminant', + 'INTJ': 'Interjection', + 'NOUN': 'Nom', + 'NUM': 'Nombre', + 'PART': 'Particule', + 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', + 'SCONJ': 'Conjonction de Subordination', + 'SYM': 'Symbole', + 'VERB': 'Verbe', + 'X': 'Autre', + } +} + +def generate_arc_diagram(doc): + arc_diagrams = [] + for sent in doc.sents: + words = [token.text for token in sent] + # Calculamos el ancho del SVG basado en la longitud de la oración + svg_width = max(100, len(words) * 120) + # Altura fija para cada oración + svg_height = 300 # Controla la altura del SVG + + # Renderizamos el diagrama de dependencias + html = displacy.render(sent, style="dep", options={ + "add_lemma":False, # Introduced in version 2.2.4, this argument prints the lemma’s in a separate row below the token texts. + "arrow_spacing": 12, #This argument is used for adjusting the spacing between arrows in px to avoid overlaps. + "arrow_width": 2, #This argument is used for adjusting the width of arrow head in px. + "arrow_stroke": 2, #This argument is used for adjusting the width of arrow path in px. + "collapse_punct": True, #It attaches punctuation to the tokens. + "collapse_phrases": False, # This argument merges the noun phrases into one token. + "compact":False, # If you will take this argument as true, you will get the “Compact mode” with square arrows that takes up less space. + "color": "#ffffff", + "bg": "#0d6efd", + "compact": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_). + "distance": 100, # Aumentamos la distancia entre palabras + "fine_grained": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_). + "offset_x": 0, # This argument is used for spacing on left side of the SVG in px. + "word_spacing": 25, #This argument is used for adjusting the vertical spacing between words and arcs in px. + }) + + # Ajustamos el tamaño del SVG y el viewBox + html = re.sub(r'width="(\d+)"', f'width="{svg_width}"', html) + html = re.sub(r'height="(\d+)"', f'height="{svg_height}"', html) + html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + #html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', lambda m: f' 1} + + word_colors = {} + for token in doc: + if token.text.lower() in repeated_words: + word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF') + + return word_colors + +def highlight_repeated_words(doc): + word_colors = get_repeated_words_colors(doc) + highlighted_text = [] + for token in doc: + if token.text.lower() in word_colors: + color = word_colors[token.text.lower()] + highlighted_text.append(f'{token.text}') + else: + highlighted_text.append(token.text) + return ' '.join(highlighted_text) + + +# Exportar todas las funciones y variables necesarias +__all__ = [ + 'get_repeated_words_colors', + 'highlight_repeated_words', + 'generate_arc_diagram', + 'perform_pos_analysis', + 'perform_morphological_analysis', + 'analyze_sentence_structure', + 'perform_advanced_morphosyntactic_analysis', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] \ No newline at end of file diff --git a/src/modules/text_analysis/morpho_analysis.py b/src/modules/text_analysis/morpho_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..c4196ac172e0f571f25997ae1df6e51f73e351af --- /dev/null +++ b/src/modules/text_analysis/morpho_analysis.py @@ -0,0 +1,230 @@ +##modules/text_analysis/morpho_analysis.py + +import spacy +from collections import Counter +from spacy import displacy +import re +from streamlit.components.v1 import html +import base64 + +from collections import Counter +import re +from ..utils.widget_utils import generate_unique_key + +import logging +logger = logging.getLogger(__name__) + + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', # Light Salmon + 'ADP': '#98FB98', # Pale Green + 'ADV': '#87CEFA', # Light Sky Blue + 'AUX': '#DDA0DD', # Plum + 'CCONJ': '#F0E68C', # Khaki + 'DET': '#FFB6C1', # Light Pink + 'INTJ': '#FF6347', # Tomato + 'NOUN': '#90EE90', # Light Green + 'NUM': '#FAFAD2', # Light Goldenrod Yellow + 'PART': '#D3D3D3', # Light Gray + 'PRON': '#FFA500', # Orange + 'PROPN': '#20B2AA', # Light Sea Green + 'SCONJ': '#DEB887', # Burlywood + 'SYM': '#7B68EE', # Medium Slate Blue + 'VERB': '#FF69B4', # Hot Pink + 'X': '#A9A9A9', # Dark Gray +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', + 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', + 'VERB': 'Verb', 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', + 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', + 'VERB': 'Verbe', 'X': 'Autre', + }, + 'pt': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposição', 'ADV': 'Advérbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunção Coordenativa', 'DET': 'Determinante', 'INTJ': 'Interjeição', + 'NOUN': 'Substantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronome', + 'PROPN': 'Nome Próprio', 'SCONJ': 'Conjunção Subordinativa', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Outro', + } +} + +############################################################################################# +def get_repeated_words_colors(doc): + word_counts = Counter(token.text.lower() for token in doc if token.pos_ != 'PUNCT') + repeated_words = {word: count for word, count in word_counts.items() if count > 1} + + word_colors = {} + for token in doc: + if token.text.lower() in repeated_words: + word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF') + + return word_colors + +###################################################################################################### +def highlight_repeated_words(doc, word_colors): + highlighted_text = [] + for token in doc: + if token.text.lower() in word_colors: + color = word_colors[token.text.lower()] + highlighted_text.append(f'{token.text}') + else: + highlighted_text.append(token.text) + return ' '.join(highlighted_text) + +################################################################################################# + +def generate_arc_diagram(doc): + """ + Genera diagramas de arco para cada oración en el documento usando spacy-streamlit. + + Args: + doc: Documento procesado por spaCy + Returns: + list: Lista de diagramas en formato HTML + """ + arc_diagrams = [] + try: + options = { + "compact": False, + "color": "#ffffff", + "bg": "#0d6efd", + "font": "Arial", + "offset_x": 50, + "distance": 100, + "arrow_spacing": 12, + "arrow_width": 2, + "arrow_stroke": 2, + "word_spacing": 25, + "maxZoom": 2 + } + + for sent in doc.sents: + try: + # Usar el método render de displacy directamente con las opciones + html = displacy.render(sent, style="dep", options=options) + arc_diagrams.append(html) + except Exception as e: + logger.error(f"Error al renderizar oración: {str(e)}") + continue + + return arc_diagrams + except Exception as e: + logger.error(f"Error general en generate_arc_diagram: {str(e)}") + return None + + +################################################################################################# +def get_detailed_pos_analysis(doc): + """ + Realiza un análisis detallado de las categorías gramaticales (POS) en el texto. + """ + pos_counts = Counter(token.pos_ for token in doc) + total_tokens = len(doc) + pos_analysis = [] + for pos, count in pos_counts.items(): + percentage = (count / total_tokens) * 100 + pos_analysis.append({ + 'pos': pos, + 'count': count, + 'percentage': round(percentage, 2), + 'examples': [token.text for token in doc if token.pos_ == pos][:5] # Primeros 5 ejemplos + }) + return sorted(pos_analysis, key=lambda x: x['count'], reverse=True) + +################################################################################################# +def get_morphological_analysis(doc): + """ + Realiza un análisis morfológico detallado de las palabras en el texto. + """ + morphology_analysis = [] + for token in doc: + if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']: # Enfocarse en categorías principales + morphology_analysis.append({ + 'text': token.text, + 'lemma': token.lemma_, + 'pos': token.pos_, + 'tag': token.tag_, + 'dep': token.dep_, + 'shape': token.shape_, + 'is_alpha': token.is_alpha, + 'is_stop': token.is_stop, + 'morph': str(token.morph) + }) + return morphology_analysis + +################################################################################################# +def get_sentence_structure_analysis(doc): + """ + Analiza la estructura de las oraciones en el texto. + """ + sentence_analysis = [] + for sent in doc.sents: + sentence_analysis.append({ + 'text': sent.text, + 'root': sent.root.text, + 'root_pos': sent.root.pos_, + 'num_tokens': len(sent), + 'num_words': len([token for token in sent if token.is_alpha]), + 'subjects': [token.text for token in sent if "subj" in token.dep_], + 'objects': [token.text for token in sent if "obj" in token.dep_], + 'verbs': [token.text for token in sent if token.pos_ == "VERB"] + }) + return sentence_analysis + +################################################################################################# +def perform_advanced_morphosyntactic_analysis(text, nlp): + """ + Realiza un análisis morfosintáctico avanzado del texto. + """ + try: + # Verificar el idioma del modelo + model_lang = nlp.lang + logger.info(f"Realizando análisis con modelo de idioma: {model_lang}") + + # Procesar el texto con el modelo específico del idioma + doc = nlp(text) + + # Realizar análisis específico según el idioma + return { + 'doc': doc, + 'pos_analysis': get_detailed_pos_analysis(doc), + 'morphological_analysis': get_morphological_analysis(doc), + 'sentence_structure': get_sentence_structure_analysis(doc), + 'arc_diagrams': generate_arc_diagram(doc), # Quitamos nlp.lang + 'repeated_words': get_repeated_words_colors(doc), + 'highlighted_text': highlight_repeated_words(doc, get_repeated_words_colors(doc)) + } + except Exception as e: + logger.error(f"Error en análisis morfosintáctico: {str(e)}") + return None + +# Al final del archivo morph_analysis.py +__all__ = [ + 'perform_advanced_morphosyntactic_analysis', + 'get_repeated_words_colors', + 'highlight_repeated_words', + 'generate_arc_diagram', + 'get_detailed_pos_analysis', + 'get_morphological_analysis', + 'get_sentence_structure_analysis', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] diff --git a/src/modules/text_analysis/semantic_analysis-16-10-2024.py b/src/modules/text_analysis/semantic_analysis-16-10-2024.py new file mode 100644 index 0000000000000000000000000000000000000000..e8684fb9e71fc128772b372e944bd38ec02c131d --- /dev/null +++ b/src/modules/text_analysis/semantic_analysis-16-10-2024.py @@ -0,0 +1,446 @@ +# modules/text_analysis/semantic_analysis.py +# [Mantener todas las importaciones y constantes existentes...] + +import streamlit as st +import spacy +import networkx as nx +import matplotlib.pyplot as plt +import io +import base64 +from collections import Counter, defaultdict +from sklearn.feature_extraction.text import TfidfVectorizer +from sklearn.metrics.pairwise import cosine_similarity +import logging + +logger = logging.getLogger(__name__) + + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', + 'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', + 'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', + 'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', + 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', + 'VERB': 'Verb', 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', + 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', + 'VERB': 'Verbe', 'X': 'Autre', + } +} + +ENTITY_LABELS = { + 'es': { + "Personas": "lightblue", + "Lugares": "lightcoral", + "Inventos": "lightgreen", + "Fechas": "lightyellow", + "Conceptos": "lightpink" + }, + 'en': { + "People": "lightblue", + "Places": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + }, + 'fr': { + "Personnes": "lightblue", + "Lieux": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + } +} + +CUSTOM_STOPWORDS = { + 'es': { + # Artículos + 'el', 'la', 'los', 'las', 'un', 'una', 'unos', 'unas', + # Preposiciones comunes + 'a', 'ante', 'bajo', 'con', 'contra', 'de', 'desde', 'en', + 'entre', 'hacia', 'hasta', 'para', 'por', 'según', 'sin', + 'sobre', 'tras', 'durante', 'mediante', + # Conjunciones + 'y', 'e', 'ni', 'o', 'u', 'pero', 'sino', 'porque', + # Pronombres + 'yo', 'tú', 'él', 'ella', 'nosotros', 'vosotros', 'ellos', + 'ellas', 'este', 'esta', 'ese', 'esa', 'aquel', 'aquella', + # Verbos auxiliares comunes + 'ser', 'estar', 'haber', 'tener', + # Palabras comunes en textos académicos + 'además', 'también', 'asimismo', 'sin embargo', 'no obstante', + 'por lo tanto', 'entonces', 'así', 'luego', 'pues', + # Números escritos + 'uno', 'dos', 'tres', 'primer', 'primera', 'segundo', 'segunda', + # Otras palabras comunes + 'cada', 'todo', 'toda', 'todos', 'todas', 'otro', 'otra', + 'donde', 'cuando', 'como', 'que', 'cual', 'quien', + 'cuyo', 'cuya', 'hay', 'solo', 'ver', 'si', 'no', + # Símbolos y caracteres especiales + '#', '@', '/', '*', '+', '-', '=', '$', '%' + }, + 'en': { + # Articles + 'the', 'a', 'an', + # Common prepositions + 'in', 'on', 'at', 'by', 'for', 'with', 'about', 'against', + 'between', 'into', 'through', 'during', 'before', 'after', + 'above', 'below', 'to', 'from', 'up', 'down', 'of', + # Conjunctions + 'and', 'or', 'but', 'nor', 'so', 'for', 'yet', + # Pronouns + 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'this', + 'that', 'these', 'those', 'my', 'your', 'his', 'her', + # Auxiliary verbs + 'be', 'am', 'is', 'are', 'was', 'were', 'been', 'have', + 'has', 'had', 'do', 'does', 'did', + # Common academic words + 'therefore', 'however', 'thus', 'hence', 'moreover', + 'furthermore', 'nevertheless', + # Numbers written + 'one', 'two', 'three', 'first', 'second', 'third', + # Other common words + 'where', 'when', 'how', 'what', 'which', 'who', + 'whom', 'whose', 'there', 'here', 'just', 'only', + # Symbols and special characters + '#', '@', '/', '*', '+', '-', '=', '$', '%' + }, + 'fr': { + # Articles + 'le', 'la', 'les', 'un', 'une', 'des', + # Prepositions + 'à', 'de', 'dans', 'sur', 'en', 'par', 'pour', 'avec', + 'sans', 'sous', 'entre', 'derrière', 'chez', 'avant', + # Conjunctions + 'et', 'ou', 'mais', 'donc', 'car', 'ni', 'or', + # Pronouns + 'je', 'tu', 'il', 'elle', 'nous', 'vous', 'ils', + 'elles', 'ce', 'cette', 'ces', 'celui', 'celle', + # Auxiliary verbs + 'être', 'avoir', 'faire', + # Academic words + 'donc', 'cependant', 'néanmoins', 'ainsi', 'toutefois', + 'pourtant', 'alors', + # Numbers + 'un', 'deux', 'trois', 'premier', 'première', 'second', + # Other common words + 'où', 'quand', 'comment', 'que', 'qui', 'quoi', + 'quel', 'quelle', 'plus', 'moins', + # Symbols + '#', '@', '/', '*', '+', '-', '=', '$', '%' + } +} + +############################################################################################################## +def get_stopwords(lang_code): + """ + Obtiene el conjunto de stopwords para un idioma específico. + Combina las stopwords de spaCy con las personalizadas. + """ + try: + nlp = spacy.load(f'{lang_code}_core_news_sm') + spacy_stopwords = nlp.Defaults.stop_words + custom_stopwords = CUSTOM_STOPWORDS.get(lang_code, set()) + return spacy_stopwords.union(custom_stopwords) + except: + return CUSTOM_STOPWORDS.get(lang_code, set()) + + +def perform_semantic_analysis(text, nlp, lang_code): + """ + Realiza el análisis semántico completo del texto. + Args: + text: Texto a analizar + nlp: Modelo de spaCy + lang_code: Código del idioma + Returns: + dict: Resultados del análisis + """ + + logger.info(f"Starting semantic analysis for language: {lang_code}") + try: + doc = nlp(text) + key_concepts = identify_key_concepts(doc) + concept_graph = create_concept_graph(doc, key_concepts) + concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) + entities = extract_entities(doc, lang_code) + entity_graph = create_entity_graph(entities) + entity_graph_fig = visualize_entity_graph(entity_graph, lang_code) + + # Convertir figuras a bytes + concept_graph_bytes = fig_to_bytes(concept_graph_fig) + entity_graph_bytes = fig_to_bytes(entity_graph_fig) + + logger.info("Semantic analysis completed successfully") + return { + 'key_concepts': key_concepts, + 'concept_graph': concept_graph_bytes, + 'entities': entities, + 'entity_graph': entity_graph_bytes + } + except Exception as e: + logger.error(f"Error in perform_semantic_analysis: {str(e)}") + raise + + +def fig_to_bytes(fig): + buf = io.BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + return buf.getvalue() + + +def fig_to_html(fig): + buf = io.BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + img_str = base64.b64encode(buf.getvalue()).decode() + return f'' + + + +def identify_key_concepts(doc, min_freq=2, min_length=3): + """ + Identifica conceptos clave en el texto. + Args: + doc: Documento procesado por spaCy + min_freq: Frecuencia mínima para considerar un concepto + min_length: Longitud mínima de palabra para considerar + Returns: + list: Lista de tuplas (concepto, frecuencia) + """ + try: + # Obtener stopwords para el idioma + stopwords = get_stopwords(doc.lang_) + + # Contar frecuencias de palabras + word_freq = Counter() + + for token in doc: + if (token.lemma_.lower() not in stopwords and + len(token.lemma_) >= min_length and + token.is_alpha and + not token.is_punct and + not token.like_num): + + word_freq[token.lemma_.lower()] += 1 + + # Filtrar por frecuencia mínima + concepts = [(word, freq) for word, freq in word_freq.items() + if freq >= min_freq] + + # Ordenar por frecuencia + concepts.sort(key=lambda x: x[1], reverse=True) + + return concepts[:10] # Retornar los 10 conceptos más frecuentes + + except Exception as e: + logger.error(f"Error en identify_key_concepts: {str(e)}") + return [] # Retornar lista vacía en caso de error + + +def create_concept_graph(doc, key_concepts): + """ + Crea un grafo de relaciones entre conceptos. + Args: + doc: Documento procesado por spaCy + key_concepts: Lista de tuplas (concepto, frecuencia) + Returns: + nx.Graph: Grafo de conceptos + """ + try: + G = nx.Graph() + + # Crear un conjunto de conceptos clave para búsqueda rápida + concept_words = {concept[0].lower() for concept in key_concepts} + + # Añadir nodos al grafo + for concept, freq in key_concepts: + G.add_node(concept.lower(), weight=freq) + + # Analizar cada oración + for sent in doc.sents: + # Obtener conceptos en la oración actual + current_concepts = [] + for token in sent: + if token.lemma_.lower() in concept_words: + current_concepts.append(token.lemma_.lower()) + + # Crear conexiones entre conceptos en la misma oración + for i, concept1 in enumerate(current_concepts): + for concept2 in current_concepts[i+1:]: + if concept1 != concept2: + # Si ya existe la arista, incrementar el peso + if G.has_edge(concept1, concept2): + G[concept1][concept2]['weight'] += 1 + # Si no existe, crear nueva arista con peso 1 + else: + G.add_edge(concept1, concept2, weight=1) + + return G + + except Exception as e: + logger.error(f"Error en create_concept_graph: {str(e)}") + # Retornar un grafo vacío en caso de error + return nx.Graph() + +def visualize_concept_graph(G, lang_code): + """ + Visualiza el grafo de conceptos. + Args: + G: Grafo de networkx + lang_code: Código del idioma + Returns: + matplotlib.figure.Figure: Figura con el grafo visualizado + """ + try: + plt.figure(figsize=(12, 8)) + + # Calcular el layout del grafo + pos = nx.spring_layout(G) + + # Obtener pesos de nodos y aristas + node_weights = [G.nodes[node].get('weight', 1) * 500 for node in G.nodes()] + edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()] + + # Dibujar el grafo + nx.draw_networkx_nodes(G, pos, + node_size=node_weights, + node_color='lightblue', + alpha=0.6) + + nx.draw_networkx_edges(G, pos, + width=edge_weights, + alpha=0.5, + edge_color='gray') + + nx.draw_networkx_labels(G, pos, + font_size=10, + font_weight='bold') + + plt.title("Red de conceptos relacionados") + plt.axis('off') + + return plt.gcf() + + except Exception as e: + logger.error(f"Error en visualize_concept_graph: {str(e)}") + # Retornar una figura vacía en caso de error + return plt.figure() + +def create_entity_graph(entities): + G = nx.Graph() + for entity_type, entity_list in entities.items(): + for entity in entity_list: + G.add_node(entity, type=entity_type) + for i, entity1 in enumerate(entity_list): + for entity2 in entity_list[i+1:]: + G.add_edge(entity1, entity2) + return G + +def visualize_entity_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + for entity_type, color in ENTITY_LABELS[lang_code].items(): + node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] + nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) + nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) + ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + + +################################################################################# +def create_topic_graph(topics, doc): + G = nx.Graph() + for topic in topics: + G.add_node(topic, weight=doc.text.count(topic)) + for i, topic1 in enumerate(topics): + for topic2 in topics[i+1:]: + weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) + if weight > 0: + G.add_edge(topic1, topic2, weight=weight) + return G + +def visualize_topic_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] + nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) + edge_weights = [G[u][v]['weight'] for u, v in G.edges()] + nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) + ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + +########################################################################################### +def generate_summary(doc, lang_code): + sentences = list(doc.sents) + summary = sentences[:3] # Toma las primeras 3 oraciones como resumen + return " ".join([sent.text for sent in summary]) + +def extract_entities(doc, lang_code): + entities = defaultdict(list) + for ent in doc.ents: + if ent.label_ in ENTITY_LABELS[lang_code]: + entities[ent.label_].append(ent.text) + return dict(entities) + +def analyze_sentiment(doc, lang_code): + positive_words = sum(1 for token in doc if token.sentiment > 0) + negative_words = sum(1 for token in doc if token.sentiment < 0) + total_words = len(doc) + if positive_words > negative_words: + return "Positivo" + elif negative_words > positive_words: + return "Negativo" + else: + return "Neutral" + +def extract_topics(doc, lang_code): + vectorizer = TfidfVectorizer(stop_words='english', max_features=5) + tfidf_matrix = vectorizer.fit_transform([doc.text]) + feature_names = vectorizer.get_feature_names_out() + return list(feature_names) + +# Asegúrate de que todas las funciones necesarias estén exportadas +__all__ = [ + 'perform_semantic_analysis', + 'identify_key_concepts', + 'create_concept_graph', + 'visualize_concept_graph', + 'create_entity_graph', + 'visualize_entity_graph', + 'generate_summary', + 'extract_entities', + 'analyze_sentiment', + 'create_topic_graph', + 'visualize_topic_graph', + 'extract_topics', + 'ENTITY_LABELS', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] \ No newline at end of file diff --git a/src/modules/text_analysis/semantic_analysis.py b/src/modules/text_analysis/semantic_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..8f7cc5004e47a2831e19c60e710348a42650d53a --- /dev/null +++ b/src/modules/text_analysis/semantic_analysis.py @@ -0,0 +1,475 @@ +# modules/text_analysis/semantic_analysis.py + +# 1. Importaciones estándar del sistema +import logging +import io +import base64 +from collections import Counter, defaultdict + +# 2. Importaciones de terceros +import streamlit as st +import spacy +import networkx as nx +import matplotlib.pyplot as plt +from sklearn.feature_extraction.text import TfidfVectorizer +from sklearn.metrics.pairwise import cosine_similarity + +# Solo configurar si no hay handlers ya configurados +logger = logging.getLogger(__name__) + +# 4. Importaciones locales +from .stopwords import ( + process_text, + clean_text, + get_custom_stopwords, + get_stopwords_for_spacy +) + + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', + 'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', + 'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', + 'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', + 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', + 'VERB': 'Verb', 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', + 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', + 'VERB': 'Verbe', 'X': 'Autre', + } +} + +ENTITY_LABELS = { + 'es': { + "Personas": "lightblue", + "Lugares": "lightcoral", + "Inventos": "lightgreen", + "Fechas": "lightyellow", + "Conceptos": "lightpink" + }, + 'en': { + "People": "lightblue", + "Places": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + }, + 'fr': { + "Personnes": "lightblue", + "Lieux": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + } +} + +########################################################### +def fig_to_bytes(fig): + """Convierte una figura de matplotlib a bytes.""" + try: + buf = io.BytesIO() + fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') + buf.seek(0) + return buf.getvalue() + except Exception as e: + logger.error(f"Error en fig_to_bytes: {str(e)}") + return None + +########################################################### +def perform_semantic_analysis(text, nlp, lang_code): + """ + Realiza el análisis semántico completo del texto. + """ + if not text or not nlp or not lang_code: + logger.error("Parámetros inválidos para el análisis semántico") + return { + 'success': False, + 'error': 'Parámetros inválidos' + } + + try: + logger.info(f"Starting semantic analysis for language: {lang_code}") + + # Procesar texto y remover stopwords + doc = nlp(text) + if not doc: + logger.error("Error al procesar el texto con spaCy") + return { + 'success': False, + 'error': 'Error al procesar el texto' + } + + # Identificar conceptos clave + logger.info("Identificando conceptos clave...") + stopwords = get_custom_stopwords(lang_code) + key_concepts = identify_key_concepts(doc, stopwords=stopwords) + + if not key_concepts: + logger.warning("No se identificaron conceptos clave") + return { + 'success': False, + 'error': 'No se pudieron identificar conceptos clave' + } + + # Crear grafo de conceptos + logger.info(f"Creando grafo de conceptos con {len(key_concepts)} conceptos...") + concept_graph = create_concept_graph(doc, key_concepts) + + if not concept_graph.nodes(): + logger.warning("Se creó un grafo vacío") + return { + 'success': False, + 'error': 'No se pudo crear el grafo de conceptos' + } + + # Visualizar grafo + logger.info("Visualizando grafo...") + plt.clf() # Limpiar figura actual + concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) + + # Convertir a bytes + logger.info("Convirtiendo grafo a bytes...") + graph_bytes = fig_to_bytes(concept_graph_fig) + + if not graph_bytes: + logger.error("Error al convertir grafo a bytes") + return { + 'success': False, + 'error': 'Error al generar visualización' + } + + # Limpiar recursos + plt.close(concept_graph_fig) + plt.close('all') + + result = { + 'success': True, + 'key_concepts': key_concepts, + 'concept_graph': graph_bytes + } + + logger.info("Análisis semántico completado exitosamente") + return result + + except Exception as e: + logger.error(f"Error in perform_semantic_analysis: {str(e)}") + plt.close('all') # Asegurarse de limpiar recursos + return { + 'success': False, + 'error': str(e) + } + finally: + plt.close('all') # Asegurar limpieza incluso si hay error + +############################################################ + +def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3): + """ + Identifica conceptos clave en el texto, excluyendo entidades nombradas. + Args: + doc: Documento procesado por spaCy + stopwords: Lista de stopwords + min_freq: Frecuencia mínima para considerar un concepto + min_length: Longitud mínima del concepto + Returns: + List[Tuple[str, int]]: Lista de tuplas (concepto, frecuencia) + """ + try: + word_freq = Counter() + + # Crear conjunto de tokens que son parte de entidades + entity_tokens = set() + for ent in doc.ents: + entity_tokens.update(token.i for token in ent) + + # Procesar tokens + for token in doc: + # Verificar si el token no es parte de una entidad nombrada + if (token.i not in entity_tokens and # No es parte de una entidad + token.lemma_.lower() not in stopwords and # No es stopword + len(token.lemma_) >= min_length and # Longitud mínima + token.is_alpha and # Es alfabético + not token.is_punct and # No es puntuación + not token.like_num and # No es número + not token.is_space and # No es espacio + not token.is_stop and # No es stopword de spaCy + not token.pos_ == 'PROPN' and # No es nombre propio + not token.pos_ == 'SYM' and # No es símbolo + not token.pos_ == 'NUM' and # No es número + not token.pos_ == 'X'): # No es otro + + # Convertir a minúsculas y añadir al contador + word_freq[token.lemma_.lower()] += 1 + + # Filtrar conceptos por frecuencia mínima y ordenar por frecuencia + concepts = [(word, freq) for word, freq in word_freq.items() + if freq >= min_freq] + concepts.sort(key=lambda x: x[1], reverse=True) + + logger.info(f"Identified {len(concepts)} key concepts after excluding entities") + return concepts[:10] + + except Exception as e: + logger.error(f"Error en identify_key_concepts: {str(e)}") + return [] + +######################################################################## + +def create_concept_graph(doc, key_concepts): + """ + Crea un grafo de relaciones entre conceptos, ignorando entidades. + Args: + doc: Documento procesado por spaCy + key_concepts: Lista de tuplas (concepto, frecuencia) + Returns: + nx.Graph: Grafo de conceptos + """ + try: + G = nx.Graph() + + # Crear un conjunto de conceptos clave para búsqueda rápida + concept_words = {concept[0].lower() for concept in key_concepts} + + # Crear conjunto de tokens que son parte de entidades + entity_tokens = set() + for ent in doc.ents: + entity_tokens.update(token.i for token in ent) + + # Añadir nodos al grafo + for concept, freq in key_concepts: + G.add_node(concept.lower(), weight=freq) + + # Analizar cada oración + for sent in doc.sents: + # Obtener conceptos en la oración actual, excluyendo entidades + current_concepts = [] + for token in sent: + if (token.i not in entity_tokens and + token.lemma_.lower() in concept_words): + current_concepts.append(token.lemma_.lower()) + + # Crear conexiones entre conceptos en la misma oración + for i, concept1 in enumerate(current_concepts): + for concept2 in current_concepts[i+1:]: + if concept1 != concept2: + if G.has_edge(concept1, concept2): + G[concept1][concept2]['weight'] += 1 + else: + G.add_edge(concept1, concept2, weight=1) + + return G + + except Exception as e: + logger.error(f"Error en create_concept_graph: {str(e)}") + return nx.Graph() + +############################################################################### + +def visualize_concept_graph(G, lang_code): + try: + # 1. Diccionario de traducciones + GRAPH_LABELS = { + 'es': { + 'concept_network': 'Relaciones entre conceptos clave', + 'concept_centrality': 'Centralidad de conceptos clave' + }, + 'en': { + 'concept_network': 'Relationships between key concepts', + 'concept_centrality': 'Concept centrality' + }, + 'fr': { + 'concept_network': 'Relations entre concepts clés', + 'concept_centrality': 'Centralité des concepts' + }, + 'pt': { + 'concept_network': 'Relações entre conceitos-chave', + 'concept_centrality': 'Centralidade dos conceitos' + } + } + + # 2. Obtener traducciones (inglés por defecto) + translations = GRAPH_LABELS.get(lang_code, GRAPH_LABELS['en']) + + # Configuración de la figura + fig, ax = plt.subplots(figsize=(15, 10)) + + if not G.nodes(): + logger.warning("Grafo vacío, retornando figura vacía") + return fig + + # Convertir a grafo dirigido para flechas + DG = nx.DiGraph(G) + centrality = nx.degree_centrality(G) + + # Layout consistente + pos = nx.spring_layout(DG, k=2, iterations=50, seed=42) + + # Escalado de elementos visuales + num_nodes = len(DG.nodes()) + scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200 + node_sizes = [DG.nodes[node].get('weight', 1) * scale_factor for node in DG.nodes()] + edge_widths = [DG[u][v].get('weight', 1) for u, v in DG.edges()] + node_colors = [plt.cm.viridis(centrality[node]) for node in DG.nodes()] + + # Dibujar elementos del grafo + nx.draw_networkx_nodes( + DG, pos, + node_size=node_sizes, + node_color=node_colors, + alpha=0.7, + ax=ax + ) + + nx.draw_networkx_edges( + DG, pos, + width=edge_widths, + alpha=0.6, + edge_color='gray', + arrows=True, + arrowsize=20, + arrowstyle='->', + connectionstyle='arc3,rad=0.2', + ax=ax + ) + + # Etiquetas de nodos + font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8 + nx.draw_networkx_labels( + DG, pos, + font_size=font_size, + font_weight='bold', + bbox=dict(facecolor='white', edgecolor='none', alpha=0.7), + ax=ax + ) + + # Barra de color (centralidad) + sm = plt.cm.ScalarMappable( + cmap=plt.cm.viridis, + norm=plt.Normalize(vmin=0, vmax=1) + ) + sm.set_array([]) + plt.colorbar(sm, ax=ax, label=translations['concept_centrality']) + + # Título del gráfico + plt.title(translations['concept_network'], pad=20, fontsize=14) + ax.set_axis_off() + plt.tight_layout() + + return fig + + except Exception as e: + logger.error(f"Error en visualize_concept_graph: {str(e)}") + return plt.figure() + +######################################################################## +def create_entity_graph(entities): + G = nx.Graph() + for entity_type, entity_list in entities.items(): + for entity in entity_list: + G.add_node(entity, type=entity_type) + for i, entity1 in enumerate(entity_list): + for entity2 in entity_list[i+1:]: + G.add_edge(entity1, entity2) + return G + + +############################################################# +def visualize_entity_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + for entity_type, color in ENTITY_LABELS[lang_code].items(): + node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] + nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) + nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) + ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + + +################################################################################# +def create_topic_graph(topics, doc): + G = nx.Graph() + for topic in topics: + G.add_node(topic, weight=doc.text.count(topic)) + for i, topic1 in enumerate(topics): + for topic2 in topics[i+1:]: + weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) + if weight > 0: + G.add_edge(topic1, topic2, weight=weight) + return G + +def visualize_topic_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] + nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) + edge_weights = [G[u][v]['weight'] for