# modules/chatbot/sidebar_chat.py import streamlit as st from .chat_process import ChatProcessor from ..database.chat_mongo_db import store_chat_history import logging logger = logging.getLogger(__name__) def display_sidebar_chat(lang_code: str, chatbot_t: dict): """Chatbot mejorado con manejo completo del contexto semántico""" with st.sidebar: # Configuración de estilos st.markdown(""" """, unsafe_allow_html=True) try: # Inicialización del procesador if 'chat_processor' not in st.session_state: st.session_state.chat_processor = ChatProcessor() logger.info("Nuevo ChatProcessor inicializado") # Configurar contexto semántico si está activo if st.session_state.get('semantic_agent_active', False): semantic_data = st.session_state.get('semantic_agent_data') if semantic_data and all(k in semantic_data for k in ['text', 'metrics']): try: st.session_state.chat_processor.set_semantic_context( text=semantic_data['text'], metrics=semantic_data['metrics'], graph_data=semantic_data.get('graph_data'), lang_code=lang_code ) logger.info("Contexto semántico configurado en el chat") except Exception as e: logger.error(f"Error configurando contexto: {str(e)}") st.error("Error al configurar el análisis. Recargue el documento.") return # Interfaz del chat with st.expander("💬 Asistente de Análisis", expanded=True): # Inicializar historial si no existe if 'sidebar_messages' not in st.session_state: initial_msg = { 'en': "Hello! Ask me about the semantic analysis.", 'es': "¡Hola! Pregúntame sobre el análisis semántico.", 'pt': "Olá! Pergunte-me sobre a análise semântica." }.get(lang_code, "Hello!") st.session_state.sidebar_messages = [ {"role": "assistant", "content": initial_msg} ] # Mostrar historial chat_container = st.container() with chat_container: for msg in st.session_state.sidebar_messages: st.chat_message(msg["role"]).write(msg["content"]) # Manejo de mensajes nuevos user_input = st.chat_input( { 'en': "Ask about the analysis...", 'es': "Pregunta sobre el análisis...", 'pt': "Pergunte sobre a análise..." }.get(lang_code, "Message...") ) if user_input: try: # Mostrar mensaje del usuario with chat_container: st.chat_message("user").write(user_input) st.session_state.sidebar_messages.append( {"role": "user", "content": user_input} ) # Obtener y mostrar respuesta with st.chat_message("assistant"): response = st.write_stream( st.session_state.chat_processor.process_chat_input( user_input, lang_code ) ) st.session_state.sidebar_messages.append( {"role": "assistant", "content": response.replace("▌", "")} ) # Guardar en base de datos if 'username' in st.session_state: store_chat_history( username=st.session_state.username, messages=st.session_state.sidebar_messages, chat_type='semantic_analysis', metadata={ 'text_sample': st.session_state.semantic_agent_data['text'][:500], 'concepts': st.session_state.semantic_agent_data['metrics']['key_concepts'][:5] } ) except Exception as e: logger.error(f"Error en conversación: {str(e)}", exc_info=True) st.error({ 'en': "Error processing request. Try again.", 'es': "Error al procesar. Intente nuevamente.", 'pt': "Erro ao processar. Tente novamente." }.get(lang_code, "Error")) # Botón para reiniciar if st.button("🔄 Reiniciar Chat"): st.session_state.sidebar_messages = [] st.rerun() except Exception as e: logger.error(f"Error fatal en sidebar_chat: {str(e)}", exc_info=True) st.error("System error. Please refresh the page.")