AItool commited on
Commit
415f411
·
verified ·
1 Parent(s): c6f8f61

train_log upload

Browse files
train_log/IFNet_HDv3.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from model.warplayer import warp
5
+
6
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
+
8
+ def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
9
+ return nn.Sequential(
10
+ nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
11
+ padding=padding, dilation=dilation, bias=True),
12
+ nn.PReLU(out_planes)
13
+ )
14
+
15
+ def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
16
+ return nn.Sequential(
17
+ nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
18
+ padding=padding, dilation=dilation, bias=False),
19
+ nn.BatchNorm2d(out_planes),
20
+ nn.PReLU(out_planes)
21
+ )
22
+
23
+ class IFBlock(nn.Module):
24
+ def __init__(self, in_planes, c=64):
25
+ super(IFBlock, self).__init__()
26
+ self.conv0 = nn.Sequential(
27
+ conv(in_planes, c//2, 3, 2, 1),
28
+ conv(c//2, c, 3, 2, 1),
29
+ )
30
+ self.convblock0 = nn.Sequential(
31
+ conv(c, c),
32
+ conv(c, c)
33
+ )
34
+ self.convblock1 = nn.Sequential(
35
+ conv(c, c),
36
+ conv(c, c)
37
+ )
38
+ self.convblock2 = nn.Sequential(
39
+ conv(c, c),
40
+ conv(c, c)
41
+ )
42
+ self.convblock3 = nn.Sequential(
43
+ conv(c, c),
44
+ conv(c, c)
45
+ )
46
+ self.conv1 = nn.Sequential(
47
+ nn.ConvTranspose2d(c, c//2, 4, 2, 1),
48
+ nn.PReLU(c//2),
49
+ nn.ConvTranspose2d(c//2, 4, 4, 2, 1),
50
+ )
51
+ self.conv2 = nn.Sequential(
52
+ nn.ConvTranspose2d(c, c//2, 4, 2, 1),
53
+ nn.PReLU(c//2),
54
+ nn.ConvTranspose2d(c//2, 1, 4, 2, 1),
55
+ )
56
+
57
+ def forward(self, x, flow, scale=1):
58
+ x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False)
59
+ flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 1. / scale
60
+ feat = self.conv0(torch.cat((x, flow), 1))
61
+ feat = self.convblock0(feat) + feat
62
+ feat = self.convblock1(feat) + feat
63
+ feat = self.convblock2(feat) + feat
64
+ feat = self.convblock3(feat) + feat
65
+ flow = self.conv1(feat)
66
+ mask = self.conv2(feat)
67
+ flow = F.interpolate(flow, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) * scale
68
+ mask = F.interpolate(mask, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False)
69
+ return flow, mask
70
+
71
+ class IFNet(nn.Module):
72
+ def __init__(self):
73
+ super(IFNet, self).__init__()
74
+ self.block0 = IFBlock(7+4, c=90)
75
+ self.block1 = IFBlock(7+4, c=90)
76
+ self.block2 = IFBlock(7+4, c=90)
77
+ self.block_tea = IFBlock(10+4, c=90)
78
+ # self.contextnet = Contextnet()
79
+ # self.unet = Unet()
80
+
81
+ def forward(self, x, scale_list=[4, 2, 1], training=False):
82
+ if training == False:
83
+ channel = x.shape[1] // 2
84
+ img0 = x[:, :channel]
85
+ img1 = x[:, channel:]
86
+ flow_list = []
87
+ merged = []
88
+ mask_list = []
89
+ warped_img0 = img0
90
+ warped_img1 = img1
91
+ flow = (x[:, :4]).detach() * 0
92
+ mask = (x[:, :1]).detach() * 0
93
+ loss_cons = 0
94
+ block = [self.block0, self.block1, self.block2]
95
+ for i in range(3):
96
+ f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], mask), 1), flow, scale=scale_list[i])
97
+ f1, m1 = block[i](torch.cat((warped_img1[:, :3], warped_img0[:, :3], -mask), 1), torch.cat((flow[:, 2:4], flow[:, :2]), 1), scale=scale_list[i])
98
+ flow = flow + (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2
99
+ mask = mask + (m0 + (-m1)) / 2
100
+ mask_list.append(mask)
101
