AItool commited on
Commit
3cd0496
·
verified ·
1 Parent(s): d67ed57

Upload 5 files

Browse files
Files changed (5) hide show
  1. model/IFNet_HDv3.py +115 -0
  2. model/RIFE_HDv3.py +88 -0
  3. model/flownet.pkl +3 -0
  4. model/loss.py +128 -0
  5. model/warplayer.py +22 -0
model/IFNet_HDv3.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from model.warplayer import warp
5
+
6
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
+
8
+ def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
9
+ return nn.Sequential(
10
+ nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
11
+ padding=padding, dilation=dilation, bias=True),
12
+ nn.PReLU(out_planes)
13
+ )
14
+
15
+ def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
16
+ return nn.Sequential(
17
+ nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
18
+ padding=padding, dilation=dilation, bias=False),
19
+ nn.BatchNorm2d(out_planes),
20
+ nn.PReLU(out_planes)
21
+ )
22
+
23
+ class IFBlock(nn.Module):
24
+ def __init__(self, in_planes, c=64):
25
+ super(IFBlock, self).__init__()
26
+ self.conv0 = nn.Sequential(
27
+ conv(in_planes, c//2, 3, 2, 1),
28
+ conv(c//2, c, 3, 2, 1),
29
+ )
30
+ self.convblock0 = nn.Sequential(
31
+ conv(c, c),
32
+ conv(c, c)
33
+ )
34
+ self.convblock1 = nn.Sequential(
35
+ conv(c, c),
36
+ conv(c, c)
37
+ )
38
+ self.convblock2 = nn.Sequential(
39
+ conv(c, c),
40
+ conv(c, c)
41
+ )
42
+ self.convblock3 = nn.Sequential(
43
+ conv(c, c),
44
+ conv(c, c)
45
+ )
46
+ self.conv1 = nn.Sequential(
47
+ nn.ConvTranspose2d(c, c//2, 4, 2, 1),
48
+ nn.PReLU(c//2),
49
+ nn.ConvTranspose2d(c//2, 4, 4, 2, 1),
50
+ )
51
+ self.conv2 = nn.Sequential(
52
+ nn.ConvTranspose2d(c, c//2, 4, 2, 1),
53
+ nn.PReLU(c//2),
54
+ nn.ConvTranspose2d(c//2, 1, 4, 2, 1),
55
+ )
56
+
57
+ def forward(self, x, flow, scale=1):
58
+ x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False)
59
+ flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 1. / scale
60
+ feat = self.conv0(torch.cat((x, flow), 1))
61
+ feat = self.convblock0(feat) + feat
62
+ feat = self.convblock1(feat) + feat
63
+ feat = self.convblock2(feat) + feat
64
+ feat = self.convblock3(feat) + feat
65
+ flow = self.conv1(feat)
66
+ mask = self.conv2(feat)
67
+ flow = F.interpolate(flow, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) * scale
68
+ mask = F.interpolate(mask, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False)
69
+ return flow, mask
70
+
71
+ class IFNet(nn.Module):
72
+ def __init__(self):
73
+ super(IFNet, self).__init__()
74
+ self.block0 = IFBlock(7+4, c=90)
75
+ self.block1 = IFBlock(7+4, c=90)
76
+ self.block2 = IFBlock(7+4, c=90)
77
+ self.block_tea = IFBlock(10+4, c=90)
78
+ # self.contextnet = Contextnet()
79
+ # self.unet = Unet()
80
+
81
+ def forward(self, x, scale_list=[4, 2, 1], training=False):
82
+ if training == False:
83
+ channel = x.shape[1] // 2
84
+ img0 = x[:, :channel]
85
+ img1 = x[:, channel:]
86
+ flow_list = []
87
+ merged = []
88
+ mask_list = []
89
+ warped_img0 = img0
90
+ warped_img1 = img1
91
+ flow = (x[:, :4]).detach() * 0
92
+ mask = (x[:, :1]).detach() * 0
93
+ loss_cons = 0
94
+ block = [self.block0, self.block1, self.block2]
95
+ for i in range(3):
96
+ f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], mask), 1), flow, scale=scale_list[i])
97
+ f1, m1 = block[i](torch.cat((warped_img1[:, :3], warped_img0[:, :3], -mask), 1), torch.cat((flow[:, 2:4], flow[:, :2]), 1), scale=scale_list[i])
98
+ flow = flow + (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2
99
+ mask = mask + (m0 + (-m1)) / 2
100
+ mask_list.append(mask)
101
+ flow_list.append(flow)
102
+ warped_img0 = warp(img0, flow[:, :2])
103
+ warped_img1 = warp(img1, flow[:, 2:4])
104
+ merged.append((warped_img0, warped_img1))
105
+ '''
106
+ c0 = self.contextnet(img0, flow[:, :2])
107
+ c1 = self.contextnet(img1, flow[:, 2:4])
108
+ tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
109
+ res = tmp[:, 1:4] * 2 - 1
110
+ '''
111
+ for i in range(3):
112
+ mask_list[i] = torch.sigmoid(mask_list[i])
113
+ merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
114