u, v in G.edges()] + nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) + ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + +########################################################################################### +def generate_summary(doc, lang_code): + sentences = list(doc.sents) + summary = sentences[:3] # Toma las primeras 3 oraciones como resumen + return " ".join([sent.text for sent in summary]) + +def extract_entities(doc, lang_code): + entities = defaultdict(list) + for ent in doc.ents: + if ent.label_ in ENTITY_LABELS[lang_code]: + entities[ent.label_].append(ent.text) + return dict(entities) + +def analyze_sentiment(doc, lang_code): + positive_words = sum(1 for token in doc if token.sentiment > 0) + negative_words = sum(1 for token in doc if token.sentiment < 0) + total_words = len(doc) + if positive_words > negative_words: + return "Positivo" + elif negative_words > positive_words: + return "Negativo" + else: + return "Neutral" + +def extract_topics(doc, lang_code): + vectorizer = TfidfVectorizer(stop_words='english', max_features=5) + tfidf_matrix = vectorizer.fit_transform([doc.text]) + feature_names = vectorizer.get_feature_names_out() + return list(feature_names) + +# Asegúrate de que todas las funciones necesarias estén exportadas +__all__ = [ + 'perform_semantic_analysis', + 'identify_key_concepts', + 'create_concept_graph', + 'visualize_concept_graph', + 'fig_to_bytes', # Faltaba esta coma + 'ENTITY_LABELS', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] \ No newline at end of file diff --git a/src/modules/text_analysis/semantic_analysis_v0.py b/src/modules/text_analysis/semantic_analysis_v0.py new file mode 100644 index 0000000000000000000000000000000000000000..c1b4d7c9379a0c76f686b8be2e529cf4311cceb5 --- /dev/null +++ b/src/modules/text_analysis/semantic_analysis_v0.py @@ -0,0 +1,264 @@ +#semantic_analysis.py +import streamlit as st +import spacy +import networkx as nx +import matplotlib.pyplot as plt +from collections import Counter +from collections import defaultdict +from sklearn.feature_extraction.text import TfidfVectorizer +from sklearn.metrics.pairwise import cosine_similarity + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', # Light Salmon + 'ADP': '#98FB98', # Pale Green + 'ADV': '#87CEFA', # Light Sky Blue + 'AUX': '#DDA0DD', # Plum + 'CCONJ': '#F0E68C', # Khaki + 'DET': '#FFB6C1', # Light Pink + 'INTJ': '#FF6347', # Tomato + 'NOUN': '#90EE90', # Light Green + 'NUM': '#FAFAD2', # Light Goldenrod Yellow + 'PART': '#D3D3D3', # Light Gray + 'PRON': '#FFA500', # Orange + 'PROPN': '#20B2AA', # Light Sea Green + 'SCONJ': '#DEB887', # Burlywood + 'SYM': '#7B68EE', # Medium Slate Blue + 'VERB': '#FF69B4', # Hot Pink + 'X': '#A9A9A9', # Dark Gray +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', + 'ADP': 'Preposición', + 'ADV': 'Adverbio', + 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', + 'DET': 'Determinante', + 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', + 'NUM': 'Número', + 'PART': 'Partícula', + 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', + 'SCONJ': 'Conjunción Subordinante', + 'SYM': 'Símbolo', + 'VERB': 'Verbo', + 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', + 'ADP': 'Preposition', + 'ADV': 'Adverb', + 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', + 'DET': 'Determiner', + 'INTJ': 'Interjection', + 'NOUN': 'Noun', + 'NUM': 'Number', + 'PART': 'Particle', + 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', + 'SCONJ': 'Subordinating Conjunction', + 'SYM': 'Symbol', + 'VERB': 'Verb', + 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', + 'ADP': 'Préposition', + 'ADV': 'Adverbe', + 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', + 'DET': 'Déterminant', + 'INTJ': 'Interjection', + 'NOUN': 'Nom', + 'NUM': 'Nombre', + 'PART': 'Particule', + 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', + 'SCONJ': 'Conjonction de Subordination', + 'SYM': 'Symbole', + 'VERB': 'Verbe', + 'X': 'Autre', + } +} +######################################################################################################################################## + +# Definimos las etiquetas y colores para cada idioma +ENTITY_LABELS = { + 'es': { + "Personas": "lightblue", + "Conceptos": "lightgreen", + "Lugares": "lightcoral", + "Fechas": "lightyellow" + }, + 'en': { + "People": "lightblue", + "Concepts": "lightgreen", + "Places": "lightcoral", + "Dates": "lightyellow" + }, + 'fr': { + "Personnes": "lightblue", + "Concepts": "lightgreen", + "Lieux": "lightcoral", + "Dates": "lightyellow" + } +} + +######################################################################################################### +def count_pos(doc): + return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT') + +##################################################################################################################### + +def create_semantic_graph(doc, lang): + G = nx.Graph() + word_freq = defaultdict(int) + lemma_to_word = {} + lemma_to_pos = {} + + # Count frequencies of lemmas and map lemmas to their most common word form and POS + for token in doc: + if token.pos_ in ['NOUN', 'VERB']: + lemma = token.lemma_.lower() + word_freq[lemma] += 1 + if lemma not in lemma_to_word or token.text.lower() == lemma: + lemma_to_word[lemma] = token.text + lemma_to_pos[lemma] = token.pos_ + + # Get top 20 most frequent lemmas + top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]] + + # Add nodes + for lemma in top_lemmas: + word = lemma_to_word[lemma] + G.add_node(word, pos=lemma_to_pos[lemma]) + + # Add edges + for token in doc: + if token.lemma_.lower() in top_lemmas: + if token.head.lemma_.lower() in top_lemmas: + source = lemma_to_word[token.lemma_.lower()] + target = lemma_to_word[token.head.lemma_.lower()] + if source != target: # Avoid self-loops + G.add_edge(source, target, label=token.dep_) + + return G, word_freq + +############################################################################################################################################ + +def visualize_semantic_relations(doc, lang): + G = nx.Graph() + word_freq = defaultdict(int) + lemma_to_word = {} + lemma_to_pos = {} + + # Count frequencies of lemmas and map lemmas to their most common word form and POS + for token in doc: + if token.pos_ in ['NOUN', 'VERB']: + lemma = token.lemma_.lower() + word_freq[lemma] += 1 + if lemma not in lemma_to_word or token.text.lower() == lemma: + lemma_to_word[lemma] = token.text + lemma_to_pos[lemma] = token.pos_ + + # Get top 20 most frequent lemmas + top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]] + + # Add nodes + for lemma in top_lemmas: + word = lemma_to_word[lemma] + G.add_node(word, pos=lemma_to_pos[lemma]) + + # Add edges + for token in doc: + if token.lemma_.lower() in top_lemmas: + if token.head.lemma_.lower() in top_lemmas: + source = lemma_to_word[token.lemma_.lower()] + target = lemma_to_word[token.head.lemma_.lower()] + if source != target: # Avoid self-loops + G.add_edge(source, target, label=token.dep_) + + fig, ax = plt.subplots(figsize=(36, 27)) + pos = nx.spring_layout(G, k=0.7, iterations=50) + + node_colors = [POS_COLORS.get(G.nodes[node]['pos'], '#CCCCCC') for node in G.nodes()] + + nx.draw(G, pos, node_color=node_colors, with_labels=True, + node_size=10000, + font_size=16, + font_weight='bold', + arrows=True, + arrowsize=30, + width=3, + edge_color='gray', + ax=ax) + + edge_labels = nx.get_edge_attributes(G, 'label') + nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=14, ax=ax) + + title = { + 'es': "Relaciones Semánticas Relevantes", + 'en': "Relevant Semantic Relations", + 'fr': "Relations Sémantiques Pertinentes" + } + ax.set_title(title[lang], fontsize=24, fontweight='bold') + ax.axis('off') + + legend_elements = [plt.Rectangle((0,0),1,1,fc=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none', + label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}") + for pos in ['NOUN', 'VERB']] + ax.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=16) + + return fig + +############################################################################################################################################ +def identify_and_contextualize_entities(doc, lang): + entities = [] + for ent in doc.ents: + # Obtener el contexto (3 palabras antes y después de la entidad) + start = max(0, ent.start - 3) + end = min(len(doc), ent.end + 3) + context = doc[start:end].text + + entities.append({ + 'text': ent.text, + 'label': ent.label_, + 'start': ent.start, + 'end': ent.end, + 'context': context + }) + + # Identificar conceptos clave (usando sustantivos y verbos más frecuentes) + word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop]) + key_concepts = word_freq.most_common(10) # Top 10 conceptos clave + + return entities, key_concepts + + +############################################################################################################################################ +def perform_semantic_analysis(text, nlp, lang): + doc = nlp(text) + + # Identificar entidades y conceptos clave + entities, key_concepts = identify_and_contextualize_entities(doc, lang) + + # Visualizar relaciones semánticas + relations_graph = visualize_semantic_relations(doc, lang) + + # Imprimir entidades para depuración + print(f"Entidades encontradas ({lang}):") + for ent in doc.ents: + print(f"{ent.text} - {ent.label_}") + + relations_graph = visualize_semantic_relations(doc, lang) + return { + 'entities': entities, + 'key_concepts': key_concepts, + 'relations_graph': relations_graph + } + +__all__ = ['visualize_semantic_relations', 'create_semantic_graph', 'POS_COLORS', 'POS_TRANSLATIONS', 'identify_and_contextualize_entities'] \ No newline at end of file diff --git a/src/modules/text_analysis/semantic_analysis_v00.py b/src/modules/text_analysis/semantic_analysis_v00.py new file mode 100644 index 0000000000000000000000000000000000000000..22a37a74e462656aeb061fc8b6a65723d1a654a5 --- /dev/null +++ b/src/modules/text_analysis/semantic_analysis_v00.py @@ -0,0 +1,153 @@ +#semantic_analysis.py +import streamlit as st +import spacy +import networkx as nx +import matplotlib.pyplot as plt +from collections import Counter, defaultdict +from sklearn.feature_extraction.text import TfidfVectorizer +from sklearn.metrics.pairwise import cosine_similarity + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', + 'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', + 'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', + 'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', + 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', + 'VERB': 'Verb', 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', + 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', + 'VERB': 'Verbe', 'X': 'Autre', + } +} + +ENTITY_LABELS = { + 'es': { + "Personas": "lightblue", + "Lugares": "lightcoral", + "Inventos": "lightgreen", + "Fechas": "lightyellow", + "Conceptos": "lightpink" + }, + 'en': { + "People": "lightblue", + "Places": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + }, + 'fr': { + "Personnes": "lightblue", + "Lieux": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + } +} + +def identify_and_contextualize_entities(doc, lang): + entities = [] + for ent in doc.ents: + # Obtener el contexto (3 palabras antes y después de la entidad) + start = max(0, ent.start - 3) + end = min(len(doc), ent.end + 3) + context = doc[start:end].text + + # Mapear las etiquetas de spaCy a nuestras categorías + if ent.label_ in ['PERSON', 'ORG']: + category = "Personas" if lang == 'es' else "People" if lang == 'en' else "Personnes" + elif ent.label_ in ['LOC', 'GPE']: + category = "Lugares" if lang == 'es' else "Places" if lang == 'en' else "Lieux" + elif ent.label_ in ['PRODUCT']: + category = "Inventos" if lang == 'es' else "Inventions" if lang == 'en' else "Inventions" + elif ent.label_ in ['DATE', 'TIME']: + category = "Fechas" if lang == 'es' else "Dates" if lang == 'en' else "Dates" + else: + category = "Conceptos" if lang == 'es' else "Concepts" if lang == 'en' else "Concepts" + + entities.append({ + 'text': ent.text, + 'label': category, + 'start': ent.start, + 'end': ent.end, + 'context': context + }) + + # Identificar conceptos clave (usando sustantivos y verbos más frecuentes) + word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop]) + key_concepts = word_freq.most_common(10) # Top 10 conceptos clave + + return entities, key_concepts + +def create_concept_graph(text, concepts): + vectorizer = TfidfVectorizer() + tfidf_matrix = vectorizer.fit_transform([text]) + concept_vectors = vectorizer.transform(concepts) + similarity_matrix = cosine_similarity(concept_vectors, concept_vectors) + + G = nx.Graph() + for i, concept in enumerate(concepts): + G.add_node(concept) + for j in range(i+1, len(concepts)): + if similarity_matrix[i][j] > 0.1: + G.add_edge(concept, concepts[j], weight=similarity_matrix[i][j]) + + return G + +def visualize_concept_graph(G, lang): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + + nx.draw_networkx_nodes(G, pos, node_size=3000, node_color='lightblue', ax=ax) + nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) + nx.draw_networkx_edges(G, pos, width=1, ax=ax) + + edge_labels = nx.get_edge_attributes(G, 'weight') + nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8, ax=ax) + + title = { + 'es': "Relaciones Conceptuales", + 'en': "Conceptual Relations", + 'fr': "Relations Conceptuelles" + } + ax.set_title(title[lang], fontsize=16) + ax.axis('off') + + return fig + +def perform_semantic_analysis(text, nlp, lang): + doc = nlp(text) + + # Identificar entidades y conceptos clave + entities, key_concepts = identify_and_contextualize_entities(doc, lang) + + # Crear y visualizar grafo de conceptos + concepts = [concept for concept, _ in key_concepts] + concept_graph = create_concept_graph(text, concepts) + relations_graph = visualize_concept_graph(concept_graph, lang) + + return { + 'entities': entities, + 'key_concepts': key_concepts, + 'relations_graph': relations_graph + } + +__all__ = ['perform_semantic_analysis', 'ENTITY_LABELS', 'POS_TRANSLATIONS'] \ No newline at end of file diff --git a/src/modules/text_analysis/semantic_analysis_v23-9-2024.py b/src/modules/text_analysis/semantic_analysis_v23-9-2024.py new file mode 100644 index 0000000000000000000000000000000000000000..7e1c435e13ca0c6b33bcb707ad5079c48707c581 --- /dev/null +++ b/src/modules/text_analysis/semantic_analysis_v23-9-2024.py @@ -0,0 +1,247 @@ +#semantic_analysis.py +import streamlit as st +import spacy +import networkx as nx +import matplotlib.pyplot as plt +import io +import base64 +from collections import Counter, defaultdict +from sklearn.feature_extraction.text import TfidfVectorizer +from sklearn.metrics.pairwise import cosine_similarity +import logging + +logger = logging.getLogger(__name__) + + +# Define colors for grammatical categories +POS_COLORS = { + 'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', + 'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', + 'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', + 'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', +} + +POS_TRANSLATIONS = { + 'es': { + 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', + 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', + 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', + 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', + 'VERB': 'Verbo', 'X': 'Otro', + }, + 'en': { + 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', + 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', + 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', + 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', + 'VERB': 'Verb', 'X': 'Other', + }, + 'fr': { + 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', + 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', + 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', + 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', + 'VERB': 'Verbe', 'X': 'Autre', + } +} + +ENTITY_LABELS = { + 'es': { + "Personas": "lightblue", + "Lugares": "lightcoral", + "Inventos": "lightgreen", + "Fechas": "lightyellow", + "Conceptos": "lightpink" + }, + 'en': { + "People": "lightblue", + "Places": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + }, + 'fr': { + "Personnes": "lightblue", + "Lieux": "lightcoral", + "Inventions": "lightgreen", + "Dates": "lightyellow", + "Concepts": "lightpink" + } +} + +############################################################################################################## +def perform_semantic_analysis(text, nlp, lang_code): + logger.info(f"Starting semantic analysis for language: {lang_code}") + try: + doc = nlp(text) + + # Conceptos clave y grafo de conceptos + key_concepts = identify_key_concepts(doc) + concept_graph = create_concept_graph(doc, key_concepts) + concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) + #concept_graph_html = fig_to_html(concept_graph_fig) + + # Entidades y grafo de entidades + entities = extract_entities(doc, lang_code) + entity_graph = create_entity_graph(entities) + entity_graph_fig = visualize_entity_graph(entity_graph, lang_code) + #entity_graph_html = fig_to_html(entity_graph_fig) + + logger.info("Semantic analysis completed successfully") + return { + 'doc': doc, + 'key_concepts': key_concepts, + 'concept_graph': concept_graph_fig, + 'entities': entities, + 'entity_graph': entity_graph_fig + } + except Exception as e: + logger.error(f"Error in perform_semantic_analysis: {str(e)}") + raise + +''' +def fig_to_html(fig): + buf = io.BytesIO() + fig.savefig(buf, format='png') + buf.seek(0) + img_str = base64.b64encode(buf.getvalue()).decode() + return f'' +''' + + +def identify_key_concepts(doc): + logger.info("Identifying key concepts") + word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop]) + key_concepts = word_freq.most_common(10) + return [(concept, float(freq)) for concept, freq in key_concepts] + + +def create_concept_graph(doc, key_concepts): + G = nx.Graph() + for concept, freq in key_concepts: + G.add_node(concept, weight=freq) + for sent in doc.sents: + sent_concepts = [token.lemma_.lower() for token in sent if token.lemma_.lower() in dict(key_concepts)] + for i, concept1 in enumerate(sent_concepts): + for concept2 in sent_concepts[i+1:]: + if G.has_edge(concept1, concept2): + G[concept1][concept2]['weight'] += 1 + else: + G.add_edge(concept1, concept2, weight=1) + return G + +def visualize_concept_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G, k=0.5, iterations=50) + node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] + nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightblue', alpha=0.8, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) + edge_weights = [G[u][v]['weight'] for u, v in G.edges()] + nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) + title = { + 'es': "Relaciones entre Conceptos Clave", + 'en': "Key Concept Relations", + 'fr': "Relations entre Concepts Clés" + } + ax.set_title(title[lang_code], fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + +def create_entity_graph(entities): + G = nx.Graph() + for entity_type, entity_list in entities.items(): + for entity in entity_list: + G.add_node(entity, type=entity_type) + for i, entity1 in enumerate(entity_list): + for entity2 in entity_list[i+1:]: + G.add_edge(entity1, entity2) + return G + +def visualize_entity_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + for entity_type, color in ENTITY_LABELS[lang_code].items(): + node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] + nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) + nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) + ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + + +################################################################################# +def create_topic_graph(topics, doc): + G = nx.Graph() + for topic in topics: + G.add_node(topic, weight=doc.text.count(topic)) + for i, topic1 in enumerate(topics): + for topic2 in topics[i+1:]: + weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) + if weight > 0: + G.add_edge(topic1, topic2, weight=weight) + return G + +def visualize_topic_graph(G, lang_code): + fig, ax = plt.subplots(figsize=(12, 8)) + pos = nx.spring_layout(G) + node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] + nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) + nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) + edge_weights = [G[u][v]['weight'] for u, v in G.edges()] + nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) + ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) + ax.axis('off') + plt.tight_layout() + return fig + +########################################################################################### +def generate_summary(doc, lang_code): + sentences = list(doc.sents) + summary = sentences[:3] # Toma las primeras 3 oraciones como resumen + return " ".join([sent.text for sent in summary]) + +def extract_entities(doc, lang_code): + entities = defaultdict(list) + for ent in doc.ents: + if ent.label_ in ENTITY_LABELS[lang_code]: + entities[ent.label_].append(ent.text) + return dict(entities) + +def analyze_sentiment(doc, lang_code): + positive_words = sum(1 for token in doc if token.sentiment > 0) + negative_words = sum(1 for token in doc if token.sentiment < 0) + total_words = len(doc) + if positive_words > negative_words: + return "Positivo" + elif negative_words > positive_words: + return "Negativo" + else: + return "Neutral" + +def extract_topics(doc, lang_code): + vectorizer = TfidfVectorizer(stop_words='english', max_features=5) + tfidf_matrix = vectorizer.fit_transform([doc.text]) + feature_names = vectorizer.get_feature_names_out() + return list(feature_names) + +# Asegúrate de que todas las funciones necesarias estén exportadas +__all__ = [ + 'perform_semantic_analysis', + 'identify_key_concepts', + 'create_concept_graph', + 'visualize_concept_graph', + 'create_entity_graph', + 'visualize_entity_graph', + 'generate_summary', + 'extract_entities', + 'analyze_sentiment', + 'create_topic_graph', + 'visualize_topic_graph', + 'extract_topics', + 'ENTITY_LABELS', + 'POS_COLORS', + 'POS_TRANSLATIONS' +] \ No newline at end of file diff --git a/src/modules/text_analysis/stopwords.py b/src/modules/text_analysis/stopwords.py new file mode 100644 index 0000000000000000000000000000000000000000..844d14f3a10108599907f31e65e63d0189e744d0 --- /dev/null +++ b/src/modules/text_analysis/stopwords.py @@ -0,0 +1,188 @@ +# modules/text_analysis/stopwords.py +import spacy +from typing import Set, List + +def get_custom_stopwords(lang_code: str) -> Set[str]: + """ + Retorna un conjunto de stopwords personalizadas según el idioma. + """ + # Stopwords base en español + # Símbolos, números y caracteres especiales + + SYMBOLS_AND_NUMBERS = { + # Números + '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', + + # Signos de puntuación básicos + '.', ',', ';', ':', '!', '¡', '?', '¿', '"', "'", + + # Símbolos matemáticos + '+', '-', '*', '/', '=', '<', '>', '%', + + # Paréntesis y otros delimitadores + '(', ')', '[', ']', '{', '}', + + # Otros símbolos comunes + '@', '#', '$', '€', '£', '¥', '&', '_', '|', '\\', '/', + + # Caracteres especiales + '•', '·', '…', '—', '–', '°', '´', '`', '^', '¨', + + # Símbolos de ordenamiento + '§', '†', '‡', '¶', + + # Símbolos de copyright y marcas registradas + '©', '®', '™', + + # Fracciones comunes + '½', '¼', '¾', '⅓', '⅔', + + # Otros caracteres especiales + '±', '×', '÷', '∞', '≠', '≤', '≥', '≈', '∑', '∏', '√', + + # Espacios y caracteres de control + ' ', '\t', '\n', '\r', '\f', '\v' +} + spanish_stopwords = { + 'el', 'la', 'los', 'las', 'un', 'una', 'unos', 'unas', 'y', 'o', 'pero', 'si', + 'de', 'del', 'al', 'a', 'ante', 'bajo', 'cabe', 'con', 'contra', 'de', 'desde', + 'en', 'entre', 'hacia', 'hasta', 'para', 'por', 'según', 'sin', 'sobre', 'tras', + 'que', 'más', 'este', 'esta', 'estos', 'estas', 'ese', 'esa', 'esos', 'esas', + 'muy', 'mucho', 'muchos', 'muchas', 'ser', 'estar', 'tener', 'hacer', 'como', + 'cuando', 'donde', 'quien', 'cual', 'mientras', 'sino', 'pues', 'porque', + 'cada', 'cual', 'cuales', 'cuanta', 'cuantas', 'cuanto', 'cuantos', 'uno', 'dos', 'tres', 'cuatro', 'cinco', 'seis', 'siete', 'ocho', 'nueve', 'diez', + 'once', 'doce', 'trece', 'catorce', 'quince', 'dieciséis', 'diecisiete', 'dieciocho', 'diecinueve', 'veinte', + 'treinta', 'cuarenta', 'cincuenta', 'sesenta', 'setenta', 'ochenta', 'noventa', 'cien', 'mil', 'millón', + 'primero', 'segundo', 'tercero', 'cuarto', 'quinto', 'sexto', 'séptimo', 'octavo', 'noveno', 'décimo' + } + + # Stopwords base en inglés + english_stopwords = { + 'the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have', 'i', 'it', 'for', + 'not', 'on', 'with', 'he', 'as', 'you', 'do', 'at', 'this', 'but', 'his', + 'by', 'from', 'they', 'we', 'say', 'her', 'she', 'or', 'an', 'will', 'my', + 'one', 'all', 'would', 'there', 'their', 'what', 'so', 'up', 'out', 'if', + 'about', 'who', 'get', 'which', 'go', 'me', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', + 'eleven', 'twelve', 'thirteen', 'fourteen', 'fifteen', 'sixteen', 'seventeen', 'eighteen', 'nineteen', 'twenty', + 'thirty', 'forty', 'fifty', 'sixty', 'seventy', 'eighty', 'ninety', 'hundred', 'thousand', 'million', + 'first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh', 'eighth', 'ninth', 'tenth' + } + + french_stopwords = { + 'le', 'la', 'les', 'un', 'une', 'des', 'du', 'de', 'et', 'ou', 'mais', 'si', + 'à', 'dans', 'sur', 'pour', 'en', 'vers', 'par', 'avec', 'sans', 'sous', 'sur', + 'que', 'qui', 'quoi', 'dont', 'où', 'quand', 'comment', 'pourquoi', + 'ce', 'cet', 'cette', 'ces', 'mon', 'ton', 'son', 'ma', 'ta', 'sa', + 'mes', 'tes', 'ses', 'notre', 'votre', 'leur', 'nos', 'vos', 'leurs', + 'je', 'tu', 'il', 'elle', 'nous', 'vous', 'ils', 'elles', + 'me', 'te', 'se', 'lui', 'leur', 'y', 'en', 'plus', 'moins', + 'très', 'trop', 'peu', 'beaucoup', 'assez', 'tout', 'toute', 'tous', 'toutes', + 'autre', 'autres', 'même', 'mêmes', 'tel', 'telle', 'tels', 'telles', + 'quel', 'quelle', 'quels', 'quelles', 'quelque', 'quelques', + 'aucun', 'aucune', 'aucuns', 'aucunes', 'plusieurs', 'chaque', + 'être', 'avoir', 'faire', 'dire', 'aller', 'venir', 'voir', 'savoir', + 'pouvoir', 'vouloir', 'falloir', 'devoir', 'croire', 'sembler', + 'alors', 'ainsi', 'car', 'donc', 'or', 'ni', 'ne', 'pas', 'plus', + 'jamais', 'toujours', 'parfois', 'souvent', 'maintenant', 'après', + 'avant', 'pendant', 'depuis', 'déjà', 'encore', 'ici', 'là', + 'oui', 'non', 'peut-être', 'bien', 'mal', 'aussi', 'surtout', + 'c\'est', 'j\'ai', 'n\'est', 'd\'un', 'd\'une', 'qu\'il', 'qu\'elle', + 'un', 'deux', 'trois', 'quatre', 'cinq', 'six', 'sept', 'huit', 'neuf', 'dix', + 'onze', 'douze', 'treize', 'quatorze', 'quinze', 'seize', 'dix-sept', 'dix-huit', 'dix-neuf', 'vingt', + 'trente', 'quarante', 'cinquante', 'soixante', 'soixante-dix', 'quatre-vingts', 'quatre-vingt-dix', 'cent', 'mille', 'million', + 'premier', 'deuxième', 'troisième', 'quatrième', 'cinquième', 'sixième', 'septième', 'huitième', 'neuvième', 'dixième' +} + + stopwords_dict = { + 'es': spanish_stopwords, + 'en': english_stopwords, + 'fr': french_stopwords + } + + # Obtener stopwords del idioma especificado o devolver conjunto vacío si no existe + return stopwords_dict.get(lang_code, set()) + +def process_text(text: str, lang_code: str, nlp) -> List[str]: + """ + Procesa un texto completo, removiendo stopwords, símbolos y números. + + Args: + text (str): Texto a procesar + lang_code (str): Código del idioma ('es', 'en', 'fr') + nlp: Modelo de spaCy cargado + + Returns: + List[str]: Lista de tokens procesados + """ + try: + # Obtener stopwords personalizadas + custom_stopwords = get_custom_stopwords(lang_code) + + # Procesar el texto con spaCy + doc = nlp(text) + + # Filtrar y procesar tokens + processed_tokens = [] + for token in doc: + # Convertir a minúsculas y obtener el lema + lemma = token.lemma_.lower() + + # Aplicar filtros + if (len(lemma) >= 2 and # Longitud mínima + lemma not in custom_stopwords and # No es stopword + not token.is_punct and # No es puntuación + not token.is_space and # No es espacio + lemma not in SYMBOLS_AND_NUMBERS and # No es símbolo o número + not any(char in string.punctuation for char in lemma) and # No contiene puntuación + not any(char.isdigit() for char in lemma)): # No contiene números + + processed_tokens.append(lemma) + + return processed_tokens + + except Exception as e: + logger.error(f"Error en process_text: {str(e)}") + return [] + +def clean_text(text: str) -> str: + """ + Limpia un texto removiendo caracteres especiales y normalizando espacios. + + Args: + text (str): Texto a limpiar + + Returns: + str: Texto limpio + """ + # Remover caracteres especiales y números + cleaned = ''.join(char for char in text if char not in SYMBOLS_AND_NUMBERS) + + # Normalizar espacios + cleaned = ' '.join(cleaned.split()) + + return cleaned.strip() + +def get_stopwords_for_spacy(lang_code: str, nlp) -> Set[str]: + """ + Combina stopwords personalizadas con las de spaCy. + + Args: + lang_code (str): Código del idioma + nlp: Modelo de spaCy + + Returns: + Set[str]: Conjunto combinado de stopwords + """ + custom_stops = get_custom_stopwords(lang_code) + spacy_stops = nlp.Defaults.stop_words if hasattr(nlp.Defaults, 'stop_words') else set() + + return custom_stops.union(spacy_stops) + +# Asegúrate de exportar todas las funciones necesarias +__all__ = [ + 'get_custom_stopwords', + 'process_text', + 'clean_text', + 'get_stopwords_for_spacy', + 'SYMBOLS_AND_NUMBERS' +] \ No newline at end of file diff --git a/src/modules/text_analysis/structure_analysis.py b/src/modules/text_analysis/structure_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/text_analysis/style_analysis.py b/src/modules/text_analysis/style_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/text_analysis/thematic_analysis.py b/src/modules/text_analysis/thematic_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/text_analysis/txt.txt b/src/modules/text_analysis/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/text_analysis/vocabulary_analysis.py b/src/modules/text_analysis/vocabulary_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/ui/__init__.py b/src/modules/ui/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/ui/__pycache__/__init__.cpython-311.pyc b/src/modules/ui/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3ac9684e4704cf8e942f2a15e5fea186fe3be7a0 Binary files /dev/null and b/src/modules/ui/__pycache__/__init__.cpython-311.pyc differ diff --git a/src/modules/ui/__pycache__/ui.cpython-311.pyc b/src/modules/ui/__pycache__/ui.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dcda6c057d448090e4adece4b140c7714344d570 Binary files /dev/null and b/src/modules/ui/__pycache__/ui.cpython-311.pyc differ diff --git a/src/modules/ui/txt.txt b/src/modules/ui/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/ui/ui backUpError_24-9-24.py b/src/modules/ui/ui backUpError_24-9-24.py new file mode 100644 index 0000000000000000000000000000000000000000..e5ce2b4a89d3c1f9bba42093a838ff9b97f7cc17 --- /dev/null +++ b/src/modules/ui/ui backUpError_24-9-24.py @@ -0,0 +1,473 @@ +# Importaciones generales +import streamlit as st +from streamlit_player import st_player # Necesitarás instalar esta librería: pip install streamlit-player +from streamlit_float import * +from streamlit_antd_components import * +from streamlit_option_menu import * +from streamlit_chat import * +import logging +import time +from datetime import datetime +import re +import io +from io import BytesIO +import base64 +import matplotlib.pyplot as plt +import plotly.graph_objects as go +import pandas as pd +import numpy as np +from spacy import displacy +import random + +# Configuración del logger +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + +# Importaciones locales +from translations import get_translations + +# Importaciones locales +from ..studentact.student_activities_v2 import display_student_progress + +# Importaciones directas de los módulos necesarios +from ..auth.auth import authenticate_user, register_user + + +from ..database.database_oldFromV2 import ( + get_student_data, + store_application_request, + store_morphosyntax_result, + store_semantic_result, + store_discourse_analysis_result, + store_chat_history, + create_admin_user, + create_student_user, + store_user_feedback +) + +from ..admin.admin_ui import admin_page + +from ..morphosyntax.morphosyntax_interface import display_morphosyntax_interface + +from ..semantic.semantic_interface_68ok import display_semantic_interface + +from ..discourse.discourse_interface import display_discourse_interface + +# Nueva importación para semantic_float_init +#from ..semantic.semantic_float import semantic_float_init +from ..semantic.semantic_float68ok import semantic_float_init + + +############### Iniciar sesión ###################### + + +def initialize_session_state(): + if 'initialized' not in st.session_state: + st.session_state.clear() + st.session_state.initialized = True + st.session_state.logged_in = False + st.session_state.page = 'login' + st.session_state.username = None + st.session_state.role = None + st.session_state.lang_code = 'es' # Idioma por defecto + +def main(): + logger.info(f"Entrando en main() - Página actual: {st.session_state.page}") + + if 'nlp_models' not in st.session_state: + st.error("Los modelos NLP no están inicializados. Por favor, reinicie la aplicación.") + return + + semantic_float_init() + + if st.session_state.page == 'login': + login_register_page() + elif st.session_state.page == 'admin': + logger.info("Mostrando página de admin") + admin_page() + elif st.session_state.page == 'user': + user_page() + else: + logger.warning(f"Página no reconocida: {st.session_state.page}") + st.error(f"Página no reconocida: {st.session_state.page}") + + logger.info(f"Saliendo de main() - Estado final de la sesión: {st.session_state}") + +############### Después de iniciar sesión ###################### + +def user_page(): + logger.info(f"Entrando en user_page para el usuario: {st.session_state.username}") + + if 'user_data' not in st.session_state or time.time() - st.session_state.get('last_data_fetch', 0) > 60: + with st.spinner("Cargando tus datos..."): + try: + st.session_state.user_data = get_student_data(st.session_state.username) + st.session_state.last_data_fetch = time.time() + except Exception as e: + logger.error(f"Error al obtener datos del usuario: {str(e)}") + st.error("Hubo un problema al cargar tus datos. Por favor, intenta recargar la página.") + return + + logger.info(f"Idioma actual: {st.session_state.lang_code}") + logger.info(f"Modelos NLP cargados: {'nlp_models' in st.session_state}") + + languages = {'Español': 'es', 'English': 'en', 'Français': 'fr'} + + if 'lang_code' not in st.session_state: + st.session_state.lang_code = 'es' # Idioma por defecto + elif not isinstance(st.session_state.lang_code, str) or st.session_state.lang_code not in ['es', 'en', 'fr']: + logger.warning(f"Invalid lang_code: {st.session_state.lang_code}. Setting to default 'es'") + st.session_state.lang_code = 'es' + + # Obtener traducciones + t = get_translations(st.session_state.lang_code) + + # Estilos CSS personalizados (mantener los estilos existentes) + st.markdown(""" + + """, unsafe_allow_html=True) + + # Crear un contenedor para la barra superior + with st.container(): + col1, col2, col3 = st.columns([2, 2, 1]) + with col1: + st.markdown(f"