+ flow_list.append(flow)
102
+ warped_img0 = warp(img0, flow[:, :2])
103
+ warped_img1 = warp(img1, flow[:, 2:4])
104
+ merged.append((warped_img0, warped_img1))
105
+ '''
106
+ c0 = self.contextnet(img0, flow[:, :2])
107
+ c1 = self.contextnet(img1, flow[:, 2:4])
108
+ tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
109
+ res = tmp[:, 1:4] * 2 - 1
110
+ '''
111
+ for i in range(3):
112
+ mask_list[i] = torch.sigmoid(mask_list[i])
113
+ merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
114
+ # merged[i] = torch.clamp(merged[i] + res, 0, 1)
115
+ return flow_list, mask_list[2], merged
train_log/RIFE_HDv3.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+ from torch.optim import AdamW
5
+ import torch.optim as optim
6
+ import itertools
7
+ from model.warplayer import warp
8
+ from torch.nn.parallel import DistributedDataParallel as DDP
9
+ from train_log.IFNet_HDv3 import *
10
+ import torch.nn.functional as F
11
+ from model.loss import *
12
+
13
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
+
15
+ class Model:
16
+ def __init__(self, local_rank=-1):
17
+ self.flownet = IFNet()
18
+ self.device()
19
+ self.optimG = AdamW(self.flownet.parameters(), lr=1e-6, weight_decay=1e-4)
20
+ self.epe = EPE()
21
+ # self.vgg = VGGPerceptualLoss().to(device)
22
+ self.sobel = SOBEL()
23
+ if local_rank != -1:
24
+ self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank)
25
+
26
+ def train(self):
27
+ self.flownet.train()
28
+
29
+ def eval(self):
30
+ self.flownet.eval()
31
+
32
+ def device(self):
33
+ self.flownet.to(device)
34
+
35
+ def load_model(self, path, rank=0):
36
+ def convert(param):
37
+ if rank == -1:
38
+ return {
39
+ k.replace("module.", ""): v
40
+ for k, v in param.items()
41
+ if "module." in k
42
+ }
43
+ else:
44
+ return param
45
+ if rank <= 0:
46
+ if torch.cuda.is_available():
47
+ self.flownet.load_state_dict(convert(torch.load('{}/flownet.pkl'.format(path))))
48
+ else:
49
+ self.flownet.load_state_dict(convert(torch.load('{}/flownet.pkl'.format(path), map_location ='cpu')))
50
+
51
+ def save_model(self, path, rank=0):
52
+ if rank == 0:
53
+ torch.save(self.flownet.state_dict(),'{}/flownet.pkl'.format(path))
54
+
55
+ def inference(self, img0, img1, scale=1.0):
56
+ imgs = torch.cat((img0, img1), 1)
57
+ scale_list = [4/scale, 2/scale, 1/scale]
58
+ flow, mask, merged = self.flownet(imgs, scale_list)
59
+ return merged[2]
60
+
61
+ def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
62
+ for param_group in self.optimG.param_groups:
63
+ param_group['lr'] = learning_rate
64
+ img0 = imgs[:, :3]
65
+ img1 = imgs[:, 3:]
66
+ if training:
67
+ self.train()
68
+ else:
69
+ self.eval()
70
+ scale = [4, 2, 1]
71
+ flow, mask, merged = self.flownet(torch.cat((imgs, gt), 1), scale=scale, training=training)
72
+ loss_l1 = (merged[2] - gt).abs().mean()
73
+ loss_smooth = self.sobel(flow[2], flow[2]*0).mean()
74
+ # loss_vgg = self.vgg(merged[2], gt)
75
+ if training:
76
+ self.optimG.zero_grad()
77
+ loss_G = loss_cons + loss_smooth * 0.1
78
+ loss_G.backward()
79
+ self.optimG.step()
80
+ else:
81
+ flow_teacher = flow[2]
82
+ return merged[2], {
83
+ 'mask': mask,
84
+ 'flow': flow[2][:, :2],
85
+ 'loss_l1': loss_l1,
86
+ 'loss_cons': loss_cons,
87
+ 'loss_smooth': loss_smooth,
88
+ }
train_log/flownet.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe854fc8996547c953f732aaa3b78cae76cc0a12833ae856ea0749c4c570d7d8
3
+ size 12186817