+ # merged[i] = torch.clamp(merged[i] + res, 0, 1)
115
+ return flow_list, mask_list[2], merged
model/RIFE_HDv3.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+ from torch.optim import AdamW
5
+ import torch.optim as optim
6
+ import itertools
7
+ from model.warplayer import warp
8
+ from torch.nn.parallel import DistributedDataParallel as DDP
9
+ from train_log.IFNet_HDv3 import *
10
+ import torch.nn.functional as F
11
+ from model.loss import *
12
+
13
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
+
15
+ class Model:
16
+ def __init__(self, local_rank=-1):
17
+ self.flownet = IFNet()
18
+ self.device()
19
+ self.optimG = AdamW(self.flownet.parameters(), lr=1e-6, weight_decay=1e-4)
20
+ self.epe = EPE()
21
+ # self.vgg = VGGPerceptualLoss().to(device)
22
+ self.sobel = SOBEL()
23
+ if local_rank != -1:
24
+ self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank)
25
+
26
+ def train(self):
27
+ self.flownet.train()
28
+
29
+ def eval(self):
30
+ self.flownet.eval()
31
+
32
+ def device(self):
33
+ self.flownet.to(device)
34
+
35
+ def load_model(self, path, rank=0):
36
+ def convert(param):
37
+ if rank == -1:
38
+ return {
39
+ k.replace("module.", ""): v
40
+ for k, v in param.items()
41
+ if "module." in k
42
+ }
43
+ else:
44
+ return param
45
+ if rank <= 0:
46
+ if torch.cuda.is_available():
47
+ self.flownet.load_state_dict(convert(torch.load('{}/flownet.pkl'.format(path))))
48
+ else:
49
+ self.flownet.load_state_dict(convert(torch.load('{}/flownet.pkl'.format(path), map_location ='cpu')))
50
+
51
+ def save_model(self, path, rank=0):
52
+ if rank == 0:
53
+ torch.save(self.flownet.state_dict(),'{}/flownet.pkl'.format(path))
54
+
55
+ def inference(self, img0, img1, scale=1.0):
56
+ imgs = torch.cat((img0, img1), 1)
57
+ scale_list = [4/scale, 2/scale, 1/scale]
58
+ flow, mask, merged = self.flownet(imgs, scale_list)
59
+ return merged[2]
60
+
61
+ def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
62
+ for param_group in self.optimG.param_groups:
63
+ param_group['lr'] = learning_rate
64
+ img0 = imgs[:, :3]
65
+ img1 = imgs[:, 3:]
66
+ if training:
67
+ self.train()
68
+ else:
69
+ self.eval()
70
+ scale = [4, 2, 1]
71
+ flow, mask, merged = self.flownet(torch.cat((imgs, gt), 1), scale=scale, training=training)
72
+ loss_l1 = (merged[2] - gt).abs().mean()
73
+ loss_smooth = self.sobel(flow[2], flow[2]*0).mean()
74
+ # loss_vgg = self.vgg(merged[2], gt)
75
+ if training:
76
+ self.optimG.zero_grad()
77
+ loss_G = loss_cons + loss_smooth * 0.1
78
+ loss_G.backward()
79
+ self.optimG.step()
80
+ else:
81
+ flow_teacher = flow[2]
82
+ return merged[2], {
83
+ 'mask': mask,
84
+ 'flow': flow[2][:, :2],
85
+ 'loss_l1': loss_l1,
86
+ 'loss_cons': loss_cons,
87
+ 'loss_smooth': loss_smooth,
88
+ }
model/flownet.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe854fc8996547c953f732aaa3b78cae76cc0a12833ae856ea0749c4c570d7d8
3
+ size 12186817
model/loss.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ import torchvision.models as models
6
+
7
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
+
9
+
10
+ class EPE(nn.Module):
11
+ def __init__(self):
12
+ super(EPE, self).__init__()
13
+
14
+ def forward(self, flow, gt, loss_mask):
15
+ loss_map = (flow - gt.detach()) ** 2
16
+ loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5
17
+ return (loss_map * loss_mask)
18
+
19
+
20
+ class Ternary(nn.Module):
21
+ def __init__(self):
22
+ super(Ternary, self).__init__()
23
+ patch_size = 7
24
+ out_channels = patch_size * patch_size
25
+ self.w = np.eye(out_channels).reshape(
26
+ (patch_size, patch_size, 1, out_channels))
27
+ self.w = np.transpose(self.w, (3, 2, 0, 1))
28
+ self.w = torch.tensor(self.w).float().to(device)
29
+
30
+ def transform(self, img):
31
+ patches = F.conv2d(img, self.w, padding=3, bias=None)
32
+ transf = patches - img
33
+ transf_norm = transf / torch.sqrt(0.81 + transf**2)
34
+ return transf_norm
35
+
36
+ def rgb2gray(self, rgb):
37
+ r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :]
38
+ gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
39
+ return gray
40
+
41
+ def hamming(self, t1, t2):
42