{t['welcome']}, {st.session_state.username}

", unsafe_allow_html=True) + with col2: + selected_lang = st.selectbox( + t['select_language'], + list(languages.keys()), + index=list(languages.values()).index(st.session_state.lang_code), + key=f"language_selector_{st.session_state.username}_{st.session_state.lang_code}" + ) + new_lang_code = languages[selected_lang] + if st.session_state.lang_code != new_lang_code: + st.session_state.lang_code = new_lang_code + st.rerun() # Esto recargará la página con el nuevo idioma + with col3: + if st.button(t['logout'], key=f"logout_button_{st.session_state.username}_{st.session_state.lang_code}"): + # Implementación temporal de logout + for key in list(st.session_state.keys()): + del st.session_state[key] + st.rerun() + + st.markdown("---") + + # Mostrar resumen de análisis + #st.subheader(t['analysis_summary']) + #col1, col2, col3 = st.columns(3) + #col1.metric(t['morpho_analyses'], len(st.session_state.user_data['morphosyntax_analyses'])) + #col2.metric(t['semantic_analyses'], len(st.session_state.user_data['semantic_analyses'])) + #col3.metric(t['discourse_analyses'], len(st.session_state.user_data['discourse_analyses'])) + + + # Opción para exportar datos + #if st.button(t['export_all_analyses']): + # st.info(t['export_in_progress']) + # Aquí iría la llamada a export_data cuando esté implementada + # export_data(st.session_state.user_data, t) + + # Crear las pestañas + tabs = st.tabs([ + t['morpho_tab'], + t['semantic_tab'], + t['discourse_tab'], + t['activities_tab'], + t['feedback_tab'] + ]) + + # Usar las pestañas creadas + for i, (tab, func) in enumerate(zip(tabs, [ + display_morphosyntax_interface, + display_semantic_interface, + display_discourse_interface, + display_student_progress, + display_feedback_form + ])): + with tab: + try: + if i < 5: # Para las primeras tres pestañas (análisis) + func(st.session_state.lang_code, st.session_state.nlp_models, t, st.session_state.user_data) + elif i == 3: # Para la pestaña de progreso del estudiante + func(st.session_state.username, st.session_state.lang_code, t, st.session_state.user_data) + else: # Para la pestaña de feedback + func(st.session_state.lang_code, t) + except Exception as e: + st.error(f"Error al cargar la pestaña: {str(e)}") + logger.error(f"Error en la pestaña {i}: {str(e)}", exc_info=True) + + logger.debug(f"Translations loaded: {t}") # Log para depuración + logger.info("Finalizada la renderización de user_page") + + + +##################################### + +def login_register_page(): + logger.info("Renderizando página de login/registro") + st.title("AIdeaText") + st.write("Bienvenido. Por favor, inicie sesión o regístrese.") + + left_column, right_column = st.columns([1, 3]) + + with left_column: + tab1, tab2 = st.tabs(["Iniciar Sesión", "Registrarse"]) + + with tab1: + login_form() + + with tab2: + register_form() + + with right_column: + display_videos_and_info() + + +################################################### +def login_form(): + with st.form("login_form"): + username = st.text_input("Correo electrónico") + password = st.text_input("Contraseña", type="password") + submit_button = st.form_submit_button("Iniciar Sesión") + + if submit_button: + success, role = authenticate_user(username, password) + if success: + st.session_state.logged_in = True + st.session_state.username = username + st.session_state.role = role + st.session_state.page = 'admin' if role == 'Administrador' else 'user' + st.rerun() + else: + st.error("Credenciales incorrectas") + + +################################################### +def register_form(): + st.header("Solicitar prueba de la aplicación") + + name = st.text_input("Nombre completo") + email = st.text_input("Correo electrónico institucional") + institution = st.text_input("Institución") + role = st.selectbox("Rol", ["Estudiante", "Profesor", "Investigador", "Otro"]) + reason = st.text_area("¿Por qué estás interesado en probar AIdeaText?") + + if st.button("Enviar solicitud"): + if not name or not email or not institution or not reason: + st.error("Por favor, completa todos los campos.") + elif not is_institutional_email(email): + st.error("Por favor, utiliza un correo electrónico institucional.") + else: + success = store_application_request(name, email, institution, role, reason) + if success: + st.success("Tu solicitud ha sido enviada. Te contactaremos pronto.") + else: + st.error("Hubo un problema al enviar tu solicitud. Por favor, intenta de nuevo más tarde.") + + + +################################################### +def is_institutional_email(email): + forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com'] + return not any(domain in email.lower() for domain in forbidden_domains) + + +################################################### +def display_videos_and_info(): + st.header("Videos: pitch, demos, entrevistas, otros") + + videos = { + "Presentación en PyCon Colombia, Medellín, 2024": "https://www.youtube.com/watch?v=Jn545-IKx5Q", + "Presentación fundación Ser Maaestro": "https://www.youtube.com/watch?v=imc4TI1q164", + "Pitch IFE Explora": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s", + "Entrevista Dr. Guillermo Ruíz": "https://www.youtube.com/watch?v=_ch8cRja3oc", + "Demo versión desktop": "https://www.youtube.com/watch?v=nP6eXbog-ZY" + } + + selected_title = st.selectbox("Selecciona un video tutorial:", list(videos.keys())) + + if selected_title in videos: + try: + st_player(videos[selected_title]) + except Exception as e: + st.error(f"Error al cargar el video: {str(e)}") + + st.markdown(""" + ## Novedades de la versión actual + - Nueva función de análisis semántico + - Soporte para múltiples idiomas + - Interfaz mejorada para una mejor experiencia de usuario + """) + +def display_feedback_form(lang_code, t): + logging.info(f"display_feedback_form called with lang_code: {lang_code}") + + st.header(t['title']) + + name = st.text_input(t['name'], key=f"feedback_name_{lang_code}") + email = st.text_input(t['email'], key=f"feedback_email_{lang_code}") + feedback = st.text_area(t['feedback'], key=f"feedback_text_{lang_code}") + + if st.button(t['submit'], key=f"feedback_submit_{lang_code}"): + if name and email and feedback: + if store_user_feedback(st.session_state.username, name, email, feedback): + st.success(t['success']) + else: + st.error(t['error']) + else: + st.warning("Por favor, completa todos los campos.") + +''' +def display_student_progress(username, lang_code, t): + student_data = get_student_data(username) + + if student_data is None or len(student_data['entries']) == 0: + st.warning("No se encontraron datos para este estudiante.") + st.info("Intenta realizar algunos análisis de texto primero.") + return + + st.title(f"Progreso de {username}") + + with st.expander("Resumen de Actividades y Progreso", expanded=True): + # Resumen de actividades + total_entries = len(student_data['entries']) + st.write(f"Total de análisis realizados: {total_entries}") + + # Gráfico de tipos de análisis + analysis_types = [entry['analysis_type'] for entry in student_data['entries']] + analysis_counts = pd.Series(analysis_types).value_counts() + + fig, ax = plt.subplots() + analysis_counts.plot(kind='bar', ax=ax) + ax.set_title("Tipos de análisis realizados") + ax.set_xlabel("Tipo de análisis") + ax.set_ylabel("Cantidad") + st.pyplot(fig) + + # Progreso a lo largo del tiempo + dates = [datetime.fromisoformat(entry['timestamp']) for entry in student_data['entries']] + analysis_counts = pd.Series(dates).value_counts().sort_index() + + fig, ax = plt.subplots() + analysis_counts.plot(kind='line', ax=ax) + ax.set_title("Análisis realizados a lo largo del tiempo") + ax.set_xlabel("Fecha") + ax.set_ylabel("Cantidad de análisis") + st.pyplot(fig) + +########################################################## + with st.expander("Histórico de Análisis Morfosintácticos"): + morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax'] + for entry in morphosyntax_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + if entry['arc_diagrams']: + st.write(entry['arc_diagrams'][0], unsafe_allow_html=True) + + + ########################################################## + with st.expander("Histórico de Análisis Semánticos"): + semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic'] + for entry in semantic_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + + # Mostrar conceptos clave + if 'key_concepts' in entry: + st.write("Conceptos clave:") + concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']]) + #st.write("Conceptos clave:") + #st.write(concepts_str) + st.markdown(f"
{concepts_str}
", unsafe_allow_html=True) + + # Mostrar gráfico + if 'graph' in entry: + try: + img_bytes = base64.b64decode(entry['graph']) + st.image(img_bytes, caption="Gráfico de relaciones conceptuales") + except Exception as e: + st.error(f"No se pudo mostrar el gráfico: {str(e)}") + +########################################################## + with st.expander("Histórico de Análisis Discursivos"): + discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] + for entry in discourse_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + + # Mostrar conceptos clave para ambos documentos + if 'key_concepts1' in entry: + concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']]) + st.write("Conceptos clave del documento 1:") + #st.write(concepts_str1) + st.markdown(f"
{concepts_str1}
", unsafe_allow_html=True) + + if 'key_concepts2' in entry: + concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']]) + st.write("Conceptos clave del documento 2:") + #st.write(concepts_str2) + st.markdown(f"
{concepts_str2}
", unsafe_allow_html=True) + + try: + if 'combined_graph' in entry and entry['combined_graph']: + img_bytes = base64.b64decode(entry['combined_graph']) + st.image(img_bytes) + elif 'graph1' in entry and 'graph2' in entry: + col1, col2 = st.columns(2) + with col1: + if entry['graph1']: + img_bytes1 = base64.b64decode(entry['graph1']) + st.image(img_bytes1) + with col2: + if entry['graph2']: + img_bytes2 = base64.b64decode(entry['graph2']) + st.image(img_bytes2) + else: + st.write("No se encontraron gráficos para este análisis.") + except Exception as e: + st.error(f"No se pudieron mostrar los gráficos: {str(e)}") + st.write("Datos de los gráficos (para depuración):") + if 'graph1' in entry: + st.write("Graph 1:", entry['graph1'][:100] + "...") + if 'graph2' in entry: + st.write("Graph 2:", entry['graph2'][:100] + "...") + if 'combined_graph' in entry: + st.write("Combined Graph:", entry['combined_graph'][:100] + "...") + +########################################################## + with st.expander("Histórico de Conversaciones con el ChatBot"): + if 'chat_history' in student_data: + for i, chat in enumerate(student_data['chat_history']): + st.subheader(f"Conversación {i+1} - {chat['timestamp']}") + for message in chat['messages']: + if message['role'] == 'user': + st.write("Usuario: " + message['content']) + else: + st.write("Asistente: " + message['content']) + st.write("---") + else: + st.write("No se encontraron conversaciones con el ChatBot.") + + # Añadir logs para depuración + if st.checkbox("Mostrar datos de depuración"): + st.write("Datos del estudiante (para depuración):") + st.json(student_data) + + +''' + +# Definición de __all__ para especificar qué se exporta +__all__ = ['main', 'login_register_page', 'initialize_session_state'] + +# Bloque de ejecución condicional +if __name__ == "__main__": + main() diff --git a/src/modules/ui/ui.py b/src/modules/ui/ui.py new file mode 100644 index 0000000000000000000000000000000000000000..17c073a935ca865a5a186fbbbfe60830f268007e --- /dev/null +++ b/src/modules/ui/ui.py @@ -0,0 +1,342 @@ +# modules/ui/ui.py +import streamlit as st +from streamlit_player import st_player +import logging +from datetime import datetime +from dateutil.parser import parse + +# Configura el logger PRIMERO, antes de cualquier uso +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + +# Importaciones locales +from session_state import initialize_session_state, logout +from translations import get_translations, get_landing_translations +from ..auth.auth import authenticate_user, authenticate_student, authenticate_admin +from ..database.sql_db import store_application_request + +# Intento de importación con logger YA DEFINIDO +try: + from .user_page import user_page +except ImportError as e: + logger.error(f"No se pudo importar user_page: {str(e)}. Asegúrate de que el archivo existe.") + + # Función de respaldo + def user_page(lang_code, t): + st.error("La página de usuario no está disponible. Por favor, contacta al administrador.") + +from ..admin.admin_ui import admin_page + +############################################################# +def main(): + logger.info(f"Entrando en main() - Página actual: {st.session_state.page}") + + if 'nlp_models' not in st.session_state: + logger.error("Los modelos NLP no están inicializados.") + st.error("Los modelos NLP no están inicializados. Por favor, reinicie la aplicación.") + return + + lang_code = st.session_state.get('lang_code', 'es') + t = get_translations(lang_code) + + logger.info(f"Página actual antes de la lógica de enrutamiento: {st.session_state.page}") + + if st.session_state.get('logged_out', False): + st.session_state.logged_out = False + st.session_state.page = 'login' + st.rerun() + + if not st.session_state.get('logged_in', False): + logger.info("Usuario no ha iniciado sesión. Mostrando página de login/registro") + login_register_page(lang_code, t) + elif st.session_state.page == 'user': + if st.session_state.role == 'Administrador': + logger.info("Redirigiendo a la página de administrador") + st.session_state.page = 'Admin' + st.rerun() + else: + logger.info("Renderizando página de usuario") + user_page(lang_code, t) + elif st.session_state.page == "Admin": + logger.info("Renderizando página de administrador") + admin_page() + else: + logger.error(f"Página no reconocida: {st.session_state.page}") + st.error(t.get('unrecognized_page', 'Página no reconocida')) + # Redirigir a la página de usuario en caso de error + st.session_state.page = 'user' + st.rerun() + + logger.info(f"Saliendo de main() - Estado final de la sesión: {st.session_state}") + +############################################################# +############################################################# +def login_register_page(lang_code, t): + # Obtener traducciones específicas para landing page + landing_t = get_landing_translations(lang_code) + + # Language selection dropdown at the top + languages = {'Español': 'es', 'English': 'en', 'Français': 'fr', 'Português': 'pt'} + + # Estilo personalizado para mejorar el espaciado y alineación + st.markdown(""" + + """, unsafe_allow_html=True) + + # Crear contenedor para logos y selector de idioma usando columnas de Streamlit + col1, col2, col3, col4, col5 = st.columns([0.25, 0.25, 1, 1, 1]) + + with col1: + # Logo de ALPHA + st.image("https://huggingface.co/spaces/AIdeaText/v3/resolve/main/assets/img/ALPHA_Startup%20Badges.png", width=100) + + with col2: + # Logo de AIdeaText + st.image("https://huggingface.co/spaces/AIdeaText/v3/resolve/main/assets/img/AIdeaText_Logo_vectores.png", width=100) + + with col5: + # Selector de idioma + selected_lang = st.selectbox( + landing_t['select_language'], + list(languages.keys()), + index=list(languages.values()).index(lang_code), + key=f"landing_language_selector_{lang_code}" + ) + new_lang_code = languages[selected_lang] + if lang_code != new_lang_code: + st.session_state.lang_code = new_lang_code + st.rerun() + + # Main content with columns + left_column, right_column = st.columns([1, 3]) + + with left_column: + tab1, tab2 = st.tabs([landing_t['login'], landing_t['register']]) + + with tab1: + login_form(lang_code, landing_t) + + with tab2: + register_form(lang_code, landing_t) + + with right_column: + display_videos_and_info(lang_code, landing_t) + +############################################################# +############################################################# +def login_form(lang_code, landing_t): + with st.form("login_form"): + username = st.text_input(landing_t['email']) + password = st.text_input(landing_t['password'], type="password") + submit_button = st.form_submit_button(landing_t['login_button']) + + if submit_button: + success, role = authenticate_user(username, password) + if success: + st.session_state.logged_in = True + st.session_state.username = username + st.session_state.role = role + if role == 'Administrador': + st.session_state.page = 'Admin' + else: + st.session_state.page = 'user' + logger.info(f"Usuario autenticado: {username}, Rol: {role}") + st.rerun() + else: + st.error(landing_t['invalid_credentials']) + + +############################################################# +############################################################# +def register_form(lang_code, landing_t): + name = st.text_input(landing_t['name']) + lastname = st.text_input(landing_t['lastname']) + institution = st.text_input(landing_t['institution']) + current_role = st.selectbox(landing_t['current_role'], + [landing_t['professor'], landing_t['student'], landing_t['administrative']]) + + # Definimos el rol por defecto como estudiante + desired_role = landing_t['student'] + + email = st.text_input(landing_t['institutional_email']) + reason = st.text_area(landing_t['interest_reason']) + + if st.button(landing_t['submit_application']): + logger.info(f"Intentando enviar solicitud para {email}") + logger.debug(f"Datos del formulario: name={name}, lastname={lastname}, email={email}, institution={institution}, current_role={current_role}, desired_role={desired_role}, reason={reason}") + + if not name or not lastname or not email or not institution or not reason: + logger.warning("Envío de formulario incompleto") + st.error(landing_t['complete_all_fields']) + elif not is_institutional_email(email): + logger.warning(f"Email no institucional utilizado: {email}") + st.error(landing_t['use_institutional_email']) + else: + logger.info(f"Intentando almacenar solicitud para {email}") + success = store_application_request(name, lastname, email, institution, current_role, desired_role, reason) + if success: + st.success(landing_t['application_sent']) + logger.info(f"Solicitud almacenada exitosamente para {email}") + else: + st.error(landing_t['application_error']) + logger.error(f"Error al almacenar solicitud para {email}") + + +############################################################# +############################################################# +def is_institutional_email(email): + forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com'] + return not any(domain in email.lower() for domain in forbidden_domains) + + +############################################################# +############################################################# +def display_videos_and_info(lang_code, landing_t): + # Crear tabs para cada sección + tab_use_case, tab_videos, tab_events, tab_gallery, tab_news = st.tabs([ + landing_t['use_cases'], + landing_t['presentation_videos'], + landing_t['academic_presentations'], + landing_t['event_photos'], + landing_t['version_control'] + ]) + + # Tab de Casos de uso + with tab_use_case: + use_case_videos = { + "English - Radar use chart": "https://youtu.be/fFbbtlIewgs", + "English - Use AI Bot and arcs charts fuctions": "https://youtu.be/XjM-1oOl-ao", + "English - Arcs use charts, example 1": "https://youtu.be/PdK_bgigVaM", + "English - Arcs use charts, excample 2": "https://youtu.be/7uaV1njPOng", + "Español - Uso del diagrama radar para verificar redacción": "https://www.youtube.com/watch?v=nJP6xscPLBU", + "Español - Uso de los diagramas de arco, ejemplo 1": "https://www.youtube.com/watch?v=ApBIAr2S-bE", + "Español - Uso de los diagramas de arco, ejemplo 2": "https://www.youtube.com/watch?v=JnP2U1Fm0rc", + "Español - Uso de los diagramas de arco, ejemplo 3": "https://www.youtube.com/watch?v=waWWwPTaI-Y", + "Español - Uso del bot para buscar respuestas" : "https://www.youtube.com/watch?v=GFKDS0K2s7E" + } + + selected_title = st.selectbox(landing_t['select_use_case'], list(use_case_videos.keys())) + if selected_title in use_case_videos: + try: + st_player(use_case_videos[selected_title]) + except Exception as e: + st.error(f"Error al cargar el video: {str(e)}") + + # Tab de Videos + with tab_videos: + videos = { + "Reel AIdeaText": "https://youtu.be/hXnwUvN1Q9Q", + "Presentación en SENDA, UNAM. Ciudad de México, México" : "https://www.youtube.com/watch?v=XFLvjST2cE0", + "Presentación en PyCon 2024. Colombia, Medellín": "https://www.youtube.com/watch?v=Jn545-IKx5Q", + "Presentación en Fundación Ser Maaestro. Lima, Perú": "https://www.youtube.com/watch?v=imc4TI1q164", + "Presentación en Explora del IFE, TEC de Monterrey, Nuevo León, México": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s", + "Entrevista con el Dr. Guillermo Ruíz. Lima, Perú": "https://www.youtube.com/watch?v=_ch8cRja3oc", + "Demo de la versión de escritorio.": "https://www.youtube.com/watch?v=nP6eXbog-ZY" + } + + selected_title = st.selectbox(landing_t['select_presentation'], list(videos.keys())) + if selected_title in videos: + try: + st_player(videos[selected_title]) + except Exception as e: + st.error(f"Error al cargar el video: {str(e)}") + + # Tab de Eventos + with tab_events: + st.markdown(""" + ## 2025 + + **El Agente Cognitivo Vinculante como Innovación en el Aprendizaje Adaptativo: el caso de AIdeaText** + IFE CONFERENCE 2025. Organizado por el Instituto para el Futuro de la Educación del TEC de Monterrey. + Nuevo León, México. Del 28 al 30 enero 2025 + + ## 2024 + [1] + AIdeaText, AIdeaText, recurso digital que emplea la técnica de Análisis de Resonancia Central para perfeccionar textos académicos** + V Temporada SENDA - Organizado por el Seminario de Entornos y Narrativas Digitales en la Academia del + Instituto de Investigaciones Antropológicas (IIA) de la Universidad Autonóma de México (UNAM). 22 noviembre 2024 + + [2] + Aproximación al Agente Cognitivo Vinculante (ACV) desde la Teoría del Actor Red (TAR)** + Congreso HeETI 2024: Horizontes Expandidos de la Educación, la Tecnología y la Innovación + Universidad el Claustro de Sor Juana. Del 25 al 27 septiembre 2024 + + [3] + AIdeaText, visualización de mapas semánticos** + PyCon 2024, Organizado por el grupo de desarrolladores independientes de Python. + Universidad EAFIT, Medellín, Colombia. Del 7 al 9 de junio de 2024. + + ## 2023 + **Aproximación al Agente Cognitivo Vinculante (ACV) desde la Teoría del Actor Red (TAR)** + [1] + XVII Congreso Nacional de Investigación Educativa - VII Encuentro de Estudiantes de Posgrado Educación. + Consejo Mexicano de Investigación Educativa (COMIE) + Villahermosa, Tabasco, México. + Del 4 al 8 de diciembre 2023 + + [2] + XXXI Encuentro Internacional de Educación a Distancia + Universidad de Guadalajara. Jalisco, México. + Del 27 al 30 noviembre 2023 + + [3] + IV Temporada SENDA - Seminario de Entornos y Narrativas Digitales en la Academia + Instituto de Investigaciones Antropológicas (IIA), UNAM. + 22 noviembre 2023 + + [4] + 1er Congreso Internacional de Educación Digital + Instituto Politécnico Nacional, sede Zacatecas. México. + Del 23 al 24 de noviembre de 2023 + + [5] + La cuestión de la centralidad del maestro frente a las tecnologías digitales generativas** + Innova Fórum: Ecosistemas de Aprendizaje + Universidad de Guadalajara. Jalisco, México. + Del 16 al 18 de mayo 2023 + """) + + # Tab de Galería + with tab_gallery: + # Contenedor con ancho máximo + with st.container(): + # Dividimos en dos columnas principales + col_left, col_right = st.columns(2) + + # Columna izquierda: Foto 1 grande + with col_left: + # Foto 2 arriba + st.image("assets/img/socialmedia/_MG_2845.JPG", + caption="MakerFaire CDMX 2024", + width=480) # Ajusta este valor según necesites + # use_column_width=True) + + # Foto 3 abajo + st.image("assets/img/socialmedia/Facebook_CoverPhoto-1_820x312.jpg", + caption="MakerFaire CDMX 2024", + width=480) # Ajusta este valor según necesites + # use_column_width=True) + + # Columna derecha: Fotos 2 y 3 una encima de otra + with col_right: + st.image("assets/img/socialmedia/_MG_2790.jpg", + caption="MakerFaire CDMX 2024", + width=540) # Ajusta este valor según necesites + + + # Tab de Novedades - Usar contenido traducido + with tab_news: + st.markdown(f"### {landing_t['latest_version_title']}") + for update in landing_t['version_updates']: + st.markdown(f"- {update}") + +# Definición de __all__ para especificar qué se exporta +__all__ = ['main', 'login_register_page', 'initialize_session_state'] + +# Bloque de ejecución condicional +if __name__ == "__main__": + main() \ No newline at end of file diff --git a/src/modules/ui/ui_BackUp-19-9-2024.py b/src/modules/ui/ui_BackUp-19-9-2024.py new file mode 100644 index 0000000000000000000000000000000000000000..1a8e1fb7c1daf723d04cbd2ca1fa301b4dd78091 --- /dev/null +++ b/src/modules/ui/ui_BackUp-19-9-2024.py @@ -0,0 +1,1160 @@ +# Importaciones generales +import sys +import streamlit as st +import re +import io +from io import BytesIO +import base64 +import matplotlib.pyplot as plt +import plotly.graph_objects as go +import pandas as pd +import numpy as np +import time +from datetime import datetime +from streamlit_player import st_player # Necesitarás instalar esta librería: pip install streamlit-player +from spacy import displacy +import logging +import random + +###################################################### +# Configuración del logger +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + + +###################################################### +#imporraciones locales de traducción +from translations import get_translations + +###################################################### +# Importaciones locales +from ..email.email import send_email_notification + +###################################################### +# Importaciones locales de autenticación y base de datos +from ..auth.auth import ( + authenticate_user, + register_user +) + +###################################################### +from ..database.database_oldFromV2 import ( + create_admin_user, + create_student_user, + get_user, + get_student_data, + store_file_contents, #gestión archivos + retrieve_file_contents, #gestión archivos + get_user_files, #gestión archivos + delete_file, # #gestión archivos + store_application_request, # form + store_user_feedback, # form + store_morphosyntax_result, + store_semantic_result, + store_discourse_analysis_result, + store_chat_history, + export_analysis_and_chat +) + +###################################################### +# Importaciones locales de uiadmin +from ..admin.admin_ui import admin_page + +###################################################### +# Importaciones locales funciones de análisis +from ..text_analysis.morpho_analysis import ( + generate_arc_diagram, + get_repeated_words_colors, + highlight_repeated_words, + POS_COLORS, + POS_TRANSLATIONS, + perform_advanced_morphosyntactic_analysis +) + +###################################################### +from ..text_analysis.semantic_analysis import ( + #visualize_semantic_relations, + perform_semantic_analysis, + create_concept_graph, + visualize_concept_graph +) + +###################################################### +from ..text_analysis.discourse_analysis import ( + perform_discourse_analysis, + display_discourse_analysis_results +) + +###################################################### +from ..chatbot.chatbot import ( + initialize_chatbot, + process_morphosyntactic_input, + process_semantic_input, + process_discourse_input, + process_chat_input, + get_connectors, + #handle_semantic_commands, + generate_topics_visualization, + extract_topics, + get_semantic_chatbot_response +) + +#####################-- Funciones de inicialización y configuración--- ############################################################################## +def initialize_session_state(): + if 'initialized' not in st.session_state: + st.session_state.clear() + st.session_state.initialized = True + st.session_state.logged_in = False + st.session_state.page = 'login' + st.session_state.username = None + st.session_state.role = None + +def main(): + initialize_session_state() + + print(f"Página actual: {st.session_state.page}") + print(f"Rol del usuario: {st.session_state.role}") + + if st.session_state.page == 'login': + login_register_page() + elif st.session_state.page == 'admin': + print("Intentando mostrar página de admin") + admin_page() + elif st.session_state.page == 'user': + user_page() + else: + print(f"Página no reconocida: {st.session_state.page}") + + print(f"Estado final de la sesión: {st.session_state}") + +#############################--- # Funciones de autenticación y registro --- ##################################################################### +def login_register_page(): + st.title("AIdeaText") + + left_column, right_column = st.columns([1, 3]) + + with left_column: + tab1, tab2 = st.tabs(["Iniciar Sesión", "Registrarse"]) + + with tab1: + login_form() + + with tab2: + register_form() + + with right_column: + display_videos_and_info() + +def login_form(): + with st.form("login_form"): + username = st.text_input("Correo electrónico") + password = st.text_input("Contraseña", type="password") + submit_button = st.form_submit_button("Iniciar Sesión") + + if submit_button: + success, role = authenticate_user(username, password) + if success: + st.session_state.logged_in = True + st.session_state.username = username + st.session_state.role = role + st.session_state.page = 'admin' if role == 'Administrador' else 'user' + st.rerun() + else: + st.error("Credenciales incorrectas") + +def register_form(): + st.header("Solicitar prueba de la aplicación") + + name = st.text_input("Nombre completo") + email = st.text_input("Correo electrónico institucional") + institution = st.text_input("Institución") + role = st.selectbox("Rol", ["Estudiante", "Profesor", "Investigador", "Otro"]) + reason = st.text_area("¿Por qué estás interesado en probar AIdeaText?") + + if st.button("Enviar solicitud"): + logger.info(f"Attempting to submit application for {email}") + logger.debug(f"Form data: name={name}, email={email}, institution={institution}, role={role}, reason={reason}") + + if not name or not email or not institution or not reason: + logger.warning("Incomplete form submission") + st.error("Por favor, completa todos los campos.") + elif not is_institutional_email(email): + logger.warning(f"Non-institutional email used: {email}") + st.error("Por favor, utiliza un correo electrónico institucional.") + else: + logger.info(f"Attempting to store application for {email}") + success = store_application_request(name, email, institution, role, reason) + if success: + st.success("Tu solicitud ha sido enviada. Te contactaremos pronto.") + logger.info(f"Application request stored successfully for {email}") + else: + st.error("Hubo un problema al enviar tu solicitud. Por favor, intenta de nuevo más tarde.") + logger.error(f"Failed to store application request for {email}") + +def is_institutional_email(email): + forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com'] + return not any(domain in email.lower() for domain in forbidden_domains) + +###########################################--- Funciones de interfaz general --- ###################################################### + +def user_page(): + # Asumimos que el idioma seleccionado está almacenado en st.session_state.lang_code + # Si no está definido, usamos 'es' como valor predeterminado + t = get_translations(lang_code) + + st.title(t['welcome']) + st.write(f"{t['hello']}, {st.session_state.username}") + + # Dividir la pantalla en dos columnas + col1, col2 = st.columns(2) + + with col1: + st.subheader(t['chat_title']) + display_chatbot_interface(lang_code) + + with col2: + st.subheader(t['results_title']) + if 'current_analysis' in st.session_state and st.session_state.current_analysis is not None: + display_analysis_results(st.session_state.current_analysis, lang_code) + if st.button(t['export_button']): + if export_analysis_and_chat(st.session_state.username, st.session_state.current_analysis, st.session_state.messages): + st.success(t['export_success']) + else: + st.error(t['export_error']) + else: + st.info(t['no_analysis']) + +def admin_page(): + st.title("Panel de Administración") + st.write(f"Bienvenida, {st.session_state.username}") + + st.header("Crear Nuevo Usuario Estudiante") + new_username = st.text_input("Correo electrónico del nuevo usuario", key="admin_new_username") + new_password = st.text_input("Contraseña", type="password", key="admin_new_password") + if st.button("Crear Usuario", key="admin_create_user"): + if create_student_user(new_username, new_password): + st.success(f"Usuario estudiante {new_username} creado exitosamente") + else: + st.error("Error al crear el usuario estudiante") + + # Aquí puedes añadir más funcionalidades para el panel de administración + +def display_videos_and_info(): + st.header("Videos: pitch, demos, entrevistas, otros") + + videos = { + "Presentación en PyCon Colombia, Medellín, 2024": "https://www.youtube.com/watch?v=Jn545-IKx5Q", + "Presentación fundación Ser Maaestro": "https://www.youtube.com/watch?v=imc4TI1q164", + "Pitch IFE Explora": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s", + "Entrevista Dr. Guillermo Ruíz": "https://www.youtube.com/watch?v=_ch8cRja3oc", + "Demo versión desktop": "https://www.youtube.com/watch?v=nP6eXbog-ZY" + } + + selected_title = st.selectbox("Selecciona un video tutorial:", list(videos.keys())) + + if selected_title in videos: + try: + st_player(videos[selected_title]) + except Exception as e: + st.error(f"Error al cargar el video: {str(e)}") + + st.markdown(""" + ## Novedades de la versión actual + - Nueva función de análisis semántico + - Soporte para múltiples idiomas + - Interfaz mejorada para una mejor experiencia de usuario + """) + +def display_feedback_form(lang_code, t): + logging.info(f"display_feedback_form called with lang_code: {lang_code}") + + st.header(t['title']) + + name = st.text_input(t['name'], key=f"feedback_name_{lang_code}") + email = st.text_input(t['email'], key=f"feedback_email_{lang_code}") + feedback = st.text_area(t['feedback'], key=f"feedback_text_{lang_code}") + + if st.button(t['submit'], key=f"feedback_submit_{lang_code}"): + if name and email and feedback: + if store_user_feedback(st.session_state.username, name, email, feedback): + st.success(t['success']) + else: + st.error(t['error']) + else: + st.warning("Por favor, completa todos los campos.") + +def display_student_progress(username, lang_code, t): + student_data = get_student_data(username) + + if student_data is None or len(student_data['entries']) == 0: + st.warning("No se encontraron datos para este estudiante.") + st.info("Intenta realizar algunos análisis de texto primero.") + return + + st.title(f"Progreso de {username}") + + with st.expander("Resumen de Actividades y Progreso", expanded=True): + # Resumen de actividades + total_entries = len(student_data['entries']) + st.write(f"Total de análisis realizados: {total_entries}") + + # Gráfico de tipos de análisis + analysis_types = [entry['analysis_type'] for entry in student_data['entries']] + analysis_counts = pd.Series(analysis_types).value_counts() + + fig, ax = plt.subplots() + analysis_counts.plot(kind='bar', ax=ax) + ax.set_title("Tipos de análisis realizados") + ax.set_xlabel("Tipo de análisis") + ax.set_ylabel("Cantidad") + st.pyplot(fig) + + # Progreso a lo largo del tiempo + dates = [datetime.fromisoformat(entry['timestamp']) for entry in student_data['entries']] + analysis_counts = pd.Series(dates).value_counts().sort_index() + + fig, ax = plt.subplots() + analysis_counts.plot(kind='line', ax=ax) + ax.set_title("Análisis realizados a lo largo del tiempo") + ax.set_xlabel("Fecha") + ax.set_ylabel("Cantidad de análisis") + st.pyplot(fig) + +########################################################## + with st.expander("Histórico de Análisis Morfosintácticos"): + morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax'] + for entry in morphosyntax_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + if entry['arc_diagrams']: + st.write(entry['arc_diagrams'][0], unsafe_allow_html=True) + + + ########################################################## + with st.expander("Histórico de Análisis Semánticos"): + semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic'] + for entry in semantic_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + + # Mostrar conceptos clave + if 'key_concepts' in entry: + st.write("Conceptos clave:") + concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']]) + #st.write("Conceptos clave:") + #st.write(concepts_str) + st.markdown(f"
{concepts_str}
", unsafe_allow_html=True) + + # Mostrar gráfico + if 'graph' in entry: + try: + img_bytes = base64.b64decode(entry['graph']) + st.image(img_bytes, caption="Gráfico de relaciones conceptuales") + except Exception as e: + st.error(f"No se pudo mostrar el gráfico: {str(e)}") + +########################################################## + with st.expander("Histórico de Análisis Discursivos"): + discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] + for entry in discourse_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + + # Mostrar conceptos clave para ambos documentos + if 'key_concepts1' in entry: + concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']]) + st.write("Conceptos clave del documento 1:") + #st.write(concepts_str1) + st.markdown(f"
{concepts_str1}
", unsafe_allow_html=True) + + if 'key_concepts2' in entry: + concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']]) + st.write("Conceptos clave del documento 2:") + #st.write(concepts_str2) + st.markdown(f"
{concepts_str2}
", unsafe_allow_html=True) + + try: + if 'combined_graph' in entry and entry['combined_graph']: + img_bytes = base64.b64decode(entry['combined_graph']) + st.image(img_bytes) + elif 'graph1' in entry and 'graph2' in entry: + col1, col2 = st.columns(2) + with col1: + if entry['graph1']: + img_bytes1 = base64.b64decode(entry['graph1']) + st.image(img_bytes1) + with col2: + if entry['graph2']: + img_bytes2 = base64.b64decode(entry['graph2']) + st.image(img_bytes2) + else: + st.write("No se encontraron gráficos para este análisis.") + except Exception as e: + st.error(f"No se pudieron mostrar los gráficos: {str(e)}") + st.write("Datos de los gráficos (para depuración):") + if 'graph1' in entry: + st.write("Graph 1:", entry['graph1'][:100] + "...") + if 'graph2' in entry: + st.write("Graph 2:", entry['graph2'][:100] + "...") + if 'combined_graph' in entry: + st.write("Combined Graph:", entry['combined_graph'][:100] + "...") + +########################################################## + with st.expander("Histórico de Conversaciones con el ChatBot"): + if 'chat_history' in student_data: + for i, chat in enumerate(student_data['chat_history']): + st.subheader(f"Conversación {i+1} - {chat['timestamp']}") + for message in chat['messages']: + if message['role'] == 'user': + st.write("Usuario: " + message['content']) + else: + st.write("Asistente: " + message['content']) + st.write("---") + else: + st.write("No se encontraron conversaciones con el ChatBot.") + + # Añadir logs para depuración + if st.checkbox("Mostrar datos de depuración"): + st.write("Datos del estudiante (para depuración):") + st.json(student_data) + +#####################--- Funciones de manejo de archivos --- ############################################################################# + +def handle_file_upload(username, lang_code, nlp_models, t, analysis_type): + get_text = get_text if callable(get_text) else lambda key, section, default: t.get(key, default) + st.subheader(get_text('file_upload_section', analysis_type.upper(), 'File Upload')) + + uploaded_file = st.file_uploader( + get_text('file_uploader', analysis_type.upper(), 'Upload a file'), + type=['txt', 'pdf', 'docx', 'doc', 'odt'] + ) + + if uploaded_file is not None: + file_contents = read_file_contents(uploaded_file) + + if store_file_contents(username, uploaded_file.name, file_contents, analysis_type): + st.success(get_text('file_upload_success', analysis_type.upper(), 'File uploaded successfully')) + return file_contents, uploaded_file.name + else: + st.error(get_text('file_upload_error', analysis_type.upper(), 'Error uploading file')) + + return None, None + +def read_file_contents(uploaded_file): + # Implementar la lógica para leer diferentes tipos de archivos + # Por ahora, asumimos que es un archivo de texto + return uploaded_file.getvalue().decode('utf-8') + +######################--- Funciones generales de análisis ---######################################################## +def display_analysis_results(analysis, lang_code, t): + if analysis is None: + st.warning(t.get('no_analysis', "No hay análisis disponible.")) + return + + if not isinstance(analysis, dict): + st.error(f"Error: El resultado del análisis no es un diccionario. Tipo actual: {type(analysis)}") + return + + if 'type' not in analysis: + st.error("Error: El resultado del análisis no contiene la clave 'type'") + st.write("Claves presentes en el resultado:", list(analysis.keys())) + return + + if analysis['type'] == 'morphosyntactic': + st.subheader(t.get('morphosyntactic_title', "Análisis Morfosintáctico")) + display_morphosyntax_results(analysis['result'], lang_code, t) + elif analysis['type'] == 'semantic': + st.subheader(t.get('semantic_title', "Análisis Semántico")) + display_semantic_results(analysis['result'], lang_code, t) + elif analysis['type'] == 'discourse': + st.subheader(t.get('discourse_title', "Análisis del Discurso")) + display_discourse_results(analysis['result'], lang_code, t) + else: + st.warning(t.get('no_analysis', "No hay análisis disponible.")) + + # Mostrar el contenido completo del análisis para depuración + st.write("Contenido completo del análisis:", analysis) + +def handle_user_input(user_input, lang_code, nlp_models, analysis_type, file_contents=None): + response = process_chat_input(user_input, lang_code, nlp_models, analysis_type, file_contents, t) + # Procesa la respuesta y actualiza la interfaz de usuario + + +###################################--- Funciones específicas de análisis morfosintáctico ---################################################################ + +def display_morphosyntax_analysis_interface(user_input, nlp_models, lang_code, t): + get_text = get_text if callable(get_text) else lambda key, section, default: t.get(key, default) + logging.info(f"Displaying morphosyntax analysis interface. Language code: {lang_code}") + + # Inicializar el historial del chat si no existe + if 'morphosyntax_chat_history' not in st.session_state: + initial_message = get_text('initial_message', 'MORPHOSYNTACTIC', + "Este es un chatbot para análisis morfosintáctico. Para generar un diagrama de arco, " + "use el comando /analisis_morfosintactico seguido del texto entre corchetes.") + st.session_state.morphosyntax_chat_history = [{"role": "assistant", "content": initial_message}] + + # Contenedor para el chat + chat_container = st.container() + + # Mostrar el historial del chat + with chat_container: + for message in st.session_state.morphosyntax_chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + if "visualization" in message: + st.components.v1.html(message["visualization"], height=450, scrolling=True) + + # Input del usuario + user_input = st.chat_input(get_text('chat_placeholder', 'MORPHOSYNTACTIC', + "Ingrese su mensaje o use /analisis_morfosintactico [texto] para analizar")) + + if user_input: + # Añadir el mensaje del usuario al historial + st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) + + # Procesar el input del usuario + if user_input.startswith('/analisis_morfosintactico'): + text_to_analyze = user_input.split('[', 1)[1].rsplit(']', 1)[0] + try: + result = perform_advanced_morphosyntactic_analysis(text_to_analyze, nlp_models[lang_code]) + + # Guardar el resultado en el estado de la sesión + st.session_state.current_analysis = { + 'type': 'morphosyntactic', + 'result': result + } + + # Añadir el resultado al historial del chat + response = get_text('analysis_completed', 'MORPHOSYNTACTIC', 'Análisis morfosintáctico completado.') + st.session_state.morphosyntax_chat_history.append({ + "role": "assistant", + "content": response, + "visualization": result['arc_diagram'][0] if result['arc_diagram'] else None + }) + + # Guardar resultados en la base de datos + if store_morphosyntax_result( + st.session_state.username, + text_to_analyze, + get_repeated_words_colors(nlp_models[lang_code](text_to_analyze)), + result['arc_diagram'], + result['pos_analysis'], + result['morphological_analysis'], + result['sentence_structure'] + ): + st.success(get_text('success_message', 'MORPHOSYNTACTIC', 'Análisis guardado correctamente.')) + else: + st.error(get_text('error_message', 'MORPHOSYNTACTIC', 'Hubo un problema al guardar el análisis.')) + + except Exception as e: + error_message = get_text('analysis_error', 'MORPHOSYNTACTIC', f'Ocurrió un error durante el análisis: {str(e)}') + st.session_state.morphosyntax_chat_history.append({"role": "assistant", "content": error_message}) + logging.error(f"Error in morphosyntactic analysis: {str(e)}") + else: + # Aquí puedes procesar otros tipos de inputs del usuario si es necesario + response = get_text('command_not_recognized', 'MORPHOSYNTACTIC', + "Comando no reconocido. Use /analisis_morfosintactico [texto] para realizar un análisis.") + st.session_state.morphosyntax_chat_history.append({"role": "assistant", "content": response}) + + # Forzar la actualización de la interfaz + st.rerun() + + logging.info("Morphosyntax analysis interface displayed successfully") + + +################################################################################################# +def display_morphosyntax_results(result, lang_code, t): + if result is None: + st.warning(t['no_results']) # Añade esta traducción a tu diccionario + return + + # doc = result['doc'] + # advanced_analysis = result['advanced_analysis'] + advanced_analysis = result + + # Mostrar leyenda (código existente) + st.markdown(f"##### {t['legend']}") + legend_html = "
" + for pos, color in POS_COLORS.items(): + if pos in POS_TRANSLATIONS[lang_code]: + legend_html += f"
{POS_TRANSLATIONS[lang_code][pos]}
" + legend_html += "
" + st.markdown(legend_html, unsafe_allow_html=True) + + # Mostrar análisis de palabras repetidas (código existente) + if 'repeated_words' in advanced_analysis: + with st.expander(t['repeated_words'], expanded=True): + st.markdown(advanced_analysis['repeated_words'], unsafe_allow_html=True) + + # Mostrar estructura de oraciones + if 'sentence_structure' in advanced_analysis: + with st.expander(t['sentence_structure'], expanded=True): + for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): + sentence_str = ( + f"**{t['sentence']} {i+1}** " + f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " + f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- " + f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- " + f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}" + ) + st.markdown(sentence_str) + else: + st.warning("No se encontró información sobre la estructura de las oraciones.") + + + # Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico + col1, col2 = st.columns(2) + + with col1: + with st.expander(t['pos_analysis'], expanded=True): + pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) + + # Traducir las etiquetas POS a sus nombres en el idioma seleccionado + pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Renombrar las columnas para mayor claridad + pos_df = pos_df.rename(columns={ + 'pos': t['grammatical_category'], + 'count': t['count'], + 'percentage': t['percentage'], + 'examples': t['examples'] + }) + + # Mostrar el dataframe + st.dataframe(pos_df) + + with col2: + with st.expander(t['morphological_analysis'], expanded=True): + morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) + + # Definir el mapeo de columnas + column_mapping = { + 'text': t['word'], + 'lemma': t['lemma'], + 'pos': t['grammatical_category'], + 'dep': t['dependency'], + 'morph': t['morphology'] + } + + # Renombrar las columnas existentes + morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns}) + + # Traducir las categorías gramaticales + morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Traducir las dependencias + dep_translations = { + 'es': { + 'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', + 'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', + 'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', + 'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', + 'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal', + 'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva', + 'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', + 'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo', + 'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', + 'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación' + }, + 'en': { + 'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', + 'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', + 'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', + 'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', + 'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', + 'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', + 'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', + 'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', + 'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' + }, + 'fr': { + 'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', + 'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique', + 'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', + 'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', + 'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant', + 'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée', + 'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', + 'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation' + } + } + morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x)) + + # Traducir la morfología + def translate_morph(morph_string, lang_code): + morph_translations = { + 'es': { + 'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido', + 'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', + 'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', + 'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', + 'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', + 'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', + 'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' + }, + 'en': { + 'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', + 'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', + 'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', + 'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', + 'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' + }, + 'fr': { + 'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom', + 'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', + 'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', + 'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe', + 'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' + } + } + for key, value in morph_translations[lang_code].items(): + morph_string = morph_string.replace(key, value) + return morph_string + + morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code)) + + # Seleccionar y ordenar las columnas a mostrar + columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']] + columns_to_display = [col for col in columns_to_display if col in morph_df.columns] + + # Mostrar el DataFrame + st.dataframe(morph_df[columns_to_display]) + + # Mostrar diagramas de arco (código existente) + #with st.expander(t['arc_diagram'], expanded=True): + # sentences = list(doc.sents) + # arc_diagrams = [] + # for i, sent in enumerate(sentences): + # st.subheader(f"{t['sentence']} {i+1}") + # html = displacy.render(sent, style="dep", options={"distance": 100}) + # html = html.replace('height="375"', 'height="200"') + # html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + # html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', lambda m: f'{concepts_str}", unsafe_allow_html=True) + + # Mostrar gráfico + if 'graph' in entry: + try: + img_bytes = base64.b64decode(entry['graph']) + st.image(img_bytes, caption="Gráfico de relaciones conceptuales") + except Exception as e: + st.error(f"No se pudo mostrar el gráfico: {str(e)}") + +########################################################## + with st.expander("Histórico de Análisis Discursivos"): + discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] + for entry in discourse_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + + # Mostrar conceptos clave para ambos documentos + if 'key_concepts1' in entry: + concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']]) + st.write("Conceptos clave del documento 1:") + #st.write(concepts_str1) + st.markdown(f"
{concepts_str1}
", unsafe_allow_html=True) + + if 'key_concepts2' in entry: + concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']]) + st.write("Conceptos clave del documento 2:") + #st.write(concepts_str2) + st.markdown(f"
{concepts_str2}
", unsafe_allow_html=True) + + try: + if 'combined_graph' in entry and entry['combined_graph']: + img_bytes = base64.b64decode(entry['combined_graph']) + st.image(img_bytes) + elif 'graph1' in entry and 'graph2' in entry: + col1, col2 = st.columns(2) + with col1: + if entry['graph1']: + img_bytes1 = base64.b64decode(entry['graph1']) + st.image(img_bytes1) + with col2: + if entry['graph2']: + img_bytes2 = base64.b64decode(entry['graph2']) + st.image(img_bytes2) + else: + st.write("No se encontraron gráficos para este análisis.") + except Exception as e: + st.error(f"No se pudieron mostrar los gráficos: {str(e)}") + st.write("Datos de los gráficos (para depuración):") + if 'graph1' in entry: + st.write("Graph 1:", entry['graph1'][:100] + "...") + if 'graph2' in entry: + st.write("Graph 2:", entry['graph2'][:100] + "...") + if 'combined_graph' in entry: + st.write("Combined Graph:", entry['combined_graph'][:100] + "...") + +########################################################## + with st.expander("Histórico de Conversaciones con el ChatBot"): + if 'chat_history' in student_data: + for i, chat in enumerate(student_data['chat_history']): + st.subheader(f"Conversación {i+1} - {chat['timestamp']}") + for message in chat['messages']: + if message['role'] == 'user': + st.write("Usuario: " + message['content']) + else: + st.write("Asistente: " + message['content']) + st.write("---") + else: + st.write("No se encontraron conversaciones con el ChatBot.") + + # Añadir logs para depuración + if st.checkbox("Mostrar datos de depuración"): + st.write("Datos del estudiante (para depuración):") + st.json(student_data) + +#####################--- Funciones de manejo de archivos --- ############################################################################# + +def handle_file_upload(username, lang_code, nlp_models, t, analysis_type): + st.subheader(t['get_text']('file_upload_section', analysis_type.upper(), 'File Upload')) + + uploaded_file = st.file_uploader( + t['get_text']('file_uploader', analysis_type.upper(), 'Upload a file'), + type=['txt', 'pdf', 'docx', 'doc', 'odt'] + ) + + if uploaded_file is not None: + file_contents = read_file_contents(uploaded_file) + + if store_file_contents(username, uploaded_file.name, file_contents, analysis_type): + st.success(t['get_text']('file_upload_success', analysis_type.upper(), 'File uploaded successfully')) + return file_contents, uploaded_file.name + else: + st.error(t['get_text']('file_upload_error', analysis_type.upper(), 'Error uploading file')) + + return None, None + +def read_file_contents(uploaded_file): + # Implementar la lógica para leer diferentes tipos de archivos + # Por ahora, asumimos que es un archivo de texto + return uploaded_file.getvalue().decode('utf-8') + +######################--- Funciones generales de análisis ---######################################################## +def display_analysis_results(analysis, lang_code, t): + if analysis is None: + st.warning(t.get('no_analysis', "No hay análisis disponible.")) + return + + if not isinstance(analysis, dict): + st.error(f"Error: El resultado del análisis no es un diccionario. Tipo actual: {type(analysis)}") + return + + if 'type' not in analysis: + st.error("Error: El resultado del análisis no contiene la clave 'type'") + st.write("Claves presentes en el resultado:", list(analysis.keys())) + return + + if analysis['type'] == 'morphosyntactic': + st.subheader(t.get('morphosyntactic_title', "Análisis Morfosintáctico")) + display_morphosyntax_results(analysis['result'], lang_code, t) + elif analysis['type'] == 'semantic': + st.subheader(t.get('semantic_title', "Análisis Semántico")) + display_semantic_results(analysis['result'], lang_code, t) + elif analysis['type'] == 'discourse': + st.subheader(t.get('discourse_title', "Análisis del Discurso")) + display_discourse_results(analysis['result'], lang_code, t) + else: + st.warning(t.get('no_analysis', "No hay análisis disponible.")) + + # Mostrar el contenido completo del análisis para depuración + st.write("Contenido completo del análisis:", analysis) + +def handle_user_input(user_input, lang_code, nlp_models, analysis_type, file_contents=None): + response = process_chat_input(user_input, lang_code, nlp_models, analysis_type, file_contents, t) + # Procesa la respuesta y actualiza la interfaz de usuario + + +###################################--- Funciones específicas de análisis morfosintáctico ---################################################################ + +def display_morphosyntax_analysis_interface(user_input, nlp_models, lang_code, t): + logging.info(f"Displaying morphosyntax analysis interface. Language code: {lang_code}") + + # Inicializar el historial del chat si no existe + if 'morphosyntax_chat_history' not in st.session_state: + initial_message = t['get_text']('initial_message', 'MORPHOSYNTACTIC', + "Este es un chatbot para análisis morfosintáctico. Para generar un diagrama de arco, " + "use el comando /analisis_morfosintactico seguido del texto entre corchetes.") + st.session_state.morphosyntax_chat_history = [{"role": "assistant", "content": initial_message}] + + # Contenedor para el chat + chat_container = st.container() + + # Mostrar el historial del chat + with chat_container: + for message in st.session_state.morphosyntax_chat_history: + with st.chat_message(message["role"]): + st.write(message["content"]) + if "visualization" in message: + st.components.v1.html(message["visualization"], height=450, scrolling=True) + + # Input del usuario + user_input = st.chat_input(t['get_text']('chat_placeholder', 'MORPHOSYNTACTIC', + "Ingrese su mensaje o use /analisis_morfosintactico [texto] para analizar")) + + if user_input: + # Añadir el mensaje del usuario al historial + st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) + + # Procesar el input del usuario + if user_input.startswith('/analisis_morfosintactico'): + text_to_analyze = user_input.split('[', 1)[1].rsplit(']', 1)[0] + try: + result = perform_advanced_morphosyntactic_analysis(text_to_analyze, nlp_models[lang_code]) + + # Guardar el resultado en el estado de la sesión + st.session_state.current_analysis = { + 'type': 'morphosyntactic', + 'result': result + } + + # Añadir el resultado al historial del chat + response = t['get_text']('analysis_completed', 'MORPHOSYNTACTIC', 'Análisis morfosintáctico completado.') + st.session_state.morphosyntax_chat_history.append({ + "role": "assistant", + "content": response, + "visualization": result['arc_diagram'][0] if result['arc_diagram'] else None + }) + + # Guardar resultados en la base de datos + if store_morphosyntax_result( + st.session_state.username, + text_to_analyze, + get_repeated_words_colors(nlp_models[lang_code](text_to_analyze)), + result['arc_diagram'], + result['pos_analysis'], + result['morphological_analysis'], + result['sentence_structure'] + ): + st.success(t['get_text']('success_message', 'MORPHOSYNTACTIC', 'Análisis guardado correctamente.')) + else: + st.error(t['get_text']('error_message', 'MORPHOSYNTACTIC', 'Hubo un problema al guardar el análisis.')) + + except Exception as e: + error_message = t['get_text']('analysis_error', 'MORPHOSYNTACTIC', f'Ocurrió un error durante el análisis: {str(e)}') + st.session_state.morphosyntax_chat_history.append({"role": "assistant", "content": error_message}) + logging.error(f"Error in morphosyntactic analysis: {str(e)}") + else: + # Aquí puedes procesar otros tipos de inputs del usuario si es necesario + response = t['get_text']('command_not_recognized', 'MORPHOSYNTACTIC', + "Comando no reconocido. Use /analisis_morfosintactico [texto] para realizar un análisis.") + st.session_state.morphosyntax_chat_history.append({"role": "assistant", "content": response}) + + # Forzar la actualización de la interfaz + st.experimental_rerun() + + logging.info("Morphosyntax analysis interface displayed successfully") + + +################################################################################################# +def display_morphosyntax_results(result, lang_code, t): + if result is None: + st.warning(t['no_results']) # Añade esta traducción a tu diccionario + return + + # doc = result['doc'] + # advanced_analysis = result['advanced_analysis'] + advanced_analysis = result + + # Mostrar leyenda (código existente) + st.markdown(f"##### {t['legend']}") + legend_html = "
" + for pos, color in POS_COLORS.items(): + if pos in POS_TRANSLATIONS[lang_code]: + legend_html += f"
{POS_TRANSLATIONS[lang_code][pos]}
" + legend_html += "
" + st.markdown(legend_html, unsafe_allow_html=True) + + # Mostrar análisis de palabras repetidas (código existente) + if 'repeated_words' in advanced_analysis: + with st.expander(t['repeated_words'], expanded=True): + st.markdown(advanced_analysis['repeated_words'], unsafe_allow_html=True) + + # Mostrar estructura de oraciones + if 'sentence_structure' in advanced_analysis: + with st.expander(t['sentence_structure'], expanded=True): + for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): + sentence_str = ( + f"**{t['sentence']} {i+1}** " + f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " + f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- " + f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- " + f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}" + ) + st.markdown(sentence_str) + else: + st.warning("No se encontró información sobre la estructura de las oraciones.") + + + # Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico + col1, col2 = st.columns(2) + + with col1: + with st.expander(t['pos_analysis'], expanded=True): + pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) + + # Traducir las etiquetas POS a sus nombres en el idioma seleccionado + pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Renombrar las columnas para mayor claridad + pos_df = pos_df.rename(columns={ + 'pos': t['grammatical_category'], + 'count': t['count'], + 'percentage': t['percentage'], + 'examples': t['examples'] + }) + + # Mostrar el dataframe + st.dataframe(pos_df) + + with col2: + with st.expander(t['morphological_analysis'], expanded=True): + morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) + + # Definir el mapeo de columnas + column_mapping = { + 'text': t['word'], + 'lemma': t['lemma'], + 'pos': t['grammatical_category'], + 'dep': t['dependency'], + 'morph': t['morphology'] + } + + # Renombrar las columnas existentes + morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns}) + + # Traducir las categorías gramaticales + morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Traducir las dependencias + dep_translations = { + 'es': { + 'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', + 'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', + 'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', + 'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', + 'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal', + 'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva', + 'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', + 'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo', + 'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', + 'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación' + }, + 'en': { + 'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', + 'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', + 'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', + 'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', + 'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', + 'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', + 'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', + 'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', + 'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' + }, + 'fr': { + 'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', + 'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique', + 'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', + 'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', + 'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant', + 'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée', + 'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', + 'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation' + } + } + morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x)) + + # Traducir la morfología + def translate_morph(morph_string, lang_code): + morph_translations = { + 'es': { + 'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido', + 'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', + 'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', + 'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', + 'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', + 'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', + 'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' + }, + 'en': { + 'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', + 'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', + 'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', + 'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', + 'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' + }, + 'fr': { + 'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom', + 'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', + 'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', + 'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe', + 'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' + } + } + for key, value in morph_translations[lang_code].items(): + morph_string = morph_string.replace(key, value) + return morph_string + + morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code)) + + # Seleccionar y ordenar las columnas a mostrar + columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']] + columns_to_display = [col for col in columns_to_display if col in morph_df.columns] + + # Mostrar el DataFrame + st.dataframe(morph_df[columns_to_display]) + + # Mostrar diagramas de arco (código existente) + #with st.expander(t['arc_diagram'], expanded=True): + # sentences = list(doc.sents) + # arc_diagrams = [] + # for i, sent in enumerate(sentences): + # st.subheader(f"{t['sentence']} {i+1}") + # html = displacy.render(sent, style="dep", options={"distance": 100}) + # html = html.replace('height="375"', 'height="200"') + # html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + # html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', lambda m: f'{concepts_str}", unsafe_allow_html=True) + + # Mostrar gráfico + if 'graph' in entry: + try: + img_bytes = base64.b64decode(entry['graph']) + st.image(img_bytes, caption="Gráfico de relaciones conceptuales") + except Exception as e: + st.error(f"No se pudo mostrar el gráfico: {str(e)}") + +########################################################## + with st.expander("Histórico de Análisis Discursivos"): + discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] + for entry in discourse_entries: + st.subheader(f"Análisis del {entry['timestamp']}") + + # Mostrar conceptos clave para ambos documentos + if 'key_concepts1' in entry: + concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']]) + st.write("Conceptos clave del documento 1:") + #st.write(concepts_str1) + st.markdown(f"