+ dist = (t1 - t2) ** 2
43
+ dist_norm = torch.mean(dist / (0.1 + dist), 1, True)
44
+ return dist_norm
45
+
46
+ def valid_mask(self, t, padding):
47
+ n, _, h, w = t.size()
48
+ inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t)
49
+ mask = F.pad(inner, [padding] * 4)
50
+ return mask
51
+
52
+ def forward(self, img0, img1):
53
+ img0 = self.transform(self.rgb2gray(img0))
54
+ img1 = self.transform(self.rgb2gray(img1))
55
+ return self.hamming(img0, img1) * self.valid_mask(img0, 1)
56
+
57
+
58
+ class SOBEL(nn.Module):
59
+ def __init__(self):
60
+ super(SOBEL, self).__init__()
61
+ self.kernelX = torch.tensor([
62
+ [1, 0, -1],
63
+ [2, 0, -2],
64
+ [1, 0, -1],
65
+ ]).float()
66
+ self.kernelY = self.kernelX.clone().T
67
+ self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device)
68
+ self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device)
69
+
70
+ def forward(self, pred, gt):
71
+ N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3]
72
+ img_stack = torch.cat(
73
+ [pred.reshape(N*C, 1, H, W), gt.reshape(N*C, 1, H, W)], 0)
74
+ sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1)
75
+ sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1)
76
+ pred_X, gt_X = sobel_stack_x[:N*C], sobel_stack_x[N*C:]
77
+ pred_Y, gt_Y = sobel_stack_y[:N*C], sobel_stack_y[N*C:]
78
+
79
+ L1X, L1Y = torch.abs(pred_X-gt_X), torch.abs(pred_Y-gt_Y)
80
+ loss = (L1X+L1Y)
81
+ return loss
82
+
83
+ class MeanShift(nn.Conv2d):
84
+ def __init__(self, data_mean, data_std, data_range=1, norm=True):
85
+ c = len(data_mean)
86
+ super(MeanShift, self).__init__(c, c, kernel_size=1)
87
+ std = torch.Tensor(data_std)
88
+ self.weight.data = torch.eye(c).view(c, c, 1, 1)
89
+ if norm:
90
+ self.weight.data.div_(std.view(c, 1, 1, 1))
91
+ self.bias.data = -1 * data_range * torch.Tensor(data_mean)
92
+ self.bias.data.div_(std)
93
+ else:
94
+ self.weight.data.mul_(std.view(c, 1, 1, 1))
95
+ self.bias.data = data_range * torch.Tensor(data_mean)
96
+ self.requires_grad = False
97
+
98
+ class VGGPerceptualLoss(torch.nn.Module):
99
+ def __init__(self, rank=0):
100
+ super(VGGPerceptualLoss, self).__init__()
101
+ blocks = []
102
+ pretrained = True
103
+ self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features
104
+ self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda()
105
+ for param in self.parameters():
106
+ param.requires_grad = False
107
+
108
+ def forward(self, X, Y, indices=None):
109
+ X = self.normalize(X)
110
+ Y = self.normalize(Y)
111
+ indices = [2, 7, 12, 21, 30]
112
+ weights = [1.0/2.6, 1.0/4.8, 1.0/3.7, 1.0/5.6, 10/1.5]
113
+ k = 0
114
+ loss = 0
115
+ for i in range(indices[-1]):
116
+ X = self.vgg_pretrained_features[i](X)
117
+ Y = self.vgg_pretrained_features[i](Y)
118
+ if (i+1) in indices:
119
+ loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1
120
+ k += 1
121
+ return loss
122
+
123
+ if __name__ == '__main__':
124
+ img0 = torch.zeros(3, 3, 256, 256).float().to(device)
125
+ img1 = torch.tensor(np.random.normal(
126
+ 0, 1, (3, 3, 256, 256))).float().to(device)
127
+ ternary_loss = Ternary()
128
+ print(ternary_loss(img0, img1).shape)
model/warplayer.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
5
+ backwarp_tenGrid = {}
6
+
7
+
8
+ def warp(tenInput, tenFlow):
9
+ k = (str(tenFlow.device), str(tenFlow.size()))
10
+ if k not in backwarp_tenGrid:
11
+ tenHorizontal = torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device).view(
12
+ 1, 1, 1, tenFlow.shape[3]).expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1)
13
+ tenVertical = torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device).view(
14
+ 1, 1, tenFlow.shape[2], 1).expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3])
15
+ backwarp_tenGrid[k] = torch.cat(
16
+ [tenHorizontal, tenVertical], 1).to(device)
17
+
18
+ tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0),
19
+ tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0)], 1)
20
+
21
+ g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1)
22
+ return torch.nn.functional.grid_sample(input=tenInput, grid=g, mode='bilinear', padding_mode='border', align_corners=True)