{concepts_str1}
", unsafe_allow_html=True) + + if 'key_concepts2' in entry: + concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']]) + st.write("Conceptos clave del documento 2:") + #st.write(concepts_str2) + st.markdown(f"
{concepts_str2}
", unsafe_allow_html=True) + + try: + if 'combined_graph' in entry and entry['combined_graph']: + img_bytes = base64.b64decode(entry['combined_graph']) + st.image(img_bytes) + elif 'graph1' in entry and 'graph2' in entry: + col1, col2 = st.columns(2) + with col1: + if entry['graph1']: + img_bytes1 = base64.b64decode(entry['graph1']) + st.image(img_bytes1) + with col2: + if entry['graph2']: + img_bytes2 = base64.b64decode(entry['graph2']) + st.image(img_bytes2) + else: + st.write("No se encontraron gráficos para este análisis.") + except Exception as e: + st.error(f"No se pudieron mostrar los gráficos: {str(e)}") + st.write("Datos de los gráficos (para depuración):") + if 'graph1' in entry: + st.write("Graph 1:", entry['graph1'][:100] + "...") + if 'graph2' in entry: + st.write("Graph 2:", entry['graph2'][:100] + "...") + if 'combined_graph' in entry: + st.write("Combined Graph:", entry['combined_graph'][:100] + "...") + +########################################################## + with st.expander("Histórico de Conversaciones con el ChatBot"): + if 'chat_history' in student_data: + for i, chat in enumerate(student_data['chat_history']): + st.subheader(f"Conversación {i+1} - {chat['timestamp']}") + for message in chat['messages']: + if message['role'] == 'user': + st.write("Usuario: " + message['content']) + else: + st.write("Asistente: " + message['content']) + st.write("---") + else: + st.write("No se encontraron conversaciones con el ChatBot.") + + # Añadir logs para depuración + if st.checkbox("Mostrar datos de depuración"): + st.write("Datos del estudiante (para depuración):") + st.json(student_data) + +################################################################################################## +def display_morphosyntax_analysis_interface(nlp_models, lang_code): + translations = { + 'es': { + 'title': "AIdeaText - Análisis morfológico y sintáctico", + 'input_label': "Ingrese un texto para analizar (máximo 5,000 palabras", + 'input_placeholder': "Esta funcionalidad le ayudará con dos competencias:\n" + "[1] \"Escribe diversos tipos de textos en su lengua materna\"\n" + "[2] \"Lee diversos tipos de textos escritos en su lengua materna\"\n\n" + "Ingrese su texto aquí para analizar...", + 'analyze_button': "Analizar texto", + 'repeated_words': "Palabras repetidas", + 'legend': "Leyenda: Categorías gramaticales", + 'arc_diagram': "Análisis sintáctico: Diagrama de arco", + 'sentence': "Oración", + 'success_message': "Análisis guardado correctamente.", + 'error_message': "Hubo un problema al guardar el análisis. Por favor, inténtelo de nuevo.", + 'warning_message': "Por favor, ingrese un texto para analizar.", + 'initial_message': "Ingrese un texto y presione 'Analizar texto' para comenzar.", + 'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero.", + 'pos_analysis': "Análisis de categorías gramaticales", + 'morphological_analysis': "Análisis morfológico", + 'sentence_structure': "Estructura de oraciones", + 'word': "Palabra", + 'count': "Cantidad", + 'percentage': "Porcentaje", + 'examples': "Ejemplos", + 'lemma': "Lema", + 'tag': "Etiqueta", + 'dep': "Dependencia", + 'morph': "Morfología", + 'root': "Raíz", + 'subjects': "Sujetos", + 'objects': "Objetos", + 'verbs': "Verbos", + 'grammatical_category': "Categoría gramatical", + 'dependency': "Dependencia", + 'morphology': "Morfología" + }, + 'en': { + 'title': "AIdeaText - Morphological and Syntactic Analysis", + 'input_label': "Enter a text to analyze (max 5,000 words):", + 'input_placeholder': "This functionality will help you with two competencies:\n" + "[1] \"Write various types of texts in your native language\"\n" + "[2] \"Read various types of written texts in your native language\"\n\n" + "Enter your text here to analyze...", + 'analyze_button': "Analyze text", + 'repeated_words': "Repeated words", + 'legend': "Legend: Grammatical categories", + 'arc_diagram': "Syntactic analysis: Arc diagram", + 'sentence': "Sentence", + 'success_message': "Analysis saved successfully.", + 'error_message': "There was a problem saving the analysis. Please try again.", + 'warning_message': "Please enter a text to analyze.", + 'initial_message': "Enter a text and press 'Analyze text' to start.", + 'no_results': "No results available. Please perform an analysis first.", + 'pos_analysis': "Part of Speech Analysis", + 'morphological_analysis': "Morphological Analysis", + 'sentence_structure': "Sentence Structure", + 'word': "Word", + 'count': "Count", + 'percentage': "Percentage", + 'examples': "Examples", + 'lemma': "Lemma", + 'tag': "Tag", + 'dep': "Dependency", + 'morph': "Morphology", + 'root': "Root", + 'subjects': "Subjects", + 'objects': "Objects", + 'verbs': "Verbs", + 'grammatical_category': "Grammatical category", + 'dependency': "Dependency", + 'morphology': "Morphology" + }, + 'fr': { + 'title': "AIdeaText - Analyse morphologique et syntaxique", + 'input_label': "Entrez un texte à analyser (max 5 000 mots) :", + 'input_placeholder': "Cette fonctionnalité vous aidera avec deux compétences :\n" + "[1] \"Écrire divers types de textes dans votre langue maternelle\"\n" + "[2] \"Lire divers types de textes écrits dans votre langue maternelle\"\n\n" + "Entrez votre texte ici pour l'analyser...", + 'analyze_button': "Analyser le texte", + 'repeated_words': "Mots répétés", + 'legend': "Légende : Catégories grammaticales", + 'arc_diagram': "Analyse syntaxique : Diagramme en arc", + 'sentence': "Phrase", + 'success_message': "Analyse enregistrée avec succès.", + 'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse. Veuillez réessayer.", + 'warning_message': "Veuillez entrer un texte à analyser.", + 'initial_message': "Entrez un texte et appuyez sur 'Analyser le texte' pour commencer.", + 'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse.", + 'pos_analysis': "Analyse des parties du discours", + 'morphological_analysis': "Analyse morphologique", + 'sentence_structure': "Structure des phrases", + 'word': "Mot", + 'count': "Nombre", + 'percentage': "Pourcentage", + 'examples': "Exemples", + 'lemma': "Lemme", + 'tag': "Étiquette", + 'dep': "Dépendance", + 'morph': "Morphologie", + 'root': "Racine", + 'subjects': "Sujets", + 'objects': "Objets", + 'verbs': "Verbes", + 'grammatical_category': "Catégorie grammaticale", + 'dependency': "Dépendance", + 'morphology': "Morphologie" + } + } + + t = translations[lang_code] + + input_key = f"morphosyntax_input_{lang_code}" + + if input_key not in st.session_state: + st.session_state[input_key] = "" + + sentence_input = st.text_area( + t['input_label'], + height=150, + placeholder=t['input_placeholder'], + value=st.session_state[input_key], + key=f"text_area_{lang_code}", + on_change=lambda: setattr(st.session_state, input_key, st.session_state[f"text_area_{lang_code}"]) + ) + + if st.button(t['analyze_button'], key=f"analyze_button_{lang_code}"): + current_input = st.session_state[input_key] + if current_input: + doc = nlp_models[lang_code](current_input) + + # Análisis morfosintáctico avanzado + advanced_analysis = perform_advanced_morphosyntactic_analysis(current_input, nlp_models[lang_code]) + + # Guardar el resultado en el estado de la sesión + st.session_state.morphosyntax_result = { + 'doc': doc, + 'advanced_analysis': advanced_analysis + } + + # Mostrar resultados + display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t) + + # Guardar resultados + if store_morphosyntax_result( + st.session_state.username, + current_input, + get_repeated_words_colors(doc), + advanced_analysis['arc_diagram'], + advanced_analysis['pos_analysis'], + advanced_analysis['morphological_analysis'], + advanced_analysis['sentence_structure'] + ): + st.success(t['success_message']) + else: + st.error(t['error_message']) + else: + st.warning(t['warning_message']) + elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None: + + # Si hay un resultado guardado, mostrarlo + display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t) + else: + st.info(t['initial_message']) # Añade esta traducción a tu diccionario + +################################################################################################# +################################################################################################# +def display_morphosyntax_results(result, lang_code, t): + if result is None: + st.warning(t['no_results']) # Añade esta traducción a tu diccionario + return + + # doc = result['doc'] + # advanced_analysis = result['advanced_analysis'] + advanced_analysis = result + + # Mostrar leyenda (código existente) + st.markdown(f"##### {t['legend']}") + legend_html = "
" + for pos, color in POS_COLORS.items(): + if pos in POS_TRANSLATIONS[lang_code]: + legend_html += f"
{POS_TRANSLATIONS[lang_code][pos]}
" + legend_html += "
" + st.markdown(legend_html, unsafe_allow_html=True) + + # Mostrar análisis de palabras repetidas (código existente) + if 'repeated_words' in advanced_analysis: + with st.expander(t['repeated_words'], expanded=True): + st.markdown(advanced_analysis['repeated_words'], unsafe_allow_html=True) + + # Mostrar estructura de oraciones + if 'sentence_structure' in advanced_analysis: + with st.expander(t['sentence_structure'], expanded=True): + for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): + sentence_str = ( + f"**{t['sentence']} {i+1}** " + f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " + f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- " + f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- " + f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}" + ) + st.markdown(sentence_str) + else: + st.warning("No se encontró información sobre la estructura de las oraciones.") + + + # Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico + col1, col2 = st.columns(2) + + with col1: + with st.expander(t['pos_analysis'], expanded=True): + pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) + + # Traducir las etiquetas POS a sus nombres en el idioma seleccionado + pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Renombrar las columnas para mayor claridad + pos_df = pos_df.rename(columns={ + 'pos': t['grammatical_category'], + 'count': t['count'], + 'percentage': t['percentage'], + 'examples': t['examples'] + }) + + # Mostrar el dataframe + st.dataframe(pos_df) + + with col2: + with st.expander(t['morphological_analysis'], expanded=True): + morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) + + # Definir el mapeo de columnas + column_mapping = { + 'text': t['word'], + 'lemma': t['lemma'], + 'pos': t['grammatical_category'], + 'dep': t['dependency'], + 'morph': t['morphology'] + } + + # Renombrar las columnas existentes + morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns}) + + # Traducir las categorías gramaticales + morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Traducir las dependencias + dep_translations = { + 'es': { + 'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', + 'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', + 'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', + 'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', + 'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal', + 'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva', + 'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', + 'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo', + 'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', + 'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación' + }, + 'en': { + 'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', + 'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', + 'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', + 'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', + 'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', + 'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', + 'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', + 'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', + 'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' + }, + 'fr': { + 'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', + 'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique', + 'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', + 'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', + 'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant', + 'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée', + 'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', + 'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation' + } + } + morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x)) + + # Traducir la morfología + def translate_morph(morph_string, lang_code): + morph_translations = { + 'es': { + 'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido', + 'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', + 'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', + 'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', + 'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', + 'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', + 'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' + }, + 'en': { + 'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', + 'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', + 'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', + 'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', + 'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' + }, + 'fr': { + 'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom', + 'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', + 'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', + 'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe', + 'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' + } + } + for key, value in morph_translations[lang_code].items(): + morph_string = morph_string.replace(key, value) + return morph_string + + morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code)) + + # Seleccionar y ordenar las columnas a mostrar + columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']] + columns_to_display = [col for col in columns_to_display if col in morph_df.columns] + + # Mostrar el DataFrame + st.dataframe(morph_df[columns_to_display]) + + # Mostrar diagramas de arco (código existente) + #with st.expander(t['arc_diagram'], expanded=True): + # sentences = list(doc.sents) + # arc_diagrams = [] + # for i, sent in enumerate(sentences): + # st.subheader(f"{t['sentence']} {i+1}") + # html = displacy.render(sent, style="dep", options={"distance": 100}) + # html = html.replace('height="375"', 'height="200"') + # html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + # html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', lambda m: f'{POS_TRANSLATIONS[lang_code][pos]}" + legend_html += "" + st.markdown(legend_html, unsafe_allow_html=True) + + # Mostrar análisis de palabras repetidas (código existente) + word_colors = get_repeated_words_colors(doc) + with st.expander(t['repeated_words'], expanded=True): + highlighted_text = highlight_repeated_words(doc, word_colors) + st.markdown(highlighted_text, unsafe_allow_html=True) + + # Mostrar estructura de oraciones + with st.expander(t['sentence_structure'], expanded=True): + for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): + sentence_str = ( + f"**{t['sentence']} {i+1}** " + f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " + f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- " + f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- " + f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}" + ) + st.markdown(sentence_str) + + # Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico + col1, col2 = st.columns(2) + + with col1: + with st.expander(t['pos_analysis'], expanded=True): + pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) + + # Traducir las etiquetas POS a sus nombres en el idioma seleccionado + pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Renombrar las columnas para mayor claridad + pos_df = pos_df.rename(columns={ + 'pos': t['grammatical_category'], + 'count': t['count'], + 'percentage': t['percentage'], + 'examples': t['examples'] + }) + + # Mostrar el dataframe + st.dataframe(pos_df) + + with col2: + with st.expander(t['morphological_analysis'], expanded=True): + morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) + + # Definir el mapeo de columnas + column_mapping = { + 'text': t['word'], + 'lemma': t['lemma'], + 'pos': t['grammatical_category'], + 'dep': t['dependency'], + 'morph': t['morphology'] + } + + # Renombrar las columnas existentes + morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns}) + + # Traducir las categorías gramaticales + morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) + + # Traducir las dependencias + dep_translations = { + 'es': { + 'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', + 'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', + 'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', + 'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', + 'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal', + 'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva', + 'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', + 'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo', + 'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', + 'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación' + }, + 'en': { + 'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', + 'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', + 'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', + 'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', + 'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', + 'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', + 'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', + 'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', + 'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' + }, + 'fr': { + 'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', + 'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique', + 'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', + 'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', + 'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant', + 'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée', + 'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', + 'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation' + } + } + morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x)) + + # Traducir la morfología + def translate_morph(morph_string, lang_code): + morph_translations = { + 'es': { + 'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido', + 'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', + 'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', + 'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', + 'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', + 'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', + 'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' + }, + 'en': { + 'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', + 'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', + 'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', + 'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', + 'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' + }, + 'fr': { + 'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom', + 'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', + 'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', + 'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe', + 'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' + } + } + for key, value in morph_translations[lang_code].items(): + morph_string = morph_string.replace(key, value) + return morph_string + + morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code)) + + # Seleccionar y ordenar las columnas a mostrar + columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']] + columns_to_display = [col for col in columns_to_display if col in morph_df.columns] + + # Mostrar el DataFrame + st.dataframe(morph_df[columns_to_display]) + + # Mostrar diagramas de arco (código existente) + with st.expander(t['arc_diagram'], expanded=True): + sentences = list(doc.sents) + arc_diagrams = [] + for i, sent in enumerate(sentences): + st.subheader(f"{t['sentence']} {i+1}") + html = displacy.render(sent, style="dep", options={"distance": 100}) + html = html.replace('height="375"', 'height="200"') + html = re.sub(r']*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) + html = re.sub(r']*transform="translate\((\d+),(\d+)\)"', lambda m: f'window.scrollTo(0,document.body.scrollHeight);', unsafe_allow_html=True) + +###################################################### +if __name__ == "__main__": + main() \ No newline at end of file diff --git a/src/modules/ui/user_page.py b/src/modules/ui/user_page.py new file mode 100644 index 0000000000000000000000000000000000000000..db72111a1908b9aecef03bbcea96bd8b71df8b65 --- /dev/null +++ b/src/modules/ui/user_page.py @@ -0,0 +1,349 @@ +import streamlit as st +import logging +from datetime import datetime, timezone +from dateutil.parser import parse + +# Configuración del logger +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + +#Importaciones locales. + +from ..utils.widget_utils import generate_unique_key +from session_state import initialize_session_state, logout + +from translations import get_translations + +from ..auth.auth import authenticate_user, authenticate_student, authenticate_admin + +from ..admin.admin_ui import admin_page + +from ..chatbot import display_sidebar_chat + +# Students activities +from ..studentact.student_activities_v2 import display_student_activities +from ..studentact.current_situation_interface import display_current_situation_interface +from ..studentact.current_situation_analysis import analyze_text_dimensions + + +##Importaciones desde la configuración de bases datos ####### + +from ..database.sql_db import ( + get_user, + get_admin_user, + get_student_user, + get_teacher_user, + create_user, + create_student_user, + create_teacher_user, + create_admin_user, + update_student_user, # Agregada + delete_student_user, # Agregada + record_login, + record_logout, + get_recent_sessions, + get_user_total_time, + store_application_request, + store_student_feedback +) + +from ..database.mongo_db import ( + get_collection, + insert_document, + find_documents, + update_document, + delete_document +) + +from ..database.morphosintax_mongo_db import ( + store_student_morphosyntax_result, + get_student_morphosyntax_analysis, + update_student_morphosyntax_analysis, + delete_student_morphosyntax_analysis, + get_student_morphosyntax_data +) + +from ..database.chat_mongo_db import store_chat_history, get_chat_history + +##Importaciones desde los análisis ####### +from ..morphosyntax.morphosyntax_interface import ( + display_morphosyntax_interface, + display_arc_diagram +) + +from ..semantic.semantic_interface import ( + display_semantic_interface, + display_semantic_results +) + +from ..semantic.semantic_live_interface import display_semantic_live_interface + +from ..discourse.discourse_live_interface import display_discourse_live_interface + +from ..discourse.discourse_interface import ( # Agregar esta importación + display_discourse_interface, + display_discourse_results +) + + + +#################################################################################### +def user_page(lang_code, t): + logger.info(f"Entrando en user_page para el estudiante: {st.session_state.username}") + + # Inicializar el tab seleccionado si no existe + if 'selected_tab' not in st.session_state: + st.session_state.selected_tab = 0 + + # Inicializar el estado del análisis en vivo + if 'semantic_live_active' not in st.session_state: + st.session_state.semantic_live_active = False + + # Manejar la carga inicial de datos del usuario + if 'user_data' not in st.session_state: + with st.spinner(t.get('loading_data', "Cargando tus datos...")): + try: + st.session_state.user_data = get_student_morphosyntax_data(st.session_state.username) + st.session_state.last_data_fetch = datetime.now(timezone.utc).isoformat() + except Exception as e: + logger.error(f"Error al obtener datos del usuario: {str(e)}") + st.error(t.get('data_load_error', "Hubo un problema al cargar tus datos. Por favor, intenta recargar la página.")) + return + + logger.info(f"Idioma actual: {st.session_state.lang_code}") + logger.info(f"Modelos NLP cargados: {'nlp_models' in st.session_state}") + + # Configuración de idiomas disponibles + languages = {'Español': 'es', 'English': 'en', 'Français': 'fr', 'Português': 'pt'} + + # Estilos CSS personalizados + st.markdown(""" + + """, unsafe_allow_html=True) + + # Barra superior con información del usuario y controles + with st.container(): + col1, col2, col3 = st.columns([2, 2, 1]) + with col1: + st.markdown(f"

{t['welcome']}, {st.session_state.username}

", + unsafe_allow_html=True) + with col2: + selected_lang = st.selectbox( + t['select_language'], + list(languages.keys()), + index=list(languages.values()).index(st.session_state.lang_code), + key=f"language_selector_{st.session_state.username}_{st.session_state.lang_code}" + ) + new_lang_code = languages[selected_lang] + if st.session_state.lang_code != new_lang_code: + st.session_state.lang_code = new_lang_code + st.rerun() + with col3: + if st.button(t['logout'], + key=f"logout_button_{st.session_state.username}_{st.session_state.lang_code}"): + st.session_state.clear() + st.rerun() + + st.markdown("---") + + # Asegurarse de que tenemos las traducciones del chatbot + chatbot_t = t.get('CHATBOT_TRANSLATIONS', {}).get(lang_code, {}) + + # Mostrar chatbot en sidebar + display_sidebar_chat(lang_code, chatbot_t) + + # Inicializar estados para todos los tabs + if 'tab_states' not in st.session_state: + st.session_state.tab_states = { + 'current_situation_active': False, + 'morpho_active': False, + #'semantic_live_active': False, + 'semantic_active': False, + #'discourse_live_active': False, + 'discourse_active': False, + 'activities_active': False, + 'feedback_active': False + } + + # Sistema de tabs + tab_names = [ + t.get('current_situation_tab', "Mi Situación Actual"), + t.get('morpho_tab', 'Análisis Morfosintáctico'), + #t.get('semantic_live_tab', 'Análisis Semántico Vivo'), + t.get('semantic_tab', 'Análisis Semántico'), + #t.get('discourse_live_tab', 'Análisis de Discurso Vivo'), + t.get('discourse_tab', 'Análisis comparado de textos'), + t.get('activities_tab', 'Registro de mis actividades'), + t.get('feedback_tab', 'Formulario de Comentarios') + ] + + tabs = st.tabs(tab_names) + + # Manejar el contenido de cada tab + for index, tab in enumerate(tabs): + with tab: + try: + # Actualizar el tab seleccionado solo si no hay un análisis activo + if tab.selected and st.session_state.selected_tab != index: + can_switch = True + for state_key in st.session_state.tab_states.keys(): + if st.session_state.tab_states[state_key] and index != get_tab_index(state_key): + can_switch = False + break + if can_switch: + st.session_state.selected_tab = index + + if index == 0: # Situación actual + st.session_state.tab_states['current_situation_active'] = True + display_current_situation_interface( + st.session_state.lang_code, + st.session_state.nlp_models, + t # Pasamos todo el diccionario de traducciones + ) + + elif index == 1: # Morfosintáctico + st.session_state.tab_states['morpho_active'] = True + display_morphosyntax_interface( + st.session_state.lang_code, + st.session_state.nlp_models, + t # Pasamos todo el diccionario de traducciones + ) + + #elif index == 2: # Semántico Vivo + # st.session_state.tab_states['semantic_live_active'] = True + # display_semantic_live_interface( + # st.session_state.lang_code, + # st.session_state.nlp_models, + # t # Pasamos todo el diccionario de traducciones + # ) + + elif index == 2: # Semántico + st.session_state.tab_states['semantic_active'] = True + display_semantic_interface( + st.session_state.lang_code, + st.session_state.nlp_models, + t # Pasamos todo el diccionario de traducciones + ) + + #elif index == 4: # Discurso Vivo + # st.session_state.tab_states['discourse_live_active'] = True + # display_discourse_live_interface( + # st.session_state.lang_code, + # st.session_state.nlp_models, + # t # Pasamos todo el diccionario de traducciones + # ) + + elif index == 3: # Discurso + st.session_state.tab_states['discourse_active'] = True + display_discourse_interface( + st.session_state.lang_code, + st.session_state.nlp_models, + t # Pasamos todo el diccionario de traducciones + ) + + elif index == 4: # Actividades + st.session_state.tab_states['activities_active'] = True + display_student_activities( + username=st.session_state.username, + lang_code=st.session_state.lang_code, + t=t # Pasamos todo el diccionario de traducciones + ) + + elif index == 5: # Feedback + st.session_state.tab_states['feedback_active'] = True + display_feedback_form( + st.session_state.lang_code, + t # Ya estaba recibiendo el diccionario completo + ) + + except Exception as e: + # Desactivar el estado en caso de error + state_key = get_state_key_for_index(index) + if state_key: + st.session_state.tab_states[state_key] = False + logger.error(f"Error en tab {index}: {str(e)}") + st.error(t.get('tab_error', 'Error al cargar esta sección')) + + # Panel de depuración (solo visible en desarrollo) + if st.session_state.get('debug_mode', False): + with st.expander("Debug Info"): + st.write(f"Página actual: {st.session_state.page}") + st.write(f"Usuario: {st.session_state.get('username', 'No logueado')}") + st.write(f"Rol: {st.session_state.get('role', 'No definido')}") + st.write(f"Idioma: {st.session_state.lang_code}") + st.write(f"Tab seleccionado: {st.session_state.selected_tab}") + st.write(f"Última actualización de datos: {st.session_state.get('last_data_fetch', 'Nunca')}") + st.write(f"Traducciones disponibles: {list(t.keys())}") + + +def get_tab_index(state_key): + """Obtiene el índice del tab basado en la clave de estado""" + index_map = { + 'current_situation_active': 0, + 'morpho_active': 1, + #'semantic_live_active': 2, + 'semantic_active': 2, + #'discourse_live_active': 4, + 'discourse_active': 3, + 'activities_active': 4, + 'feedback_active': 5 + } + return index_map.get(state_key, -1) + +def get_state_key_for_index(index): + """Obtiene la clave de estado basada en el índice del tab""" + state_map = { + 0: 'current_situation_active', + 1: 'morpho_active', + #2: 'semantic_live_active', + 2: 'semantic_active', + #4: 'discourse_live_active', + 3: 'discourse_active', + 4: 'activities_active', + 5: 'feedback_active' + } + return state_map.get(index) + +def display_feedback_form(lang_code, t): + """ + Muestra el formulario de retroalimentación + Args: + lang_code: Código de idioma + t: Diccionario de traducciones + """ + logging.info(f"display_feedback_form called with lang_code: {lang_code}") + + # Obtener traducciones específicas para el formulario de feedback + feedback_t = t.get('FEEDBACK', {}) + + # Si no hay traducciones específicas, usar el diccionario general + if not feedback_t: + feedback_t = t + + #st.header(feedback_t.get('feedback_title', 'Formulario de Opinión')) + + name = st.text_input(feedback_t.get('name', 'Nombre')) + email = st.text_input(feedback_t.get('email', 'Correo electrónico')) + feedback = st.text_area(feedback_t.get('feedback', 'Retroalimentación')) + + if st.button(feedback_t.get('submit', 'Enviar')): + if name and email and feedback: + if store_student_feedback(st.session_state.username, name, email, feedback): + st.success(feedback_t.get('feedback_success', 'Gracias por tu respuesta')) + else: + st.error(feedback_t.get('feedback_error', 'Hubo un problema al enviar el formulario. Por favor, intenta de nuevo.')) + else: + st.warning(feedback_t.get('complete_all_fields', 'Por favor, completa todos los campos')) \ No newline at end of file diff --git a/src/modules/utils/__init__.py b/src/modules/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/utils/__pycache__/__init__.cpython-311.pyc b/src/modules/utils/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9b51589b9cec07021967714049af5e2b3eb0779c Binary files /dev/null and b/src/modules/utils/__pycache__/__init__.cpython-311.pyc differ diff --git a/src/modules/utils/__pycache__/spacy_utils.cpython-311.pyc b/src/modules/utils/__pycache__/spacy_utils.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f9acf7db1ebe2e977bd8d44a8b8442e5f4add28f Binary files /dev/null and b/src/modules/utils/__pycache__/spacy_utils.cpython-311.pyc differ diff --git a/src/modules/utils/__pycache__/svg_to_png_converter.cpython-311.pyc b/src/modules/utils/__pycache__/svg_to_png_converter.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d6c81622cb038ba7575d796656a4a1da92a2b2cc Binary files /dev/null and b/src/modules/utils/__pycache__/svg_to_png_converter.cpython-311.pyc differ diff --git a/src/modules/utils/__pycache__/widget_utils.cpython-311.pyc b/src/modules/utils/__pycache__/widget_utils.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2f86da5dc8aa5d728adc48c4cbb90af05ed1cc12 Binary files /dev/null and b/src/modules/utils/__pycache__/widget_utils.cpython-311.pyc differ diff --git a/src/modules/utils/export_utils.py b/src/modules/utils/export_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..9c9ea8feefe24680e643b77a7fd3de1f2afc4028 --- /dev/null +++ b/src/modules/utils/export_utils.py @@ -0,0 +1,70 @@ +import streamlit as st +from reportlab.lib.pagesizes import letter +from reportlab.pdfgen import canvas +from docx import Document +import io + +def export_data(user_data, t, format='pdf'): + if format == 'pdf': + return export_to_pdf(user_data, t) + elif format == 'docx': + return export_to_docx(user_data, t) + else: + raise ValueError(f"Unsupported format: {format}") + +def export_to_pdf(user_data, t): + buffer = io.BytesIO() + c = canvas.Canvas(buffer, pagesize=letter) + width, height = letter + + # Título + c.setFont("Helvetica-Bold", 16) + c.drawString(50, height - 50, t['analysis_report']) + + # Resumen + c.setFont("Helvetica", 12) + c.drawString(50, height - 80, f"{t['morpho_analyses']}: {len(user_data['morphosyntax_analyses'])}") + c.drawString(50, height - 100, f"{t['semantic_analyses']}: {len(user_data['semantic_analyses'])}") + c.drawString(50, height - 120, f"{t['discourse_analyses']}: {len(user_data['discourse_analyses'])}") + + # Aquí agregarías más detalles de los análisis... + + c.save() + buffer.seek(0) + return buffer + +def export_to_docx(user_data, t): + doc = Document() + doc.add_heading(t['analysis_report'], 0) + + doc.add_paragraph(f"{t['morpho_analyses']}: {len(user_data['morphosyntax_analyses'])}") + doc.add_paragraph(f"{t['semantic_analyses']}: {len(user_data['semantic_analyses'])}") + doc.add_paragraph(f"{t['discourse_analyses']}: {len(user_data['discourse_analyses'])}") + + # Aquí agregarías más detalles de los análisis... + + buffer = io.BytesIO() + doc.save(buffer) + buffer.seek(0) + return buffer + +def display_export_options(t): + format = st.radio(t['select_export_format'], ['PDF', 'DOCX']) + if st.button(t['export']): + user_data = st.session_state.user_data + if format == 'PDF': + buffer = export_data(user_data, t, format='pdf') + st.download_button( + label=t['download_pdf'], + data=buffer, + file_name="analysis_report.pdf", + mime="application/pdf" + ) + elif format == 'DOCX': + buffer = export_data(user_data, t, format='docx') + st.download_button( + label=t['download_docx'], + data=buffer, + file_name="analysis_report.docx", + mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document" + ) \ No newline at end of file diff --git a/src/modules/utils/spacy_utils.py b/src/modules/utils/spacy_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..54cd510826dad43e9195b3b1ac81930ce9d30e36 --- /dev/null +++ b/src/modules/utils/spacy_utils.py @@ -0,0 +1,10 @@ +# modules/spacy_utils.py +import spacy + +def load_spacy_models(): + return { + 'es': spacy.load("es_core_news_lg"), + 'en': spacy.load("en_core_web_lg"), + 'fr': spacy.load("fr_core_news_lg"), + 'pt': spacy.load("pt_core_news_lg") + } \ No newline at end of file diff --git a/src/modules/utils/svg_to_png_converter.py b/src/modules/utils/svg_to_png_converter.py new file mode 100644 index 0000000000000000000000000000000000000000..14faf269b1299501090f8ea04563982d30347af7 --- /dev/null +++ b/src/modules/utils/svg_to_png_converter.py @@ -0,0 +1,51 @@ +import io +from svglib.svglib import svg2rlg +from reportlab.graphics import renderPM +from pymongo import MongoClient +import base64 + +# Asume que tienes una función para obtener la conexión a MongoDB +from ..database.mongo_db import get_mongodb + +def convert_svg_to_png(svg_string): + """Convierte una cadena SVG a una imagen PNG.""" + drawing = svg2rlg(io.BytesIO(svg_string.encode('utf-8'))) + png_bio = io.BytesIO() + renderPM.drawToFile(drawing, png_bio, fmt="PNG") + return png_bio.getvalue() + +def save_png_to_database(username, analysis_id, png_data): + """Guarda la imagen PNG en la base de datos.""" + client = get_mongodb() + db = client['aideatext_db'] # Asegúrate de usar el nombre correcto de tu base de datos + collection = db['png_diagrams'] + + png_base64 = base64.b64encode(png_data).decode('utf-8') + + document = { + 'username': username, + 'analysis_id': analysis_id, + 'png_data': png_base64 + } + + result = collection.insert_one(document) + return result.inserted_id + +def process_and_save_svg_diagrams(username, analysis_id, svg_diagrams): + """Procesa una lista de diagramas SVG, los convierte a PNG y los guarda en la base de datos.""" + png_ids = [] + for svg in svg_diagrams: + png_data = convert_svg_to_png(svg) + png_id = save_png_to_database(username, analysis_id, png_data) + png_ids.append(png_id) + return png_ids + +# Función para recuperar PNGs de la base de datos +def get_png_diagrams(username, analysis_id): + """Recupera los diagramas PNG de la base de datos para un análisis específico.""" + client = get_mongodb() + db = client['aideatext_db'] + collection = db['png_diagrams'] + + diagrams = collection.find({'username': username, 'analysis_id': analysis_id}) + return [base64.b64decode(doc['png_data']) for doc in diagrams] \ No newline at end of file diff --git a/src/modules/utils/txt.txt b/src/modules/utils/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/modules/utils/widget_utils.py b/src/modules/utils/widget_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..03ba3c86b6eb596b7bdfb6c7e32a61319a21df96 --- /dev/null +++ b/src/modules/utils/widget_utils.py @@ -0,0 +1,7 @@ +# modules/utils/widget_utils.py +import streamlit as st + +def generate_unique_key(module_name, element_type="input", username=None): + # Si el nombre de usuario no se pasa explícitamente, lo toma de session_state + username = username or st.session_state.username + return f"{module_name}_{element_type}_{username}" \ No newline at end of file diff --git a/src/translations/__init__.py b/src/translations/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0d918fc82c934a0636a699164c59539c86cacc47 --- /dev/null +++ b/src/translations/__init__.py @@ -0,0 +1,64 @@ +# translations/__init__.py +import logging +from importlib import import_module + +logger = logging.getLogger(__name__) + +def get_translations(lang_code): + # Asegurarse de que lang_code sea válido + if lang_code not in ['es', 'en', 'fr', 'pt']: + print(f"Invalid lang_code: {lang_code}. Defaulting to 'es'") + lang_code = 'es' + + try: + # Importar dinámicamente el módulo de traducción + translation_module = import_module(f'.{lang_code}', package='translations') + translations = getattr(translation_module, 'TRANSLATIONS', {}) + except ImportError: + logger.warning(f"Translation module for {lang_code} not found. Falling back to English.") + # Importar el módulo de inglés como fallback + translation_module = import_module('.en', package='translations') + translations = getattr(translation_module, 'TRANSLATIONS', {}) + + def get_text(key, section='COMMON', default=''): + return translations.get(section, {}).get(key, default) + + return { + 'get_text': get_text, + **translations.get('COMMON', {}), + **translations.get('TABS', {}), + **translations.get('MORPHOSYNTACTIC', {}), + **translations.get('SEMANTIC', {}), + **translations.get('DISCOURSE', {}), + **translations.get('ACTIVITIES', {}), + **translations.get('FEEDBACK', {}), + **translations.get('TEXT_TYPES', {}), + **translations.get('CURRENT_SITUATION', {}) # Añadir esta línea + } + +# Nueva función para obtener traducciones específicas del landing page +def get_landing_translations(lang_code): + # Asegurarse de que lang_code sea válido + if lang_code not in ['es', 'en', 'fr', 'pt']: + print(f"Invalid lang_code: {lang_code}. Defaulting to 'es'") + lang_code = 'es' + + try: + # Importar dinámicamente el módulo de traducción del landing page + from .landing_translations import LANDING_TRANSLATIONS + + # Asegurarse de que el idioma esté disponible, si no usar español como fallback + if lang_code not in LANDING_TRANSLATIONS: + logger.warning(f"Landing translations for {lang_code} not found. Falling back to Spanish.") + lang_code = 'es' + + return LANDING_TRANSLATIONS[lang_code] + except ImportError: + logger.warning("Landing translations module not found. Using default translations.") + # Crear un conjunto mínimo de traducciones por defecto + return { + 'select_language': 'Select language' if lang_code == 'en' else 'Selecciona tu idioma', + 'login': 'Login' if lang_code == 'en' else 'Iniciar Sesión', + 'register': 'Sign Up' if lang_code == 'en' else 'Registrarse', + # Añadir más traducciones por defecto si es necesario + } diff --git a/src/translations/__pycache__/__init__.cpython-311.pyc b/src/translations/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5a3cb0fbded72c1fd91b4fb643f57b18ff072536 Binary files /dev/null and b/src/translations/__pycache__/__init__.cpython-311.pyc differ diff --git a/src/translations/__pycache__/en.cpython-311.pyc b/src/translations/__pycache__/en.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eb946b6c97b7cde61d91326601c845d99f33597e Binary files /dev/null and b/src/translations/__pycache__/en.cpython-311.pyc differ diff --git a/src/translations/__pycache__/es.cpython-311.pyc b/src/translations/__pycache__/es.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e3b0a733ca2568cd90b0510740556861917a674d Binary files /dev/null and b/src/translations/__pycache__/es.cpython-311.pyc differ diff --git a/src/translations/__pycache__/fr.cpython-311.pyc b/src/translations/__pycache__/fr.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a0f66470dadd4d8ddb1428de937a915471d5f942 Binary files /dev/null and b/src/translations/__pycache__/fr.cpython-311.pyc differ diff --git a/src/translations/en.py b/src/translations/en.py new file mode 100644 index 0000000000000000000000000000000000000000..88ad3719e0e53e06d9f21001accc63fd80131dbc --- /dev/null +++ b/src/translations/en.py @@ -0,0 +1,373 @@ +# translations/en.py + +COMMON = { + # A + 'initial_instruction': "To start a new semantic analysis, upload a new text file (.txt)", + 'analysis_complete': "Analysis complete and saved. To perform a new analysis, upload another file.", + 'current_analysis_message': "Showing analysis of file: {}. To perform a new analysis, please upload another file.", + 'upload_prompt': "Attach a file to start the analysis", + 'analysis_completed': "Analysis completed", + 'analysis_section': "Semantic Analysis", + 'analyze_document': 'Analyze document', + 'analysis_saved_success': 'Analysis saved successfully', + 'analysis_save_error': 'Error saving the analysis', + 'analyze_button': "Analyze text", + 'analyzing_doc': "Analyzing document", + 'activities_message':"Activities messages", + 'activities_placeholder':"Activities placeholder", + 'analysis_placeholder':"Analysis placeholder", + 'analyze_button' : "Analyze", + 'analysis_types_chart' : "Analyze type chart", + 'analysis_from': "Analysis carried out on", + # C + 'chat_title': "Analysis Chat", + 'export_button': "Export Current Analysis", + 'export_success': "Analysis and chat exported successfully.", + 'export_error': "There was a problem exporting the analysis and chat.", + 'get_text': "Get text.", + 'hello': "Hello", + # L + 'logout': "End session.", + 'loading_data': "Loading data", + 'load_selected_file': 'Load selected file', + # N + 'no_analysis': "No analysis available. Use the chat to perform an analysis.", + 'nothing_to_export': "No analysis or chat to export.", + 'results_title': "Analysis Results", + 'select_language': "Language select", + 'student_activities':"Student activities", + # T + 'total_analyses': "Total analyses", + # W + 'welcome': "Welcome to AIdeaText" +} + +TABS = { + 'current_situation_tab': "Current situation", + 'morpho_tab': "Morphosyntactic analysis", + 'semantic_live_tab': "Semantic live", + 'semantic_tab': "Semantic analysis", + 'discourse_live_tab': "Discourse live", + 'discourse_tab': "Discourse analysis", + 'activities_tab': "My activities", + 'feedback_tab': "Feedback form" +} + +CURRENT_SITUATION = { + 'title': "My Current Situation", + 'input_prompt': "Write or paste your text here:", + 'first_analyze_button': "Analyze my writing", + 'processing': "Analyzing...", + 'analysis_error': "Error analyzing text", + 'help': "We will analyze your text to determine its current status", # <-- Added this line + # Radio buttons for text type + 'text_type_header': "Text type", + 'text_type_help': "Select the text type to adjust evaluation criteria", + # Metrics + 'vocabulary_label': "Vocabulary", + 'vocabulary_help': "Richness and variety of vocabulary", + 'structure_label': "Structure", + 'structure_help': "Organization and complexity of sentences", + 'cohesion_label': "Cohesion", + 'cohesion_help': "Connection and fluidity between ideas", + 'clarity_label': "Clarity", + 'clarity_help': "Ease of text comprehension", + # Metric states + 'metric_improvement': "⚠️ Needs improvement", + 'metric_acceptable': "📈 Acceptable", + 'metric_optimal': "✅ Optimal", + 'metric_target': "Goal: {:.2f}", + # Errors + 'error_interface': "An error occurred while loading the interface", + 'error_results': "Error displaying results", + 'error_chart': "Error displaying chart" +} + +MORPHOSYNTACTIC = { + #A + 'arc_diagram': "Syntactic analysis: Arc diagram", + #B + 'tab_text_baseline': "Produce first text", + 'tab_iterations': "Produce new versions of the first text", + + # Pestaña 1 texto base + 'btn_new_morpho_analysis': "New morphosyntactic analysis", + 'btn_analyze_baseline': "Analyze the entered text", + 'input_baseline_text': "Enter the first text to analyze", + 'warn_enter_text': "Please enter a text to analyze", + 'error_processing_baseline': "Error processing the initial text", + 'arc_diagram_baseline_label': "Arc diagram of the initial text", + 'baseline_diagram_not_available': "Arc diagram of the initial text not available", + + # Pestaña 2 Iteración del texto + 'info_first_analyze_base': "Check if the initial text exists", + 'iteration_text_subheader': "New version of the initial text", + 'input_iteration_text': "Enter a new version of the initial text and compare both texts' arcs", + 'btn_analyze_iteration': "Analyze changes", + 'warn_enter_iteration_text': "Enter a new version of the initial text and compare both texts' arcs", + 'iteration_saved': "Changes saved successfully", + 'error_iteration': "Error processing the new changes" +} + +SEMANTIC = { + # A + # C + 'chat_title': "Semantic Analysis Chat", + 'chat_placeholder': "Ask a question or use a command (/summary, /entities, /sentiment, /topics, /concept_graph, /entity_graph, /topic_graph)", + 'clear_chat': "Clear chat", + 'conceptual_relations': "Conceptual Relations", + # D + 'delete_file': "Delete file", + 'download_semantic_network_graph': "Download semantic network graph", + # E + 'error_message': "There was a problem saving the semantic analysis. Please try again.", + # F + 'file_uploader': "Or upload a text file", + 'file_upload_success': "File uploaded and saved successfully", + 'file_upload_error': 'Error uploading file', + 'file_section': "Files", + 'file_loaded_success': "File loaded successfully", + 'file_load_error': "Error loading file", + 'file_upload_error': "Error uploading and saving file", + 'file_deleted_success': 'File deleted successfully', + 'file_delete_error': 'Error deleting file', + # G + 'graph_title': "Semantic Analysis Visualization", + # I + 'identified_entities': "Identified Entities", + # K + 'key_concepts': "Key Concepts", + # N + 'no_analysis': "No analysis available. Please upload or select a file.", + 'no_results': "No results available. Please perform an analysis first.", + 'no_file': "Please upload a file to start the analysis.", + 'no_file_selected': "Please select an archive to start the analysis.", + # S + ###################### + 'semantic_virtual_agent_button': 'Analyze with Virtual Agent', + 'semantic_agent_ready_message': 'The virtual agent has received your semantic analysis. Open the sidebar assistant to discuss your results.', + 'semantic_chat_title': 'Semantic Analysis - Virtual Assistant', + ########################## + 'semantic_graph_interpretation': "Semantic Graph Interpretation", + 'semantic_arrow_meaning': "Arrows indicate the direction of the relationship between concepts", + 'semantic_color_meaning': "More intense colors indicate more central concepts in the text", + 'semantic_size_meaning': "Node size represents concept frequency", + 'semantic_thickness_meaning': "Line thickness indicates connection strength", + 'semantic_title': "Semantic Analysis", + 'semantic_initial_message': "This is a general-purpose chatbot, but it has a specific function for visual text analysis: it generates a graph with the main entities of the text. To produce it, enter a text file in txt, pdf, doc, docx or odt format and press the 'analyze file' button. After generating the graph, you can interact with the chat based on the document.", + 'send_button': "Send", + 'select_saved_file': "Select saved file", + 'success_message': "Semantic analysis saved successfully.", + 'semantic_analyze_button': 'Semantic Analysis', + 'semantic_export_button': 'Export Semantic Analysis', + 'semantic_new_button': 'New Semantic Analysis', + 'semantic_file_uploader': 'Upload a text file for semantic analysis', + # T + 'text_input_label': "Enter a text to analyze (max. 5,000 words):", + 'text_input_placeholder': "The purpose of this application is to improve your writing skills...", + 'title': "AIdeaText - Semantic Analysis", + # U + 'upload_file': "Upload file", + # W + 'warning_message': "Please enter a text or upload a file to analyze." +} + +DISCOURSE = { + 'compare_arrow_meaning': "Arrows indicate the direction of the relationship between concepts", + 'compare_color_meaning': "More intense colors indicate more central concepts in the text", + 'compare_size_meaning': "Node size represents concept frequency", + 'compare_thickness_meaning': "Line thickness indicates connection strength", + 'compare_doc1_title': "Document 1", + 'compare_doc2_title': "Document 2", + 'file1_label': "Pattern Document", + 'file2_label': "Compared Document", + 'discourse_title': "AIdeaText - Discourse Analysis", + 'file_uploader1': "Upload text file 1 (Pattern)", + 'file_uploader2': "Upload text file 2 (Comparison)", + 'discourse_analyze_button': "Compare texts", + 'discourse_initial_message': "This is a general purpose chatbot, but it has a specific function for visual text analysis: it generates two graphs with the main entities of each file to make a comparison between both texts. To produce it, enter one file first and then another in txt, pdf, doc, docx or odt format and press the 'analyze file' button. After the graph is generated, you can interact with the chat based on the document.", + 'analyze_button': "Analyze texts", + 'comparison': "Comparison of Semantic Relations", + 'success_message': "Discourse analysis saved successfully.", + 'error_message': "There was a problem saving the discourse analysis. Please try again.", + 'warning_message': "Please upload both files to analyze.", + 'no_results': "No results available. Please perform an analysis first.", + 'key_concepts': "Key Concepts", + 'graph_not_available': "The graph is not available.", + 'concepts_not_available': "Key concepts are not available.", + 'comparison_not_available': "The comparison is not available.", + 'warning_message': "Please enter a text or upload a file to analyze.", + 'morphosyntax_history': "Morphosyntax history", + 'analysis_of': "Analysis of" +} + +ACTIVITIES = { + # Nuevas etiquetas actualizadas + 'current_situation_activities': "Records of function: My Current Situation", + 'morpho_activities': "Records of my morphosyntactic analyses", + 'semantic_activities': "Records of my semantic analyses", + 'discourse_activities': "Records of my text comparison analyses", + 'chat_activities': "Records of my conversations with the virtual tutor", + + # Mantener otras claves existentes + 'current_situation_tab': "Current situation", + 'morpho_tab': "Morphosyntactic analysis", + 'semantic_tab': "Semantic analysis", + 'discourse_tab': "Text comparison analysis", + 'activities_tab': "My activities record", + 'feedback_tab': "Feedback form", + + # Resto de las claves que estén en el diccionario ACTIVITIES + 'analysis_types_chart_title': "Types of analyses performed", + 'analysis_types_chart_x': "Analysis type", + 'analysis_types_chart_y': "Count", + 'analysis_from': "Analysis from", + 'assistant': "Assistant", + 'activities_summary': "Activities and Progress Summary", + 'chat_history_expander': "Chat History", + 'chat_from': "Chat from", + 'combined_graph': "Combined Graph", + 'conceptual_relations_graph': "Conceptual Relations Graph", + 'conversation': "Conversation", + 'discourse_analyses_expander': "Text Comparison Analyses History", # Actualizado + 'discourse_analyses': "Text Comparison Analyses", # Actualizado + 'discourse_history': "Text Comparison Analysis History", # Actualizado + 'document': "Document", + 'data_load_error': "Error loading student data", + 'graph_display_error': "Could not display the graph", + 'graph_doc1': "Graph document 1", + 'graph_doc2': "Graph document 2", + 'key_concepts': "Key concepts", + 'loading_data': "Loading student data...", + 'morphological_analysis': "Morphological Analysis", + 'morphosyntax_analyses_expander': "Morphosyntactic Analyses History", + 'morphosyntax_history': "Morphosyntactic Analysis History", + 'no_arc_diagram': "No arc diagram found for this analysis.", + 'no_chat_history': "No conversations with the Virtual Tutor were found.", # Actualizado + 'no_data_warning': "No analysis data found for this student.", + 'progress_of': "Progress of", + 'semantic_analyses': "Semantic Analyses", + 'semantic_analyses_expander': "Semantic Analyses History", + 'semantic_history': "Semantic Analysis History", + 'show_debug_data': "Show debug data", + 'student_debug_data': "Student data (for debugging):", + 'summary_title': "Activities Summary", + 'title': "My Activities Record", # Actualizado + 'timestamp': "Timestamp", + 'total_analyses': "Total analyses performed:", + 'try_analysis': "Try performing some text analyses first.", + 'user': "User", + + # Nuevas traducciones específicas para la sección de actividades + 'diagnosis_tab': "Diagnosis", + 'recommendations_tab': "Recommendations", + 'key_metrics': "Key metrics", + 'details': "Details", + 'analyzed_text': "Analyzed text", + 'analysis_date': "Date", + 'academic_article': "Academic article", + 'student_essay': "Student essay", + 'general_communication': "General communication", + 'no_diagnosis': "No diagnosis data available", + 'no_recommendations': "No recommendations available", + 'error_current_situation': "Error displaying current situation analysis", + 'no_current_situation': "No current situation analyses recorded", + 'no_morpho_analyses': "No morphosyntactic analyses recorded", + 'error_morpho': "Error displaying morphosyntactic analysis", + 'no_semantic_analyses': "No semantic analyses recorded", + 'error_semantic': "Error displaying semantic analysis", + 'no_discourse_analyses': "No text comparison analyses recorded", # Actualizado + 'error_discourse': "Error displaying text comparison analysis", # Actualizado + 'no_chat_history': "No conversation records with the virtual tutor", # Actualizado + 'error_chat': "Error displaying conversation records", # Actualizado + 'error_loading_activities': "Error loading activities", + 'chat_date': "Conversation date", + 'invalid_chat_format': "Invalid chat format", + 'comparison_results': "Comparison results", + 'concepts_text_1': "Concepts Text 1", + 'concepts_text_2': "Concepts Text 2", + 'no_visualization': "No comparative visualization available", + 'no_graph': "No visualization available", + 'error_loading_graph': "Error loading graph", + 'syntactic_diagrams': "Syntactic diagrams" +} + +FEEDBACK = { + 'email': "Email", + 'feedback': "Feedback", + 'feedback_title': "Feedback form", + 'feedback_error': "There was a problem submitting the form. Please try again.", + 'feedback_success': "Thank for your feedback", + 'complete_all_fields': "Please, complete all fields", + 'name': "Name", + 'submit': "Submit" +} + + +CHATBOT_TRANSLATIONS = { + 'chat_title': "AIdeaText Assistant", + 'input_placeholder': "Any questions?", + 'initial_message': "Hi! I'm your assistant. How can I help?", + 'expand_chat': "Open assistant", + 'clear_chat': "Clear chat", + 'processing': "Processing...", + 'error_message': "Sorry, an error occurred" +} + +TEXT_TYPES = { + 'descriptive': [ + 'What are you describing?', + 'What are its main characteristics?', + 'How does it look, sound, smell, or feel?', + 'What makes it unique or special?' + ], + 'narrative': [ + 'Who is the protagonist?', + 'Where and when does the story take place?', + 'What event starts the action?', + 'What happens next?', + 'How does the story end?' + ], + 'expository': [ + 'What is the main topic?', + 'What important aspects do you want to explain?', + 'Can you provide examples or data to support your explanation?', + 'How does this topic relate to other concepts?' + ], + 'argumentative': [ + 'What is your main thesis or argument?', + 'What are your supporting arguments?', + 'What evidence do you have to back up your arguments?', + 'What are the counterarguments and how do you refute them?', + 'What is your conclusion?' + ], + 'instructive': [ + 'What task or process are you explaining?', + 'What materials or tools are needed?', + 'What are the steps to follow?', + 'Are there any important precautions or tips to mention?' + ], + 'pitch': [ + 'What?', + 'What for?', + 'For whom?', + 'How?' + ] + } + +# Configuration of the language model for English +NLP_MODEL = 'en_core_web_lg' + +# Esta línea es crucial: +TRANSLATIONS = { + 'COMMON': COMMON, + 'TABS': TABS, + 'MORPHOSYNTACTIC': MORPHOSYNTACTIC, + 'SEMANTIC': SEMANTIC, + 'DISCOURSE': DISCOURSE, + 'ACTIVITIES': ACTIVITIES, + 'FEEDBACK': FEEDBACK, + 'TEXT_TYPES': TEXT_TYPES, + 'CURRENT_SITUATION': CURRENT_SITUATION, # Añadir esta línea + 'NLP_MODEL': NLP_MODEL +} \ No newline at end of file diff --git a/src/translations/es.py b/src/translations/es.py new file mode 100644 index 0000000000000000000000000000000000000000..fc1f94c22ed9fa259a030b7a4e6e2c043292a5d6 --- /dev/null +++ b/src/translations/es.py @@ -0,0 +1,377 @@ +# translations/es.py + +COMMON = { + # A + 'initial_instruction': "Para comenzar un nuevo análisis semántico, cargue un nuevo archivo de texto (.txt)", + 'analysis_complete': "Análisis completo y guardado. Para realizar un nuevo análisis, cargue otro archivo.", + 'current_analysis_message': "Mostrando análisis del archivo: {}. Para realizar un nuevo análisis, cargue otro archivo.", + 'upload_prompt': "Cargue un archivo para comenzar el análisis", + 'analysis_completed': "Análisis completado", + 'analysis_section': "Análisis Semántico", + 'analyze_document': 'Analizar documento', + 'analysis_saved_success': 'Análisis guardado con éxito', + 'analysis_save_error': 'Error al guardar el análisis', + 'analyze_button': "Analizar texto", + 'analyzing_doc': "Analizando documento", + 'activities_message': "Mensajes de las actividades", + 'activities_placeholder': "Espacio de las actividades", + 'analysis_placeholder': "Marcador de posición del análisis", + 'analyze_button': "Analizar", + 'analysis_types_chart': "Gráfico para el tipo de análisis", + 'analysis_from': "Análisis realizado el", + # C + 'chat_title': "Chat de Análisis", + 'export_button': "Exportar Análisis Actual", + 'export_success': "Análisis y chat exportados correctamente.", + 'export_error': "Hubo un problema al exportar el análisis y el chat.", + 'get_text': "Obtener texto.", + 'hello': "Hola", + # L + 'logout': "Cerrar sesión.", + 'loading_data': "Cargando datos", + 'load_selected_file': 'Cargar archivo seleccionado', + # N + 'no_analysis': "No hay análisis disponible. Utiliza el chat para realizar un análisis.", + 'nothing_to_export': "No hay análisis o chat para exportar.", + 'results_title': "Resultados del Análisis", + 'select_language': "Selecciona un idioma", + 'student_activities': "Actividades del estudiante", + # T + 'total_analyses': "Análisis totales", + # W + 'welcome': "Bienvenido a AIdeaText" +} + +TABS = { + 'current_situation_tab': "Mi situación actual", + 'morpho_tab': "Análisis morfosintáctico", + 'semantic_live_tab': "Semántica en vivo", + 'semantic_tab': "Análisis semántico", + 'discourse_live_tab': "Discurso en vivo", + 'discourse_tab': "Análisis del discurso", + 'activities_tab': "Mis actividades", + 'feedback_tab': "Formulario de comentarios" +} + +CURRENT_SITUATION = { + 'title': "Mi Situación Actual", + 'input_prompt': "Escribe o pega tu texto aquí:", + 'first_analyze_button': "Analizar mi escritura", + 'processing': "Analizando...", + 'analysis_error': "Error al analizar el texto", + 'help': "Analizaremos tu texto para determinar su estado actual", + + # Radio buttons para tipo de texto + 'text_type_header': "Tipo de texto", + 'text_type_help': "Selecciona el tipo de texto para ajustar los criterios de evaluación", + + # Métricas + 'vocabulary_label': "Vocabulario", + 'vocabulary_help': "Riqueza y variedad del vocabulario", + 'structure_label': "Estructura", + 'structure_help': "Organización y complejidad de oraciones", + 'cohesion_label': "Cohesión", + 'cohesion_help': "Conexión y fluidez entre ideas", + 'clarity_label': "Claridad", + 'clarity_help': "Facilidad de comprensión del texto", + + # Estados de métricas + 'metric_improvement': "⚠️ Por mejorar", + 'metric_acceptable': "📈 Aceptable", + 'metric_optimal': "✅ Óptimo", + 'metric_target': "Meta: {:.2f}", + + # Errores + 'error_interface': "Ocurrió un error al cargar la interfaz", + 'error_results': "Error al mostrar los resultados", + 'error_chart': "Error al mostrar el gráfico" +} + +MORPHOSYNTACTIC = { + #A + 'arc_diagram': "Análisis sintáctico: Diagrama de arco", + #B + 'tab_text_baseline': "Ingresa la primera versión de tu texto", + 'tab_iterations': "Produce nuevas versiones de tu primer texto", + + # Pestaña 1 texto base + 'btn_new_morpho_analysis': "Nuevo análisis morfosintático", + 'btn_analyze_baseline': "Analizar la primera versión de tu texto", + 'input_baseline_text': "Ingresa el primer texto para analizarlo", + 'warn_enter_text': "Ingrese un texto primer para analizarlo", + 'error_processing_baseline': "Error al procesar el texto inicial", + 'arc_diagram_baseline_label': "Diagrama de arco del texto inicial", + 'baseline_diagram_not_available': "Diagrama de arco del texto inicial no disponible", + + # Pestaña 2 Iteración del texto + 'info_first_analyze_base': "Verifica la existencia del texto inicial", + 'iteration_text_subheader': "Nueva versión del texto inicial", + 'input_iteration_text': "Ingresa una nueva versión del texto inicial y compara los arcos de ambos textos", + 'btn_analyze_iteration': "Analizar Cambios", + 'warn_enter_iteration_text': "Ingresa una nueva versión del texto inicial y compara los arcos de ambos textos", + 'iteration_saved': "Cambios guardados correctamente", + 'error_iteration': "Error procesando los nuevos cambios" +} + +SEMANTIC = { + # A + # C + 'chat_title': "Chat de Análisis Semántico", + 'chat_placeholder': "Haz una pregunta o usa un comando (/resumen, /entidades, /sentimiento, /temas, /grafo_conceptos, /grafo_entidades, /grafo_temas)", + 'clear_chat': "Limpiar chat", + 'conceptual_relations': "Relaciones Conceptuales", + # D + 'delete_file': "Borrar archivo", + 'download_semantic_network_graph': "Descargar gráfico de red semántica", + # E + 'error_message': "Hubo un problema al guardar el análisis semántico. Por favor, inténtelo de nuevo.", + # F + 'file_uploader': "O cargue un archivo de texto", + 'file_upload_success': "Archivo subido y guardado exitosamente", + 'file_upload_error': 'Error al cargar el archivo', + 'file_section': "Archivos", + 'file_loaded_success': "Archivo cargado exitosamente", + 'file_load_error': "Error al cargar el archivo", + 'file_upload_error': "Error al subir y guardar el archivo", + 'file_deleted_success': 'Archivo borrado con éxito', + 'file_delete_error': 'Error al borrar el archivo', + # G + 'graph_title': "Visualización de Análisis Semántico", + # I + 'identified_entities': "Entidades Identificadas", + # K + 'key_concepts': "Conceptos Clave", + # N + 'no_analysis': "No hay análisis disponible. Por favor, cargue o seleccione un archivo.", + 'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero.", + 'no_file': "Por favor, cargue un archivo para comenzar el análisis.", + 'no_file_selected': "Por favor, seleccione un archivo para comenzar el análisis.", + # S + ############### + 'semantic_virtual_agent_button': 'Analizar con Agente Virtual', + 'semantic_agent_ready_message': 'El agente virtual ha recibido tu análisis semántico. Abre el asistente en la barra lateral para discutir tus resultados.', + 'semantic_chat_title': 'Análisis Semántico - Asistente Virtual', + #### + 'semantic_graph_interpretation': "Interpretación del gráfico semántico", + 'semantic_arrow_meaning': "Las flechas indican la dirección de la relación entre conceptos", + 'semantic_color_meaning': "Los colores más intensos indican conceptos más centrales en el texto", + 'semantic_size_meaning': "El tamaño de los nodos representa la frecuencia del concepto", + 'semantic_thickness_meaning': "El grosor de las líneas indica la fuerza de la conexión", + ######## + 'semantic_title': "Análisis Semántico", + 'semantic_initial_message': "Este es un chatbot de propósito general, pero tiene una función específica para el análisis visual de textos: genera un grafo con las principales entidades del texto. Para producirlo, ingrese un archivo de texto en formato txt, pdf, doc, docx o odt y pulse el botón 'analizar archivo'. Después de la generación del grafo puede interactuar con el chat en función del documento.", + 'send_button': "Enviar", + 'select_saved_file': "Seleccionar archivo guardado", + 'success_message': "Análisis semántico guardado correctamente.", + 'semantic_analyze_button': 'Análisis Semántico', + 'semantic_export_button': 'Exportar Análisis Semántico', + 'semantic_new_button': 'Nuevo Análisis Semántico', + 'semantic_file_uploader': 'Ingresar un archivo de texto para análisis semántico', + # T + 'text_input_label': "Ingrese un texto para analizar (máx. 5,000 palabras):", + 'text_input_placeholder': "El objetivo de esta aplicación es que mejore sus habilidades de redacción...", + 'title': "AIdeaText - Análisis semántico", + # U + 'upload_file': "Agregar un archivo", + # W + 'warning_message': "Por favor, ingrese un texto o cargue un archivo para analizar." +} + + +DISCOURSE = { + 'compare_arrow_meaning': "Las flechas indican la dirección de la relación entre conceptos", + 'compare_color_meaning': "Los colores más intensos indican conceptos más centrales en el texto", + 'compare_size_meaning': "El tamaño de los nodos representa la frecuencia del concepto", + 'compare_thickness_meaning': "El grosor de las líneas indica la fuerza de la conexión", + 'compare_doc1_title': "Documento 1", + 'compare_doc2_title': "Documento 2", + 'file1_label': "Documento Patrón", + 'file2_label': "Documento Comparado", + 'discourse_title': "AIdeaText - Análisis del discurso", + 'file_uploader1': "Cargar archivo de texto 1 (Patrón)", + 'file_uploader2': "Cargar archivo de texto 2 (Comparación)", + 'discourse_analyze_button': "Comparar textos", + 'discourse_initial_message': "Este es un chatbot de propósito general, pero tiene una función específica para el análisis visual de textos: genera dos grafos con las principales entidades de cada archivo para hacer una comparación entre ambos textos. Para producirlo, ingrese un archivo primero y otro después en formato txt, pdf, doc, docx o odt y pulse el botón 'analizar archivo'. Después de la generación del grafo puede interactuar con el chat en función del documento.", + 'analyze_button': "Analizar textos", + 'comparison': "Comparación de Relaciones Semánticas", + 'success_message': "Análisis del discurso guardado correctamente.", + 'error_message': "Hubo un problema al guardar el análisis del discurso. Por favor, inténtelo de nuevo.", + 'warning_message': "Por favor, cargue ambos archivos para analizar.", + 'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero.", + 'key_concepts': "Conceptos Clave", + 'graph_not_available': "El gráfico no está disponible.", + 'concepts_not_available': "Los conceptos clave no están disponibles.", + 'comparison_not_available': "La comparación no está disponible.", + 'morphosyntax_history': "Historial de morfosintaxis", + 'analysis_of': "Análisis de" +} + +ACTIVITIES = { + # Nuevas etiquetas actualizadas + 'current_situation_activities': "Registros de la función: Mi Situación Actual", + 'morpho_activities': "Registros de mis análisis morfosintácticos", + 'semantic_activities': "Registros de mis análisis semánticos", + 'discourse_activities': "Registros de mis análisis comparados de textos", + 'chat_activities': "Registros de mis conversaciones con el tutor virtual", + + # Mantener otras claves existentes + 'current_situation_tab': "Mi situación actual", + 'morpho_tab': "Análisis morfosintáctico", + 'semantic_tab': "Análisis semántico", + 'discourse_tab': "Análisis comparado de textos", + 'activities_tab': "Registro de mis actividades", + 'feedback_tab': "Formulario de comentarios", + + # Resto de las claves que estén en el diccionario ACTIVITIES + 'analysis_types_chart_title': "Tipos de análisis realizados", + 'analysis_types_chart_x': "Tipo de análisis", + 'analysis_types_chart_y': "Cantidad", + 'analysis_from': "Análisis del", + 'assistant': "Asistente", + 'activities_summary': "Resumen de Actividades y Progreso", + 'chat_history_expander': "Historial de Chat", + 'chat_from': "Chat del", + 'combined_graph': "Gráfico combinado", + 'conceptual_relations_graph': "Gráfico de relaciones conceptuales", + 'conversation': "Conversación", + 'discourse_analyses_expander': "Historial de Análisis Comparados de Textos", + 'discourse_analyses': "Análisis Comparados de Textos", + 'discourse_history': "Histórico de Análisis Comparados de Textos", + 'document': "Documento", + 'data_load_error': "Error al cargar los datos del estudiante", + 'graph_display_error': "No se pudo mostrar el gráfico", + 'graph_doc1': "Gráfico documento 1", + 'graph_doc2': "Gráfico documento 2", + 'key_concepts': "Conceptos clave", + 'loading_data': "Cargando datos del estudiante...", + 'morphological_analysis': "Análisis Morfológico", + 'morphosyntax_analyses_expander': "Historial de Análisis Morfosintácticos", + 'morphosyntax_history': "Histórico de Análisis Morfosintácticos", + 'no_arc_diagram': "No se encontró diagrama de arco para este análisis.", + 'no_chat_history': "No se encontraron conversaciones con el Tutor Virtual.", + 'no_data_warning': "No se encontraron datos de análisis para este estudiante.", + 'progress_of': "Progreso de", + 'semantic_analyses': "Análisis Semánticos", + 'semantic_analyses_expander': "Historial de Análisis Semánticos", + 'semantic_history': "Histórico de Análisis Semánticos", + 'show_debug_data': "Mostrar datos de depuración", + 'student_debug_data': "Datos del estudiante (para depuración):", + 'summary_title': "Resumen de Actividades", + 'title': "Registro de mis actividades", + 'timestamp': "Fecha y hora", + 'total_analyses': "Total de análisis realizados:", + 'try_analysis': "Intenta realizar algunos análisis de texto primero.", + 'user': "Usuario", + + # Nuevas traducciones específicas para la sección de actividades + 'diagnosis_tab': "Diagnóstico", + 'recommendations_tab': "Recomendaciones", + 'key_metrics': "Métricas clave", + 'details': "Detalles", + 'analyzed_text': "Texto analizado", + 'analysis_date': "Fecha", + 'academic_article': "Artículo académico", + 'student_essay': "Trabajo universitario", + 'general_communication': "Comunicación general", + 'no_diagnosis': "No hay datos de diagnóstico disponibles", + 'no_recommendations': "No hay recomendaciones disponibles", + 'error_current_situation': "Error al mostrar análisis de situación actual", + 'no_current_situation': "No hay análisis de situación actual registrados", + 'no_morpho_analyses': "No hay análisis morfosintácticos registrados", + 'error_morpho': "Error al mostrar análisis morfosintáctico", + 'no_semantic_analyses': "No hay análisis semánticos registrados", + 'error_semantic': "Error al mostrar análisis semántico", + 'no_discourse_analyses': "No hay análisis comparados de textos registrados", + 'error_discourse': "Error al mostrar análisis comparado de textos", + 'no_chat_history': "No hay registros de conversaciones con el tutor virtual", + 'error_chat': "Error al mostrar registros de conversaciones", + 'error_loading_activities': "Error al cargar las actividades", + 'chat_date': "Fecha de conversación", + 'invalid_chat_format': "Formato de chat no válido", + 'comparison_results': "Resultados de la comparación", + 'concepts_text_1': "Conceptos Texto 1", + 'concepts_text_2': "Conceptos Texto 2", + 'no_visualization': "No hay visualización comparativa disponible", + 'no_graph': "No hay visualización disponible", + 'error_loading_graph': "Error al cargar el gráfico", + 'syntactic_diagrams': "Diagramas sintácticos" +} + +FEEDBACK = { + 'email': "Correo electrónico", + 'feedback': "Retroalimentación", + 'feedback_title': "Formulario de opinión", + 'feedback_error': "Hubo un problema al enviar el formulario. Por favor, intenta de nuevo.", + 'feedback_success': "Gracias por tu respuesta", + 'complete_all_fields': "Por favor, completa todos los campos", + 'name': "Nombre", + 'submit': "Enviar" +} + +CHATBOT_TRANSLATIONS = { + 'chat_title': "Asistente AIdeaText", + 'input_placeholder': "¿Tienes alguna pregunta?", + 'initial_message': "¡Hola! Soy tu asistente. ¿En qué puedo ayudarte?", + 'expand_chat': "Abrir asistente", + 'clear_chat': "Limpiar chat", + 'processing': "Procesando...", + 'error_message': "Lo siento, ocurrió un error" +} + +TEXT_TYPES = { + 'descriptivo': [ + '¿Qué estás describiendo?', + '¿Cuáles son sus características principales?', + '¿Cómo se ve, suena, huele o se siente?', + '¿Qué lo hace único o especial?' + ], + 'narrativo': [ + '¿Quién es el protagonista?', + '¿Dónde y cuándo ocurre la historia?', + '¿Qué evento inicia la acción?', + '¿Qué sucede después?', + '¿Cómo termina la historia?' + ], + 'expositivo': [ + '¿Cuál es el tema principal?', + '¿Qué aspectos importantes quieres explicar?', + '¿Puedes dar ejemplos o datos que apoyen tu explicación?', + '¿Cómo se relaciona este tema con otros conceptos?' + ], + 'argumentativo': [ + '¿Cuál es tu tesis o argumento principal?', + '¿Cuáles son tus argumentos de apoyo?', + '¿Qué evidencias tienes para respaldar tus argumentos?', + '¿Cuáles son los contraargumentos y cómo los refutas?', + '¿Cuál es tu conclusión?' + ], + 'instructivo': [ + '¿Qué tarea o proceso estás explicando?', + '¿Qué materiales o herramientas se necesitan?', + '¿Cuáles son los pasos a seguir?', + '¿Hay precauciones o consejos importantes que mencionar?' + ], + 'pitch': [ + '¿Qué?', + '¿Para qué?', + '¿Para quién?', + '¿Cómo?' + ] +} + +# Configuración del modelo de lenguaje para español +NLP_MODEL = 'es_core_news_lg' + +# Esta línea es crucial: +TRANSLATIONS = { + 'COMMON': COMMON, + 'TABS': TABS, + 'MORPHOSYNTACTIC': MORPHOSYNTACTIC, + 'SEMANTIC': SEMANTIC, + 'DISCOURSE': DISCOURSE, + 'ACTIVITIES': ACTIVITIES, + 'FEEDBACK': FEEDBACK, + 'TEXT_TYPES': TEXT_TYPES, + 'CURRENT_SITUATION': CURRENT_SITUATION, + 'NLP_MODEL': NLP_MODEL +} \ No newline at end of file diff --git a/src/translations/fr.py b/src/translations/fr.py new file mode 100644 index 0000000000000000000000000000000000000000..dbec0cc7872bc63fb42c801a08b3d9007e496e4b --- /dev/null +++ b/src/translations/fr.py @@ -0,0 +1,376 @@ +# translations/fr.py + +COMMON = { + # A + 'initial_instruction': "Pour démarrer une nouvelle analyse sémantique, téléchargez un nouveau fichier texte (.txt)", + 'analysis_complete': "Analyse terminée et enregistrée. Pour effectuer une nouvelle analyse, téléchargez un autre fichier.", + 'current_analysis_message': "Affichage de l'analyse du fichier : {}. Pour effectuer une nouvelle analyse, veuillez télécharger un autre fichier.", + 'upload_prompt': "Joindre un fichier pour démarrer l'analyse", + 'analysis_completed': "Analyse terminée", + 'analysis_section': "Analyse Sémantique", + 'analyze_document': 'Analyser le document', + 'analysis_saved_success': 'Analyse enregistrée avec succès', + 'analysis_save_error': 'Erreur lors de l\'enregistrement de l\'analyse', + 'analyze_button': "Analyser le texte", + 'analyzing_doc': "Analyse du document", + 'activities_message': "Messages d'activités", + 'activities_placeholder': "Espace réservé aux activités", + 'analysis_placeholder': "Espace réservé à l'analyse", + 'analyze_button': "Analyser", + 'analysis_types_chart': "Graphique pour le type d'analyse", + 'analysis_from': "Analyse réalisée sur", + # C + 'chat_title': "Chat d'Analyse", + 'export_button': "Exporter l'Analyse Actuelle", + 'export_success': "Analyse et chat exportés avec succès.", + 'export_error': "Un problème est survenu lors de l'exportation de l'analyse et du chat.", + 'get_text': "Obtenir du texte.", + 'hello': "Bonjour", + # L + 'logout': "Déconnexion.", + 'loading_data': "Chargement des données", + 'load_selected_file': 'Charger le fichier sélectionné', + # N + 'no_analysis': "Aucune analyse disponible. Utilisez le chat pour effectuer une analyse.", + 'nothing_to_export': "Aucune analyse ou chat à exporter.", + 'results_title': "Résultats de l'Analyse", + 'select_language': "Sélectionner la langue", + 'student_activities': "Activités étudiantes", + # T + 'total_analyses': "Analyses totales", + # W + 'welcome': "Bienvenue à AIdeaText" +} + +TABS = { + 'current_situation_tab': "Ma situation actuelle", + 'morpho_tab': "Analyse morphosyntaxique", + 'semantic_live_tab': "Sémantique en direct", + 'semantic_tab': "Analyse sémantique", + 'discourse_live_tab': "Discours en direct", + 'discourse_tab': "Analyse du discours", + 'activities_tab': "Mes activités", + 'feedback_tab': "Formulaire de commentaires" +} + +CURRENT_SITUATION = { + 'title': "Ma Situation Actuelle", + 'input_prompt': "Écrivez ou collez votre texte ici :", + 'first_analyze_button': "Analyser mon écriture", + 'processing': "Analyse en cours...", + 'analysis_error': "Erreur lors de l'analyse du texte", + 'help': "Nous analyserons votre texte pour déterminer son état actuel", + + # Radio buttons pour type de texte + 'text_type_header': "Type de texte", + 'text_type_help': "Sélectionnez le type de texte pour ajuster les critères d'évaluation", + + # Métriques + 'vocabulary_label': "Vocabulaire", + 'vocabulary_help': "Richesse et variété du vocabulaire", + 'structure_label': "Structure", + 'structure_help': "Organisation et complexité des phrases", + 'cohesion_label': "Cohésion", + 'cohesion_help': "Connexion et fluidité entre les idées", + 'clarity_label': "Clarté", + 'clarity_help': "Facilité de compréhension du texte", + + # États des métriques + 'metric_improvement': "⚠️ À améliorer", + 'metric_acceptable': "📈 Acceptable", + 'metric_optimal': "✅ Optimal", + 'metric_target': "Objectif : {:.2f}", + + # Erreurs + 'error_interface': "Une erreur s'est produite lors du chargement de l'interface", + 'error_results': "Erreur lors de l'affichage des résultats", + 'error_chart': "Erreur lors de l'affichage du graphique" +} + +MORPHOSYNTACTIC = { + #A + 'arc_diagram': "Analyse syntaxique : Diagramme en arc", + #B + 'tab_text_baseline': "Produire le premier texte", + 'tab_iterations': "Produire de nouvelles versions du premier texte", + + # Pestaña 1 texto base + 'btn_new_morpho_analysis': "Nouvelle analyse morphosyntaxique", + 'btn_analyze_baseline': "Analyser le texte saisi", + 'input_baseline_text': "Saisissez le premier texte à analyser", + 'warn_enter_text': "Veuillez saisir un texte à analyser", + 'error_processing_baseline': "Erreur lors du traitement du texte initial", + 'arc_diagram_baseline_label': "Diagramme en arc du texte initial", + 'baseline_diagram_not_available': "Diagramme en arc du texte initial non disponible", + + # Pestaña 2 Iteración del texto + 'info_first_analyze_base': "Vérifiez si le texte initial existe", + 'iteration_text_subheader': "Nouvelle version du texte initial", + 'input_iteration_text': "Saisissez une nouvelle version du texte initial et comparez les arcs des deux textes", + 'btn_analyze_iteration': "Analyser les changements", + 'warn_enter_iteration_text': "Saisissez une nouvelle version du texte initial et comparez les arcs des deux textes", + 'iteration_saved': "Changements enregistrés avec succès", + 'error_iteration': "Erreur lors du traitement des nouveaux changements" +} + +SEMANTIC = { + # C + 'chat_title': "Chat d'Analyse Sémantique", + 'chat_placeholder': "Posez une question ou utilisez une commande (/résumé, /entités, /sentiment, /thèmes, /graphe_concepts, /graphe_entités, /graphe_thèmes)", + 'clear_chat': "Effacer le chat", + 'conceptual_relations': "Relations Conceptuelles", + # D + 'delete_file': "Supprimer le fichier", + 'download_semantic_network_graph': "Télécharger le graphique du réseau sémantique", + # E + 'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse sémantique. Veuillez réessayer.", + # F + 'file_uploader': "Ou téléchargez un fichier texte", + 'file_upload_success': "Fichier téléchargé et enregistré avec succès", + 'file_upload_error': "Erreur lors du téléchargement du fichier", + 'file_section': "Fichiers", + 'file_loaded_success': "Fichier chargé avec succès", + 'file_load_error': "Erreur lors du chargement du fichier", + 'file_upload_error': "Erreur lors du téléchargement et de l'enregistrement du fichier", + 'file_deleted_success': "Fichier supprimé avec succès", + 'file_delete_error': "Erreur lors de la suppression du fichier", + # G + 'graph_title': "Visualisation de l'Analyse Sémantique", + # I + 'identified_entities': "Entités Identifiées", + # K + 'key_concepts': "Concepts Clés", + # N + 'no_analysis': "Aucune analyse disponible. Veuillez télécharger ou sélectionner un fichier.", + 'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse.", + 'no_file': "Veuillez télécharger un fichier pour commencer l'analyse.", + 'no_file_selected': "Veuillez sélectionner une archive pour démarrer l'analyse.", + # S + ############## + 'semantic_virtual_agent_button': 'Analyser avec l\'Agent Virtuel', + 'semantic_agent_ready_message': 'L\'agent virtuel a reçu votre analyse sémantique. Ouvrez l\'assistant dans la barre latérale pour discuter de vos résultats.', + 'semantic_chat_title': 'Analyse Sémantique - Assistant Virtuel', + ############## + 'semantic_graph_interpretation': "Interprétation du graphique sémantique", + 'semantic_arrow_meaning': "Les flèches indiquent la direction de la relation entre les concepts", + 'semantic_color_meaning': "Les couleurs plus intenses indiquent des concepts plus centraux dans le texte", + 'semantic_size_meaning': "La taille des nœuds représente la fréquence du concept", + 'semantic_thickness_meaning': "L'épaisseur des lignes indique la force de la connexion", + ############## + 'semantic_graph_interpretation': "Interprétation de graphes sémantiques", + 'semantic_title': "Analyse Sémantique", + 'semantic_initial_message': "Ceci est un chatbot à usage général, mais il a une fonction spécifique pour l'analyse visuelle de textes : il génère un graphe avec les principales entités du texte. Pour le produire, entrez un fichier texte au format txt, pdf, doc, docx ou odt et appuyez sur le bouton 'analyser le fichier'. Après la génération du graphe, vous pouvez interagir avec le chat en fonction du document.", + 'send_button': "Envoyer", + 'select_saved_file': "Sélectionner un fichier enregistré", + 'success_message': "Analyse sémantique enregistrée avec succès.", + 'semantic_analyze_button': 'Analyse Sémantique', + 'semantic_export_button': 'Exporter l\'Analyse Sémantique', + 'semantic_new_button': 'Nouvelle Analyse Sémantique', + 'semantic_file_uploader': "Créer un fichier de texte pour l'analyse sémantique", + # T + 'text_input_label': "Entrez un texte à analyser (max. 5 000 mots) :", + 'text_input_placeholder': "L'objectif de cette application est d'améliorer vos compétences en rédaction...", + 'title': "AIdeaText - Analyse Sémantique", + # U + 'upload_file': "Télécharger le fichier", + # W + 'warning_message': "Veuillez entrer un texte ou télécharger un fichier à analyser." +} + +DISCOURSE = { + 'compare_arrow_meaning': "Les flèches indiquent la direction de la relation entre les concepts", + 'compare_color_meaning': "Les couleurs plus intenses indiquent des concepts plus centraux dans le texte", + 'compare_size_meaning': "La taille des nœuds représente la fréquence du concept", + 'compare_thickness_meaning': "L'épaisseur des lignes indique la force de la connexion", + 'compare_doc1_title': "Document 1", + 'compare_doc2_title': "Document 2", + 'file1_label': "Document Modèle", + 'file2_label': "Document Comparé", + 'discourse_title': "AIdeaText - Analyse du discours", + 'file_uploader1': "Télécharger le fichier texte 1 (Modèle)", + 'file_uploader2': "Télécharger le fichier texte 2 (Comparaison)", + 'discourse_analyze_button': "Comparer des textes", + 'discourse_initial_message': "C'est un chatbot de proposition générale, mais il a une fonction spécifique pour l'analyse visuelle des textes : générer des graphiques avec les principales entités de chaque fichier pour faire une comparaison entre plusieurs textes. Pour produire, insérer un premier fichier et l'autre après au format txt, pdf, doc, docx ou odt et appuyez sur le bouton 'analyser les archives'. Après la génération du graphique, vous pouvez interagir avec le chat en fonction du document.", + 'analyze_button': "Analyser les textes", + 'comparison': "Comparaison des Relations Sémantiques", + 'success_message': "Analyse du discours enregistrée avec succès.", + 'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse du discours. Veuillez réessayer.", + 'warning_message': "Veuillez télécharger les deux fichiers à analyser.", + 'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse.", + 'key_concepts': "Concepts Clés", + 'graph_not_available': "Le graphique n'est pas disponible.", + 'concepts_not_available': "Les concepts clés ne sont pas disponibles.", + 'comparison_not_available': "La comparaison n'est pas disponible.", + 'morphosyntax_history': "Historique morphosyntaxique", + 'analysis_of': "Analyse de" +} + +ACTIVITIES = { + # Nouvelles étiquettes mises à jour + 'current_situation_activities': "Registres de la fonction : Ma Situation Actuelle", + 'morpho_activities': "Registres de mes analyses morphosyntaxiques", + 'semantic_activities': "Registres de mes analyses sémantiques", + 'discourse_activities': "Registres de mes analyses de comparaison de textes", + 'chat_activities': "Registres de mes conversations avec le tuteur virtuel", + + # Maintenir d'autres clés existantes + 'current_situation_tab': "Ma situation actuelle", + 'morpho_tab': "Analyse morphosyntaxique", + 'semantic_tab': "Analyse sémantique", + 'discourse_tab': "Analyse de comparaison de textes", + 'activities_tab': "Mon registre d'activités", + 'feedback_tab': "Formulaire de commentaires", + + # Reste des clés qui sont dans le dictionnaire ACTIVITIES + 'analysis_types_chart_title': "Types d'analyses effectuées", + 'analysis_types_chart_x': "Type d'analyse", + 'analysis_types_chart_y': "Nombre", + 'analysis_from': "Analyse du", + 'assistant': "Assistant", + 'activities_summary': "Résumé des Activités et Progrès", + 'chat_history_expander': "Historique des Conversations", + 'chat_from': "Conversation du", + 'combined_graph': "Graphique combiné", + 'conceptual_relations_graph': "Graphique des relations conceptuelles", + 'conversation': "Conversation", + 'discourse_analyses_expander': "Historique des Analyses de Comparaison de Textes", # Mis à jour + 'discourse_analyses': "Analyses de Comparaison de Textes", # Mis à jour + 'discourse_history': "Historique des Analyses de Comparaison de Textes", # Mis à jour + 'document': "Document", + 'data_load_error': "Erreur lors du chargement des données de l'étudiant", + 'graph_display_error': "Impossible d'afficher le graphique", + 'graph_doc1': "Graphique document 1", + 'graph_doc2': "Graphique document 2", + 'key_concepts': "Concepts clés", + 'loading_data': "Chargement des données de l'étudiant...", + 'morphological_analysis': "Analyse Morphologique", + 'morphosyntax_analyses_expander': "Historique des Analyses Morphosyntaxiques", + 'morphosyntax_history': "Historique des Analyses Morphosyntaxiques", + 'no_arc_diagram': "Aucun diagramme en arc trouvé pour cette analyse.", + 'no_chat_history': "Aucune conversation avec le Tuteur Virtuel n'a été trouvée.", # Mis à jour + 'no_data_warning': "Aucune donnée d'analyse trouvée pour cet étudiant.", + 'progress_of': "Progrès de", + 'semantic_analyses': "Analyses Sémantiques", + 'semantic_analyses_expander': "Historique des Analyses Sémantiques", + 'semantic_history': "Historique des Analyses Sémantiques", + 'show_debug_data': "Afficher les données de débogage", + 'student_debug_data': "Données de l'étudiant (pour le débogage) :", + 'summary_title': "Résumé des Activités", + 'title': "Mon Registre d'Activités", # Mis à jour + 'timestamp': "Horodatage", + 'total_analyses': "Total des analyses effectuées :", + 'try_analysis': "Essayez d'effectuer d'abord quelques analyses de texte.", + 'user': "Utilisateur", + + # Nouvelles traductions spécifiques pour la section activités + 'diagnosis_tab': "Diagnostic", + 'recommendations_tab': "Recommandations", + 'key_metrics': "Métriques clés", + 'details': "Détails", + 'analyzed_text': "Texte analysé", + 'analysis_date': "Date", + 'academic_article': "Article académique", + 'student_essay': "Dissertation d'étudiant", + 'general_communication': "Communication générale", + 'no_diagnosis': "Aucune donnée de diagnostic disponible", + 'no_recommendations': "Aucune recommandation disponible", + 'error_current_situation': "Erreur lors de l'affichage de l'analyse de la situation actuelle", + 'no_current_situation': "Aucune analyse de situation actuelle enregistrée", + 'no_morpho_analyses': "Aucune analyse morphosyntaxique enregistrée", + 'error_morpho': "Erreur lors de l'affichage de l'analyse morphosyntaxique", + 'no_semantic_analyses': "Aucune analyse sémantique enregistrée", + 'error_semantic': "Erreur lors de l'affichage de l'analyse sémantique", + 'no_discourse_analyses': "Aucune analyse de comparaison de textes enregistrée", + 'error_discourse': "Erreur lors de l'affichage de l'analyse de comparaison de textes", + 'no_chat_history': "Aucun enregistrement de conversation avec le tuteur virtuel", + 'error_chat': "Erreur lors de l'affichage des enregistrements de conversation", + 'error_loading_activities': "Erreur lors du chargement des activités", + 'chat_date': "Date de conversation", + 'invalid_chat_format': "Format de chat invalide", + 'comparison_results': "Résultats de la comparaison", + 'concepts_text_1': "Concepts Texte 1", + 'concepts_text_2': "Concepts Texte 2", + 'no_visualization': "Aucune visualisation comparative disponible", + 'no_graph': "Aucune visualisation disponible", + 'error_loading_graph': "Erreur lors du chargement du graphique", + 'syntactic_diagrams': "Diagrammes syntaxiques" +} + +FEEDBACK = { + 'email': "E-mail", + 'feedback': "Retour", + 'feedback_title': "Formulaire de commentaires", + 'feedback_error': "Un problème est survenu lors de l'envoi du formulaire. Veuillez réessayer.", + 'feedback_success': "Merci pour votre retour", + 'complete_all_fields': "Veuillez remplir tous les champs", + 'name': "Nom", + 'submit': "Envoyer" +} + +CHATBOT_TRANSLATIONS = { + 'chat_title': "Assistant AIdeaText", + 'input_placeholder': "Des questions ?", + 'initial_message': "Bonjour ! Je suis votre assistant. Comment puis-je vous aider ?", + 'expand_chat': "Ouvrir l'assistant", + 'clear_chat': "Effacer la conversation", + 'processing': "Traitement en cours...", + 'error_message': "Désolé, une erreur s'est produite" +} + +TEXT_TYPES = { + "descriptif": [ + "Que décrivez-vous ?", + "Quelles sont ses principales caractéristiques ?", + "À quoi ressemble-t-il, quel son produit-il, quelle odeur dégage-t-il ou quelle sensation procure-t-il ?", + "Qu'est-ce qui le rend unique ou spécial ?" + ], + "narratif": [ + "Qui est le protagoniste ?", + "Où et quand se déroule l'histoire ?", + "Quel événement déclenche l'action ?", + "Que se passe-t-il ensuite ?", + "Comment se termine l'histoire ?" + ], + "explicatif": [ + "Quel est le sujet principal ?", + "Quels aspects importants voulez-vous expliquer ?", + "Pouvez-vous donner des exemples ou des données pour appuyer votre explication ?", + "Comment ce sujet est-il lié à d'autres concepts ?" + ], + "argumentatif": [ + "Quelle est votre thèse ou argument principal ?", + "Quels sont vos arguments de soutien ?", + "Quelles preuves avez-vous pour étayer vos arguments ?", + "Quels sont les contre-arguments et comment les réfutez-vous ?", + "Quelle est votre conclusion ?" + ], + "instructif": [ + "Quelle tâche ou quel processus expliquez-vous ?", + "Quels matériaux ou outils sont nécessaires ?", + "Quelles sont les étapes à suivre ?", + "Y a-t-il des précautions ou des conseils importants à mentionner ?" + ], + "pitch": [ + "Quoi ?", + "Pour quoi ?", + "Pour qui ?", + "Comment ?" + ] +} + +# Configuration du modèle de langage pour le français +NLP_MODEL = 'fr_core_news_lg' + +# Cette ligne est cruciale: +TRANSLATIONS = { + 'COMMON': COMMON, + 'TABS': TABS, + 'MORPHOSYNTACTIC': MORPHOSYNTACTIC, + 'SEMANTIC': SEMANTIC, + 'DISCOURSE': DISCOURSE, + 'ACTIVITIES': ACTIVITIES, + 'FEEDBACK': FEEDBACK, + 'TEXT_TYPES': TEXT_TYPES, + 'CURRENT_SITUATION': CURRENT_SITUATION, + 'NLP_MODEL': NLP_MODEL +} \ No newline at end of file diff --git a/src/translations/landing_translations.py b/src/translations/landing_translations.py new file mode 100644 index 0000000000000000000000000000000000000000..f1f8a9e0fbc021a261b3418c921d17bb9fae6396 --- /dev/null +++ b/src/translations/landing_translations.py @@ -0,0 +1,224 @@ +# landing_translations.py + +LANDING_TRANSLATIONS = { + 'en': { + # Language selector + 'select_language': "Select language - Sélectionner la langue - Selecionar idioma - Selecciona tu idioma", + + # Auth tabs + 'login': "Login", + 'register': "Sign Up", + + # Login form + 'email': "Email", + 'password': "Password", + 'login_button': "Login", + 'invalid_credentials': "Invalid credentials", + + # Registration form + 'name': "Name", + 'lastname': "Last Name", + 'institution': "Institution", + 'current_role': "Role in your institution", + 'professor': "Professor", + 'student': "Student", + 'administrative': "Administrative", + 'institutional_email': "Institutional email", + 'interest_reason': "Why are you interested in trying AIdeaText?", + 'submit_application': "Submit application", + 'complete_all_fields': "Please complete all fields.", + 'use_institutional_email': "Please use an institutional email.", + 'application_sent': "Your application has been sent. We will contact you soon.", + 'application_error': "There was a problem sending your application. Please try again later.", + + # Info tabs + 'use_cases': "Use Cases", + 'presentation_videos': "Presentation Videos", + 'academic_presentations': "Academic Presentations", + 'event_photos': "Event Photos", + 'version_control': "Version Control", + + # Video selectors + 'select_use_case': "Select a use case in English or Spanish:", + 'select_presentation': "Select a presentation:", + + # Version control info + 'latest_version_title': "Latest Version Updates", + 'version_updates': [ + "Improved interface for a better user experience", + "Optimization of morphosyntactic analysis", + "Support for multiple languages", + "New discourse analysis module", + "Integrated chat system for support" + ] + }, + 'es': { + # Language selector + 'select_language': "Selecciona tu idioma - Select language - Sélectionner la langue - Selecionar idioma", + + # Auth tabs + 'login': "Iniciar Sesión", + 'register': "Registrarse", + + # Login form + 'email': "Correo electrónico", + 'password': "Contraseña", + 'login_button': "Iniciar Sesión", + 'invalid_credentials': "Credenciales incorrectas", + + # Registration form + 'name': "Nombre", + 'lastname': "Apellidos", + 'institution': "Institución", + 'current_role': "Rol en la institución donde labora", + 'professor': "Profesor", + 'student': "Estudiante", + 'administrative': "Administrativo", + 'institutional_email': "Correo electrónico de su institución", + 'interest_reason': "¿Por qué estás interesado en probar AIdeaText?", + 'submit_application': "Enviar solicitud", + 'complete_all_fields': "Por favor, completa todos los campos.", + 'use_institutional_email': "Por favor, utiliza un correo electrónico institucional.", + 'application_sent': "Tu solicitud ha sido enviada. Te contactaremos pronto.", + 'application_error': "Hubo un problema al enviar tu solicitud. Por favor, intenta de nuevo más tarde.", + + # Info tabs + 'use_cases': "Casos de uso", + 'presentation_videos': "Videos de presentaciones", + 'academic_presentations': "Ponencias académicas", + 'event_photos': "Fotos de eventos", + 'version_control': "Control de versiones", + + # Video selectors + 'select_use_case': "Selecciona un caso de uso en español o en inglés:", + 'select_presentation': "Selecciona una conferencia:", + + # Version control info + 'latest_version_title': "Novedades de la versión actual", + 'version_updates': [ + "Interfaz mejorada para una mejor experiencia de usuario", + "Optimización del análisis morfosintáctico", + "Soporte para múltiples idiomas", + "Nuevo módulo de análisis del discurso", + "Sistema de chat integrado para soporte" + ] + }, + 'fr': { + # Language selector + 'select_language': "Sélectionner la langue - Selecciona tu idioma - Select language - Selecionar idioma", + + # Auth tabs + 'login': "Se connecter", + 'register': "S'inscrire", + + # Login form + 'email': "E-mail", + 'password': "Mot de passe", + 'login_button': "Se connecter", + 'invalid_credentials': "Identifiants incorrects", + + # Registration form + 'name': "Nom", + 'lastname': "Nom de famille", + 'institution': "Institution", + 'current_role': "Rôle dans votre institution", + 'professor': "Professeur", + 'student': "Étudiant", + 'administrative': "Administratif", + 'institutional_email': "E-mail institutionnel", + 'interest_reason': "Pourquoi êtes-vous intéressé à essayer AIdeaText?", + 'submit_application': "Soumettre la demande", + 'complete_all_fields': "Veuillez remplir tous les champs.", + 'use_institutional_email': "Veuillez utiliser un e-mail institutionnel.", + 'application_sent': "Votre demande a été envoyée. Nous vous contacterons bientôt.", + 'application_error': "Un problème est survenu lors de l'envoi de votre demande. Veuillez réessayer plus tard.", + + # Info tabs + 'use_cases': "Cas d'utilisation", + 'presentation_videos': "Vidéos de présentation", + 'academic_presentations': "Présentations académiques", + 'event_photos': "Photos d'événements", + 'version_control': "Contrôle de version", + + # Video selectors + 'select_use_case': "Sélectionnez un cas d'utilisation en français ou en anglais:", + 'select_presentation': "Sélectionnez une conférence:", + + # Version control info + 'latest_version_title': "Mises à jour de la dernière version", + 'version_updates': [ + "Interface améliorée pour une meilleure expérience utilisateur", + "Optimisation de l'analyse morphosyntaxique", + "Support pour plusieurs langues", + "Nouveau module d'analyse du discours", + "Système de chat intégré pour le support" + ] + }, + 'pt': { + # Language selector + 'select_language': "Selecionar idioma - Sélectionner la langue - Selecciona tu idioma - Select language", + + # Auth tabs + 'login': "Entrar", + 'register': "Registrar-se", + + # Login form + 'email': "Email", + 'password': "Senha", + 'login_button': "Entrar", + 'invalid_credentials': "Credenciais inválidas", + + # Registration form + 'name': "Nome", + 'lastname': "Sobrenome", + 'institution': "Instituição", + 'current_role': "Função na sua instituição", + 'professor': "Professor", + 'student': "Estudante", + 'administrative': "Administrativo", + 'institutional_email': "Email institucional", + 'interest_reason': "Por que você está interessado em experimentar o AIdeaText?", + 'submit_application': "Enviar solicitação", + 'complete_all_fields': "Por favor, preencha todos os campos.", + 'use_institutional_email': "Por favor, use um email institucional.", + 'application_sent': "Sua solicitação foi enviada. Entraremos em contato em breve.", + 'application_error': "Houve um problema ao enviar sua solicitação. Por favor, tente novamente mais tarde.", + + # Info tabs + 'use_cases': "Casos de uso", + 'presentation_videos': "Vídeos de apresentação", + 'academic_presentations': "Apresentações acadêmicas", + 'event_photos': "Fotos de eventos", + 'version_control': "Controle de versão", + + # Video selectors + 'select_use_case': "Selecione um caso de uso em português ou inglês:", + 'select_presentation': "Selecione uma conferência:", + + # Version control info + 'latest_version_title': "Atualizações da versão mais recente", + 'version_updates': [ + "Interface melhorada para uma melhor experiência do usuário", + "Otimização da análise morfossintática", + "Suporte para vários idiomas", + "Novo módulo de análise do discurso", + "Sistema de chat integrado para suporte" + ] + } +} + +def get_landing_translations(lang_code): + """ + Get translations for the landing page based on language code. + + Args: + lang_code (str): Language code ('en', 'es', 'fr', 'pt') + + Returns: + dict: Dictionary with translations for the landing page + """ + # Default to Spanish if language not available + if lang_code not in LANDING_TRANSLATIONS: + lang_code = 'es' + + return LANDING_TRANSLATIONS[lang_code] \ No newline at end of file diff --git a/src/translations/pt.py b/src/translations/pt.py new file mode 100644 index 0000000000000000000000000000000000000000..cce0bc3c53eb4ad9d1e82cbd1cc4940c9851b8a5 --- /dev/null +++ b/src/translations/pt.py @@ -0,0 +1,427 @@ +# translations/pt.py + +COMMON = { + # A + 'initial_instruction': "Para iniciar uma nova análise semântica, carregue um novo arquivo de texto (.txt)", + 'analysis_complete': "Análise completa e salva. Para realizar uma nova análise, carregue outro arquivo.", + 'current_analysis_message': "Exibindo análise do arquivo: {}. Para realizar uma nova análise, carregue outro arquivo.", + 'upload_prompt': "Anexe um arquivo para iniciar a análise", + 'analysis_completed': "Análise concluída", + 'analysis_section': "Análise Semântica", + 'analyze_document': 'Analisar documento', + 'analysis_saved_success': 'Análise salva com sucesso', + 'analysis_save_error': 'Erro ao salvar a análise', + 'analyze_button': "Analisar texto", + 'analyzing_doc': "Analisando documento", + 'activities_message': "Mensagens de atividades", + 'activities_placeholder': "Espaço reservado para atividades", + 'analysis_placeholder': "Espaço reservado para análise", + 'analyze_button': "Analisar", + 'analysis_types_chart': "Gráfico de tipos de análise", + 'analysis_from': "Análise realizada em", + # C + 'chat_title': "Chat de Análise", + 'export_button': "Exportar Análise Atual", + 'export_success': "Análise e chat exportados com sucesso.", + 'export_error': "Ocorreu um problema ao exportar a análise e o chat.", + 'get_text': "Obter texto.", + 'hello': "Olá", + # L + 'logout': "Encerrar sessão.", + 'loading_data': "Carregando dados", + 'load_selected_file': 'Carregar arquivo selecionado', + # N + 'no_analysis': "Nenhuma análise disponível. Use o chat para realizar uma análise.", + 'nothing_to_export': "Nenhuma análise ou chat para exportar.", + 'results_title': "Resultados da Análise", + 'select_language': "Selecionar idioma", + 'student_activities': "Atividades do estudante", + # T + 'total_analyses': "Total de análises", + # W + 'welcome': "Bem-vindo ao AIdeaText" +} + +TABS = { + 'current_situation_tab': "Situação atual", + 'morpho_tab': "Análise morfossintática", + 'semantic_live_tab': "Semântica ao vivo", + 'semantic_tab': "Análise semântica", + 'discourse_live_tab': "Discurso ao vivo", + 'discourse_tab': "Análise do discurso", + 'activities_tab': "Minhas atividades", + 'feedback_tab': "Formulário de feedback" +} + +CURRENT_SITUATION = { + 'title': "Minha Situação Atual", + 'input_prompt': "Escreva ou cole seu texto aqui:", + 'first_analyze_button': "Analisar minha escrita", + 'processing': "Analisando...", + 'analysis_error': "Erro ao analisar o texto", + 'help': "Analisaremos seu texto para determinar seu estado atual", + + # Radio buttons para tipo de texto + 'text_type_header': "Tipo de texto", + 'text_type_help': "Selecione o tipo de texto para ajustar os critérios de avaliação", + + # Métricas + 'vocabulary_label': "Vocabulário", + 'vocabulary_help': "Riqueza e variedade do vocabulário", + 'structure_label': "Estrutura", + 'structure_help': "Organização e complexidade das frases", + 'cohesion_label': "Coesão", + 'cohesion_help': "Conexão e fluidez entre ideias", + 'clarity_label': "Clareza", + 'clarity_help': "Facilidade de compreensão do texto", + + # Estados de métricas + 'metric_improvement': "⚠️ Precisa melhorar", + 'metric_acceptable': "📈 Aceitável", + 'metric_optimal': "✅ Ótimo", + 'metric_target': "Meta: {:.2f}", + + # Errores + 'error_interface': "Ocorreu um erro ao carregar a interface", + 'error_results': "Erro ao exibir os resultados", + 'error_chart': "Erro ao exibir o gráfico" +} + +MORPHOSYNTACTIC = { + #A + 'arc_diagram': "Análise sintática: Diagrama de arco", + #B + 'tab_text_baseline': "Produzir o primeiro texto", + 'tab_iterations': "Produzir novas versões do primeiro texto", + + # Pestaña 1 texto base + 'btn_new_morpho_analysis': "Nova análise morfossintática", + 'btn_analyze_baseline': "Analisar o texto inserido", + 'input_baseline_text': "Insira o primeiro texto para analisar", + 'warn_enter_text': "Por favor, insira um texto para analisar", + 'error_processing_baseline': "Erro ao processar o texto inicial", + 'arc_diagram_baseline_label': "Diagrama de arco do texto inicial", + 'baseline_diagram_not_available': "Diagrama de arco do texto inicial não disponível", + + # Pestaña 2 Iteración del texto + 'info_first_analyze_base': "Verifique se o texto inicial existe", + 'iteration_text_subheader': "Nova versão do texto inicial", + 'input_iteration_text': "Insira uma nova versão do texto inicial e compare os arcos de ambos os textos", + 'btn_analyze_iteration': "Analisar mudanças", + 'warn_enter_iteration_text': "Insira uma nova versão do texto inicial e compare os arcos de ambos os textos", + 'iteration_saved': "Mudanças salvas com sucesso", + 'error_iteration': "Erro ao processar as novas mudanças", + + #C + 'count': "Contagem", + #D + 'dependency': "Dependência", + 'dep': "Dependência", + #E + 'error_message': "Houve um problema ao salvar a análise. Por favor, tente novamente.", + 'examples': "Exemplos", + #G + 'grammatical_category': "Categoria gramatical", + #L + 'lemma': "Lema", + 'legend': "Legenda: Categorias gramaticais", + #O + 'objects': "Objetos", + #P + 'pos_analysis': "Análise de Classes Gramaticais", + 'percentage': "Porcentagem", + #N + 'no_results': "Nenhum resultado disponível. Por favor, realize uma análise primeiro.", + #M + 'morpho_analyze_button': 'Análise Morfossintática', + 'morpho_title': "AIdeaText - Análise morfológica", + 'morpho_initial_message': "Este é um chatbot de propósito geral, mas tem uma função específica para análise visual de texto: geração de diagramas de arco. Para produzi-los, digite o seguinte comando /analisis_morfosintactico [seguido por colchetes dentro dos quais você deve colocar o texto que deseja analisar]", + 'morpho_input_label': "Digite um texto para analisar (máx. 30 palavras):", + 'morpho_input_placeholder': "espaço reservado para morfossintaxe", + 'morphosyntactic_analysis_completed': 'Análise morfossintática concluída. Por favor, revise os resultados na seção seguinte.', + 'morphological_analysis': "Análise Morfológica", + 'morphology': "Morfologia", + 'morph': "Morfologia", + #R + 'root': "Raiz", + 'repeated_words': "Palavras repetidas", + #S + 'sentence': "Frase", + 'success_message': "Análise salva com sucesso.", + 'sentence_structure': "Estrutura da Frase", + 'subjects': "Sujeitos", + #V + 'verbs': "Verbos", + #T + 'title': "AIdeaText - Análise Morfológica e Sintática", + 'tag': "Etiqueta", + #W + 'warning_message': "Por favor, digite um texto para analisar.", + 'word': "Palavra", + 'processing': 'Processando...', + 'error_processing': 'Erro de processamento', + 'morphosyntactic_analysis_error': 'Erro na análise morfossintática', + 'morphosyntactic_analysis_completed': 'Análise morfossintática concluída' +} + +SEMANTIC = { + # C + 'chat_title': "Chat de Análise Semântica", + 'chat_placeholder': "Faça uma pergunta ou use um comando (/resumo, /entidades, /sentimento, /tópicos, /grafo_conceitos, /grafo_entidades, /grafo_tópicos)", + 'clear_chat': "Limpar chat", + 'conceptual_relations': "Relações Conceituais", + # D + 'delete_file': "Excluir arquivo", + 'download_semantic_network_graph': "Baixar gráfico de rede semântica", + # E + 'error_message': "Houve um problema ao salvar a análise semântica. Por favor, tente novamente.", + # F + 'file_uploader': "Ou carregue um arquivo de texto", + 'file_upload_success': "Arquivo carregado e salvo com sucesso", + 'file_upload_error': 'Erro ao carregar arquivo', + 'file_section': "Arquivos", + 'file_loaded_success': "Arquivo carregado com sucesso", + 'file_load_error': "Erro ao carregar arquivo", + 'file_upload_error': "Erro ao carregar e salvar arquivo", + 'file_deleted_success': 'Arquivo excluído com sucesso', + 'file_delete_error': 'Erro ao excluir arquivo', + # G + 'graph_title': "Visualização da Análise Semântica", + # I + 'identified_entities': "Entidades Identificadas", + # K + 'key_concepts': "Conceitos-Chave", + # N + 'no_analysis': "Nenhuma análise disponível. Por favor, carregue ou selecione um arquivo.", + 'no_results': "Nenhum resultado disponível. Por favor, realize uma análise primeiro.", + 'no_file': "Por favor, carregue um arquivo para iniciar a análise.", + 'no_file_selected': "Por favor, selecione um arquivo para iniciar a análise.", + # S + ################### + 'semantic_virtual_agent_button': 'Analisar com Agente Virtual', + 'semantic_agent_ready_message': 'O agente virtual recebeu sua análise semântica. Abra o assistente na barra lateral para discutir seus resultados.', + 'semantic_chat_title': 'Análise Semântica - Assistente Virtual', + #### + 'semantic_graph_interpretation': "Interpretação do gráfico semântico", + 'semantic_arrow_meaning': "As setas indicam a direção da relação entre os conceitos", + 'semantic_color_meaning': "Cores mais intensas indicam conceitos mais centrais no texto", + 'semantic_size_meaning': "O tamanho dos nós representa a frequência do conceito", + 'semantic_thickness_meaning': "A espessura das linhas indica a força da conexão", + #### + 'semantic_graph_interpretation': "Interpretação de gráficos semânticos", + 'semantic_title': "Análise Semântica", + 'semantic_initial_message': "Este é um chatbot de propósito geral, mas tem uma função específica para análise visual de texto: gera um grafo com as principais entidades do texto. Para produzi-lo, insira um arquivo de texto em formato txt, pdf, doc, docx ou odt e pressione o botão 'analisar arquivo'. Após a geração do grafo, você pode interagir com o chat com base no documento.", + 'send_button': "Enviar", + 'select_saved_file': "Selecionar arquivo salvo", + 'success_message': "Análise semântica salva com sucesso.", + 'semantic_analyze_button': 'Análise Semântica', + 'semantic_export_button': 'Exportar Análise Semântica', + 'semantic_new_button': 'Nova Análise Semântica', + 'semantic_file_uploader': 'Carregar um arquivo de texto para análise semântica', + # T + 'text_input_label': "Digite um texto para analisar (máx. 5.000 palavras):", + 'text_input_placeholder': "O objetivo desta aplicação é melhorar suas habilidades de escrita...", + 'title': "AIdeaText - Análise Semântica", + # U + 'upload_file': "Carregar arquivo", + # W + 'warning_message': "Por favor, digite um texto ou carregue um arquivo para analisar." +} + +DISCOURSE = { + 'compare_arrow_meaning': "As setas indicam a direção da relação entre os conceitos", + 'compare_color_meaning': "Cores mais intensas indicam conceitos mais centrais no texto", + 'compare_size_meaning': "O tamanho dos nós representa a frequência do conceito", + 'compare_thickness_meaning': "A espessura das linhas indica a força da conexão", + 'compare_doc1_title': "Documento 1", + 'compare_doc2_title': "Documento 2", + 'file1_label': "Documento Padrão", + 'file2_label': "Documento Comparado", + 'discourse_title': "AIdeaText - Análise do Discurso", + 'file_uploader1': "Carregar arquivo de texto 1 (Padrão)", + 'file_uploader2': "Carregar arquivo de texto 2 (Comparação)", + 'discourse_analyze_button': "Comparar textos", + 'discourse_initial_message': "Este é um chatbot de propósito geral, mas tem uma função específica para análise visual de texto: gera dois grafos com as principais entidades de cada arquivo para fazer uma comparação entre ambos os textos. Para produzi-lo, insira um arquivo primeiro e depois outro em formato txt, pdf, doc, docx ou odt e pressione o botão 'analisar arquivo'. Após a geração do grafo, você pode interagir com o chat com base no documento.", + 'analyze_button': "Analisar textos", + 'comparison': "Comparação de Relações Semânticas", + 'success_message': "Análise do discurso salva com sucesso.", + 'error_message': "Houve um problema ao salvar a análise do discurso. Por favor, tente novamente.", + 'warning_message': "Por favor, carregue ambos os arquivos para analisar.", + 'no_results': "Nenhum resultado disponível. Por favor, realize uma análise primeiro.", + 'key_concepts': "Conceitos-Chave", + 'graph_not_available': "O grafo não está disponível.", + 'concepts_not_available': "Os conceitos-chave não estão disponíveis.", + 'comparison_not_available': "A comparação não está disponível.", + 'morphosyntax_history': "Histórico morfossintático", + 'analysis_of': "Análise de" +} + +ACTIVITIES = { + # Nuevas etiquetas actualizadas + 'current_situation_activities': "Registros da função: Minha Situação Atual", + 'morpho_activities': "Registros das minhas análises morfossintáticas", + 'semantic_activities': "Registros das minhas análises semânticas", + 'discourse_activities': "Registros das minhas análises de comparação de textos", + 'chat_activities': "Registros das minhas conversas com o tutor virtual", + + # Mantener otras claves existentes + 'current_situation_tab': "Situação atual", + 'morpho_tab': "Análise morfossintática", + 'semantic_tab': "Análise semântica", + 'discourse_tab': "Análise de comparação de textos", + 'activities_tab': "Meu registro de atividades", + 'feedback_tab': "Formulário de feedback", + + # Resto de las claves que estén en el diccionario ACTIVITIES + 'analysis_types_chart_title': "Tipos de análises realizadas", + 'analysis_types_chart_x': "Tipo de análise", + 'analysis_types_chart_y': "Contagem", + 'analysis_from': "Análise de", + 'assistant': "Assistente", + 'activities_summary': "Resumo de Atividades e Progresso", + 'chat_history_expander': "Histórico de Chat", + 'chat_from': "Chat de", + 'combined_graph': "Grafo Combinado", + 'conceptual_relations_graph': "Grafo de Relações Conceituais", + 'conversation': "Conversa", + 'discourse_analyses_expander': "Histórico de Análises de Comparação de Textos", # Actualizado + 'discourse_analyses': "Análises de Comparação de Textos", # Actualizado + 'discourse_history': "Histórico de Análise de Comparação de Textos", # Actualizado + 'document': "Documento", + 'data_load_error': "Erro ao carregar dados do estudante", + 'graph_display_error': "Não foi possível exibir o grafo", + 'graph_doc1': "Grafo documento 1", + 'graph_doc2': "Grafo documento 2", + 'key_concepts': "Conceitos-chave", + 'loading_data': "Carregando dados do estudante...", + 'morphological_analysis': "Análise Morfológica", + 'morphosyntax_analyses_expander': "Histórico de Análises Morfossintáticas", + 'morphosyntax_history': "Histórico de Análise Morfossintática", + 'no_arc_diagram': "Nenhum diagrama de arco encontrado para esta análise.", + 'no_chat_history': "Nenhuma conversa com o Tutor Virtual foi encontrada.", # Actualizado + 'no_data_warning': "Nenhum dado de análise encontrado para este estudante.", + 'progress_of': "Progresso de", + 'semantic_analyses': "Análises Semânticas", + 'semantic_analyses_expander': "Histórico de Análises Semânticas", + 'semantic_history': "Histórico de Análise Semântica", + 'show_debug_data': "Mostrar dados de depuração", + 'student_debug_data': "Dados do estudante (para depuração):", + 'summary_title': "Resumo de Atividades", + 'title': "Meu Registro de Atividades", # Actualizado + 'timestamp': "Data e hora", + 'total_analyses': "Total de análises realizadas:", + 'try_analysis': "Tente realizar algumas análises de texto primeiro.", + 'user': "Usuário", + + # Nuevas traducciones específicas para la sección de actividades + 'diagnosis_tab': "Diagnóstico", + 'recommendations_tab': "Recomendações", + 'key_metrics': "Métricas chave", + 'details': "Detalhes", + 'analyzed_text': "Texto analisado", + 'analysis_date': "Data", + 'academic_article': "Artigo acadêmico", + 'student_essay': "Trabalho acadêmico", + 'general_communication': "Comunicação geral", + 'no_diagnosis': "Nenhum dado de diagnóstico disponível", + 'no_recommendations': "Nenhuma recomendação disponível", + 'error_current_situation': "Erro ao exibir análise da situação atual", + 'no_current_situation': "Nenhuma análise de situação atual registrada", + 'no_morpho_analyses': "Nenhuma análise morfossintática registrada", + 'error_morpho': "Erro ao exibir análise morfossintática", + 'no_semantic_analyses': "Nenhuma análise semântica registrada", + 'error_semantic': "Erro ao exibir análise semântica", + 'no_discourse_analyses': "Nenhuma análise de comparação de textos registrada", + 'error_discourse': "Erro ao exibir análise de comparação de textos", + 'no_chat_history': "Nenhum registro de conversa com o tutor virtual", + 'error_chat': "Erro ao exibir registros de conversa", + 'error_loading_activities': "Erro ao carregar atividades", + 'chat_date': "Data da conversa", + 'invalid_chat_format': "Formato de chat inválido", + 'comparison_results': "Resultados da comparação", + 'concepts_text_1': "Conceitos Texto 1", + 'concepts_text_2': "Conceitos Texto 2", + 'no_visualization': "Nenhuma visualização comparativa disponível", + 'no_graph': "Nenhuma visualização disponível", + 'error_loading_graph': "Erro ao carregar gráfico", + 'syntactic_diagrams': "Diagramas sintáticos" +} + +FEEDBACK = { + 'email': "Email", + 'feedback': "Feedback", + 'feedback_title': "Formulário de feedback", + 'feedback_error': "Houve um problema ao enviar o formulário. Por favor, tente novamente.", + 'feedback_success': "Obrigado pelo seu feedback", + 'complete_all_fields': "Por favor, preencha todos os campos", + 'name': "Nome", + 'submit': "Enviar" +} + +CHATBOT_TRANSLATIONS = { + 'chat_title': "Assistente AIdeaText", + 'input_placeholder': "Alguma pergunta?", + 'initial_message': "Olá! Sou seu assistente. Como posso ajudar?", + 'expand_chat': "Abrir assistente", + 'clear_chat': "Limpar chat", + 'processing': "Processando...", + 'error_message': "Desculpe, ocorreu um erro" +} + +TEXT_TYPES = { + 'descritivo': [ + 'O que você está descrevendo?', + 'Quais são suas principais características?', + 'Como é a aparência, som, cheiro ou sensação?', + 'O que o torna único ou especial?' + ], + 'narrativo': [ + 'Quem é o protagonista?', + 'Onde e quando a história se passa?', + 'Qual evento inicia a ação?', + 'O que acontece depois?', + 'Como a história termina?' + ], + 'expositivo': [ + 'Qual é o tema principal?', + 'Quais aspectos importantes você quer explicar?', + 'Você pode fornecer exemplos ou dados para apoiar sua explicação?', + 'Como este tema se relaciona com outros conceitos?' + ], + 'argumentativo': [ + 'Qual é sua tese ou argumento principal?', + 'Quais são seus argumentos de apoio?', + 'Que evidências você tem para sustentar seus argumentos?', + 'Quais são os contra-argumentos e como você os refuta?', + 'Qual é sua conclusão?' + ], + 'instrutivo': [ + 'Que tarefa ou processo você está explicando?', + 'Quais materiais ou ferramentas são necessários?', + 'Quais são os passos a seguir?', + 'Existem precauções importantes ou dicas a mencionar?' + ], + 'pitch': [ + 'O quê?', + 'Para quê?', + 'Para quem?', + 'Como?' + ] +} + +# Configuração do modelo de linguagem para Português +NLP_MODEL = 'pt_core_news_lg' + +# Esta linha é crucial: +TRANSLATIONS = { + 'COMMON': COMMON, + 'TABS': TABS, + 'MORPHOSYNTACTIC': MORPHOSYNTACTIC, + 'SEMANTIC': SEMANTIC, + 'DISCOURSE': DISCOURSE, + 'ACTIVITIES': ACTIVITIES, + 'FEEDBACK': FEEDBACK, + 'TEXT_TYPES': TEXT_TYPES, + 'CURRENT_SITUATION': CURRENT_SITUATION, + 'NLP_MODEL': NLP_MODEL +} \ No newline at end of file diff --git a/src/translations/recommendations.py b/src/translations/recommendations.py new file mode 100644 index 0000000000000000000000000000000000000000..4280b32b219a28806c474cd4f0f9cbb09f7dcc20 --- /dev/null +++ b/src/translations/recommendations.py @@ -0,0 +1,413 @@ +# translations/recommendations.py + +# Recomendaciones en español +RECOMMENDATIONS_ES = { + 'vocabulary': { + 'low': [ + "Amplía tu vocabulario utilizando sinónimos para palabras repetidas.", + "Incorpora terminología específica relacionada con el tema.", + "Lee textos similares para familiarizarte con el vocabulario del campo." + ], + 'medium': [ + "Mejora la precisión léxica usando términos más específicos.", + "Considera incluir algunos términos técnicos relevantes.", + "Evita repeticiones innecesarias usando sinónimos." + ], + 'high': [ + "Mantén el excelente nivel de vocabulario.", + "Asegúrate de que los términos técnicos sean comprensibles para tu audiencia." + ] + }, + 'structure': { + 'low': [ + "Simplifica tus oraciones largas dividiéndolas en varias más cortas.", + "Varía la estructura de tus oraciones para mantener el interés.", + "Organiza tus ideas siguiendo una secuencia lógica (introducción, desarrollo, conclusión)." + ], + 'medium': [ + "Equilibra oraciones simples y compuestas para mejorar el ritmo.", + "Asegúrate de que cada párrafo desarrolle una idea central.", + "Considera usar conectores para transiciones más suaves entre ideas." + ], + 'high': [ + "Mantén la excelente estructura de tu texto.", + "Considera ocasionalmente variar el ritmo con alguna oración más breve o más compleja." + ] + }, + 'cohesion': { + 'low': [ + "Añade conectores (además, sin embargo, por lo tanto) para relacionar ideas.", + "Mantén la consistencia temática entre párrafos.", + "Usa referencias explícitas a ideas mencionadas anteriormente." + ], + 'medium': [ + "Mejora las transiciones entre párrafos para una progresión más fluida.", + "Utiliza términos del mismo campo semántico para reforzar la unidad temática.", + "Considera usar palabras clave de forma recurrente." + ], + 'high': [ + "Mantén la excelente cohesión de tu texto.", + "Asegúrate de que las referencias a conceptos previos sean claras." + ] + }, + 'clarity': { + 'low': [ + "Acorta las oraciones demasiado largas o complejas.", + "Evita ambigüedades usando términos precisos.", + "Añade ejemplos concretos para ilustrar conceptos abstractos." + ], + 'medium': [ + "Elimina información innecesaria que pueda distraer.", + "Ordena las ideas de lo más simple a lo más complejo.", + "Utiliza un lenguaje directo y evita circunloquios." + ], + 'high': [ + "Mantén la excelente claridad de tu texto.", + "Considera si algún término técnico podría necesitar una breve explicación." + ] + }, + 'academic_article': [ + "Asegúrate de fundamentar tus afirmaciones con evidencia.", + "Mantén un tono formal y objetivo.", + "Incluye referencias bibliográficas para apoyar tus argumentos." + ], + 'student_essay': [ + "Asegúrate de tener una tesis clara y argumentos que la apoyen.", + "Conecta tus ideas con lo aprendido en clase o lecturas asignadas.", + "Concluye sintetizando tus principales puntos y su relevancia." + ], + 'general_communication': [ + "Adapta tu lenguaje a la audiencia específica.", + "Mantén un equilibrio entre ser informativo y mantener el interés.", + "Considera incluir algún elemento visual si es apropiado." + ], + 'priority_intro': "Esta es el área donde puedes enfocar tus esfuerzos para mejorar más rápidamente.", + 'detailed_recommendations': "Recomendaciones detalladas", + 'save_button': "Guardar análisis y recomendaciones", + 'save_success': "Análisis y recomendaciones guardados correctamente", + 'save_error': "No se pudo guardar el análisis y recomendaciones", + 'area_priority': "Área prioritaria", + 'dimension_names': { + 'vocabulary': 'Vocabulario', + 'structure': 'Estructura', + 'cohesion': 'Cohesión', + 'clarity': 'Claridad', + 'general': 'General' + }, + 'text_types': { + 'academic_article': 'Artículo Académico', + 'student_essay': 'Trabajo Universitario', + 'general_communication': 'Comunicación General' + } +} + +# Recomendaciones en inglés +RECOMMENDATIONS_EN = { + 'vocabulary': { + 'low': [ + "Expand your vocabulary by using synonyms for repeated words.", + "Incorporate specific terminology related to the topic.", + "Read similar texts to familiarize yourself with the field's vocabulary." + ], + 'medium': [ + "Improve lexical precision by using more specific terms.", + "Consider including some relevant technical terms.", + "Avoid unnecessary repetitions by using synonyms." + ], + 'high': [ + "Maintain the excellent vocabulary level.", + "Ensure that technical terms are understandable for your audience." + ] + }, + 'structure': { + 'low': [ + "Simplify your long sentences by dividing them into shorter ones.", + "Vary your sentence structure to maintain interest.", + "Organize your ideas following a logical sequence (introduction, development, conclusion)." + ], + 'medium': [ + "Balance simple and compound sentences to improve rhythm.", + "Make sure each paragraph develops a central idea.", + "Consider using connectors for smoother transitions between ideas." + ], + 'high': [ + "Maintain the excellent structure of your text.", + "Consider occasionally varying the rhythm with shorter or more complex sentences." + ] + }, + 'cohesion': { + 'low': [ + "Add connectors (additionally, however, therefore) to relate ideas.", + "Maintain thematic consistency between paragraphs.", + "Use explicit references to previously mentioned ideas." + ], + 'medium': [ + "Improve transitions between paragraphs for a more fluid progression.", + "Use terms from the same semantic field to reinforce thematic unity.", + "Consider using key words recurrently." + ], + 'high': [ + "Maintain the excellent cohesion of your text.", + "Ensure that references to previous concepts are clear." + ] + }, + 'clarity': { + 'low': [ + "Shorten overly long or complex sentences.", + "Avoid ambiguities by using precise terms.", + "Add concrete examples to illustrate abstract concepts." + ], + 'medium': [ + "Eliminate unnecessary information that may distract.", + "Order ideas from simplest to most complex.", + "Use direct language and avoid circumlocutions." + ], + 'high': [ + "Maintain the excellent clarity of your text.", + "Consider whether any technical term might need a brief explanation." + ] + }, + 'academic_article': [ + "Make sure to support your claims with evidence.", + "Maintain a formal and objective tone.", + "Include bibliographic references to support your arguments." + ], + 'student_essay': [ + "Make sure you have a clear thesis and arguments that support it.", + "Connect your ideas with what you've learned in class or assigned readings.", + "Conclude by synthesizing your main points and their relevance." + ], + 'general_communication': [ + "Adapt your language to the specific audience.", + "Maintain a balance between being informative and maintaining interest.", + "Consider including a visual element if appropriate." + ], + 'priority_intro': "This is the area where you can focus your efforts to improve more quickly.", + 'detailed_recommendations': "Detailed recommendations", + 'save_button': "Save analysis and recommendations", + 'save_success': "Analysis and recommendations saved successfully", + 'save_error': "Could not save the analysis and recommendations", + 'area_priority': "Priority area", + 'dimension_names': { + 'vocabulary': 'Vocabulary', + 'structure': 'Structure', + 'cohesion': 'Cohesion', + 'clarity': 'Clarity', + 'general': 'General' + }, + 'text_types': { + 'academic_article': 'Academic Article', + 'student_essay': 'Student Essay', + 'general_communication': 'General Communication' + } +} + +# Recomendaciones en francés +RECOMMENDATIONS_FR = { + 'vocabulary': { + 'low': [ + "Élargissez votre vocabulaire en utilisant des synonymes pour les mots répétés.", + "Incorporez une terminologie spécifique liée au sujet.", + "Lisez des textes similaires pour vous familiariser avec le vocabulaire du domaine." + ], + 'medium': [ + "Améliorez la précision lexicale en utilisant des termes plus spécifiques.", + "Envisagez d'inclure quelques termes techniques pertinents.", + "Évitez les répétitions inutiles en utilisant des synonymes." + ], + 'high': [ + "Maintenez l'excellent niveau de vocabulaire.", + "Assurez-vous que les termes techniques sont compréhensibles pour votre public." + ] + }, + 'structure': { + 'low': [ + "Simplifiez vos longues phrases en les divisant en plusieurs plus courtes.", + "Variez la structure de vos phrases pour maintenir l'intérêt.", + "Organisez vos idées selon une séquence logique (introduction, développement, conclusion)." + ], + 'medium': [ + "Équilibrez les phrases simples et composées pour améliorer le rythme.", + "Assurez-vous que chaque paragraphe développe une idée centrale.", + "Envisagez d'utiliser des connecteurs pour des transitions plus fluides entre les idées." + ], + 'high': [ + "Maintenez l'excellente structure de votre texte.", + "Envisagez parfois de varier le rythme avec une phrase plus courte ou plus complexe." + ] + }, + 'cohesion': { + 'low': [ + "Ajoutez des connecteurs (de plus, cependant, par conséquent) pour relier les idées.", + "Maintenez la cohérence thématique entre les paragraphes.", + "Utilisez des références explicites aux idées mentionnées précédemment." + ], + 'medium': [ + "Améliorez les transitions entre les paragraphes pour une progression plus fluide.", + "Utilisez des termes du même champ sémantique pour renforcer l'unité thématique.", + "Envisagez d'utiliser des mots-clés de manière récurrente." + ], + 'high': [ + "Maintenez l'excellente cohésion de votre texte.", + "Assurez-vous que les références aux concepts précédents sont claires." + ] + }, + 'clarity': { + 'low': [ + "Raccourcissez les phrases trop longues ou complexes.", + "Évitez les ambiguïtés en utilisant des termes précis.", + "Ajoutez des exemples concrets pour illustrer des concepts abstraits." + ], + 'medium': [ + "Éliminez les informations inutiles qui peuvent distraire.", + "Organisez les idées du plus simple au plus complexe.", + "Utilisez un langage direct et évitez les circonlocutions." + ], + 'high': [ + "Maintenez l'excellente clarté de votre texte.", + "Envisagez si un terme technique pourrait nécessiter une brève explication." + ] + }, + 'academic_article': [ + "Assurez-vous d'étayer vos affirmations par des preuves.", + "Maintenez un ton formel et objectif.", + "Incluez des références bibliographiques pour soutenir vos arguments." + ], + 'student_essay': [ + "Assurez-vous d'avoir une thèse claire et des arguments qui la soutiennent.", + "Connectez vos idées avec ce que vous avez appris en classe ou dans les lectures assignées.", + "Concluez en synthétisant vos points principaux et leur pertinence." + ], + 'general_communication': [ + "Adaptez votre langage à l'audience spécifique.", + "Maintenez un équilibre entre être informatif et maintenir l'intérêt.", + "Envisagez d'inclure un élément visuel si approprié." + ], + 'priority_intro': "C'est le domaine où vous pouvez concentrer vos efforts pour vous améliorer plus rapidement.", + 'detailed_recommendations': "Recommandations détaillées", + 'save_button': "Enregistrer l'analyse et les recommandations", + 'save_success': "Analyse et recommandations enregistrées avec succès", + 'save_error': "Impossible d'enregistrer l'analyse et les recommandations", + 'area_priority': "Domaine prioritaire", + 'dimension_names': { + 'vocabulary': 'Vocabulaire', + 'structure': 'Structure', + 'cohesion': 'Cohésion', + 'clarity': 'Clarté', + 'general': 'Général' + }, + 'text_types': { + 'academic_article': 'Article Académique', + 'student_essay': 'Devoir Universitaire', + 'general_communication': 'Communication Générale' + } +} + +# Recomendaciones en portugués +RECOMMENDATIONS_PT = { + 'vocabulary': { + 'low': [ + "Amplie seu vocabulário usando sinônimos para palavras repetidas.", + "Incorpore terminologia específica relacionada ao tema.", + "Leia textos semelhantes para se familiarizar com o vocabulário do campo." + ], + 'medium': [ + "Melhore a precisão lexical usando termos mais específicos.", + "Considere incluir alguns termos técnicos relevantes.", + "Evite repetições desnecessárias usando sinônimos." + ], + 'high': [ + "Mantenha o excelente nível de vocabulário.", + "Certifique-se de que os termos técnicos sejam compreensíveis para seu público." + ] + }, + 'structure': { + 'low': [ + "Simplifique suas frases longas dividindo-as em várias mais curtas.", + "Varie a estrutura de suas frases para manter o interesse.", + "Organize suas ideias seguindo uma sequência lógica (introdução, desenvolvimento, conclusão)." + ], + 'medium': [ + "Equilibre frases simples e compostas para melhorar o ritmo.", + "Certifique-se de que cada parágrafo desenvolva uma ideia central.", + "Considere usar conectores para transições mais suaves entre ideias." + ], + 'high': [ + "Mantenha a excelente estrutura do seu texto.", + "Considere ocasionalmente variar o ritmo com alguma frase mais breve ou mais complexa." + ] + }, + 'cohesion': { + 'low': [ + "Adicione conectores (além disso, no entanto, portanto) para relacionar ideias.", + "Mantenha a consistência temática entre parágrafos.", + "Use referências explícitas a ideias mencionadas anteriormente." + ], + 'medium': [ + "Melhore as transições entre parágrafos para uma progressão mais fluida.", + "Utilize termos do mesmo campo semântico para reforçar a unidade temática.", + "Considere usar palavras-chave de forma recorrente." + ], + 'high': [ + "Mantenha a excelente coesão do seu texto.", + "Certifique-se de que as referências a conceitos anteriores sejam claras." + ] + }, + 'clarity': { + 'low': [ + "Encurte as frases muito longas ou complexas.", + "Evite ambiguidades usando termos precisos.", + "Adicione exemplos concretos para ilustrar conceitos abstratos." + ], + 'medium': [ + "Elimine informações desnecessárias que possam distrair.", + "Ordene as ideias do mais simples ao mais complexo.", + "Utilize uma linguagem direta e evite circunlóquios." + ], + 'high': [ + "Mantenha a excelente clareza do seu texto.", + "Considere se algum termo técnico pode precisar de uma breve explicação." + ] + }, + 'academic_article': [ + "Certifique-se de fundamentar suas afirmações com evidências.", + "Mantenha um tom formal e objetivo.", + "Inclua referências bibliográficas para apoiar seus argumentos." + ], + 'student_essay': [ + "Certifique-se de ter uma tese clara e argumentos que a apoiem.", + "Conecte suas ideias com o que você aprendeu em aula ou leituras designadas.", + "Conclua sintetizando seus principais pontos e sua relevância." + ], + 'general_communication': [ + "Adapte sua linguagem ao público específico.", + "Mantenha um equilíbrio entre ser informativo e manter o interesse.", + "Considere incluir algum elemento visual, se apropriado." + ], + 'priority_intro': "Esta é a área onde você pode concentrar seus esforços para melhorar mais rapidamente.", + 'detailed_recommendations': "Recomendações detalhadas", + 'save_button': "Salvar análise e recomendações", + 'save_success': "Análise e recomendações salvas com sucesso", + 'save_error': "Não foi possível salvar a análise e recomendações", + 'area_priority': "Área prioritária", + 'dimension_names': { + 'vocabulary': 'Vocabulário', + 'structure': 'Estrutura', + 'cohesion': 'Coesão', + 'clarity': 'Clareza', + 'general': 'Geral' + }, + 'text_types': { + 'academic_article': 'Artigo Acadêmico', + 'student_essay': 'Trabalho Universitário', + 'general_communication': 'Comunicação Geral' + } +} + +# Diccionario que mapea los códigos de idioma a sus respectivas recomendaciones +RECOMMENDATIONS = { + 'es': RECOMMENDATIONS_ES, + 'en': RECOMMENDATIONS_EN, + 'fr': RECOMMENDATIONS_FR, + 'pt': RECOMMENDATIONS_PT +} \ No newline at end of file diff --git a/src/translations/txt.txt b/src/translations/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391