AItool commited on
Commit
dfe2f93
·
verified ·
1 Parent(s): 471f3ce

Update inference_img.py

Browse files
Files changed (1) hide show
  1. inference_img.py +119 -111
inference_img.py CHANGED
@@ -1,111 +1,119 @@
1
- import os
2
- import cv2
3
- import torch
4
- import argparse
5
- from torch.nn import functional as F
6
- import warnings
7
- warnings.filterwarnings("ignore")
8
-
9
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
- torch.set_grad_enabled(False)
11
- if torch.cuda.is_available():
12
- torch.backends.cudnn.enabled = True
13
- torch.backends.cudnn.benchmark = True
14
-
15
- parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
16
- parser.add_argument('--img', dest='img', nargs=2, required=True)
17
- parser.add_argument('--exp', default=4, type=int)
18
- parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
19
- parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
20
- parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
21
- parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
22
-
23
- args = parser.parse_args()
24
-
25
- try:
26
- try:
27
- try:
28
- from model.RIFE_HDv2 import Model
29
- model = Model()
30
- model.load_model(args.modelDir, -1)
31
- print("Loaded v2.x HD model.")
32
- except:
33
- from train_log.RIFE_HDv3 import Model
34
- model = Model()
35
- model.load_model(args.modelDir, -1)
36
- print("Loaded v3.x HD model.")
37
- except:
38
- from model.RIFE_HD import Model
39
- model = Model()
40
- model.load_model(args.modelDir, -1)
41
- print("Loaded v1.x HD model")
42
- except:
43
- from model.RIFE import Model
44
- model = Model()
45
- model.load_model(args.modelDir, -1)
46
- print("Loaded ArXiv-RIFE model")
47
- model.eval()
48
- model.device()
49
-
50
- if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
51
- img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
52
- img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
53
- img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
54
- img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
55
-
56
- else:
57
- img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
58
- img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
59
- img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
60
- img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
61
-
62
- n, c, h, w = img0.shape
63
- ph = ((h - 1) // 32 + 1) * 32
64
- pw = ((w - 1) // 32 + 1) * 32
65
- padding = (0, pw - w, 0, ph - h)
66
- img0 = F.pad(img0, padding)
67
- img1 = F.pad(img1, padding)
68
-
69
-
70
- if args.ratio:
71
- img_list = [img0]
72
- img0_ratio = 0.0
73
- img1_ratio = 1.0
74
- if args.ratio <= img0_ratio + args.rthreshold / 2:
75
- middle = img0
76
- elif args.ratio >= img1_ratio - args.rthreshold / 2:
77
- middle = img1
78
- else:
79
- tmp_img0 = img0
80
- tmp_img1 = img1
81
- for inference_cycle in range(args.rmaxcycles):
82
- middle = model.inference(tmp_img0, tmp_img1)
83
- middle_ratio = ( img0_ratio + img1_ratio ) / 2
84
- if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
85
- break
86
- if args.ratio > middle_ratio:
87
- tmp_img0 = middle
88
- img0_ratio = middle_ratio
89
- else:
90
- tmp_img1 = middle
91
- img1_ratio = middle_ratio
92
- img_list.append(middle)
93
- img_list.append(img1)
94
- else:
95
- img_list = [img0, img1]
96
- for i in range(args.exp):
97
- tmp = []
98
- for j in range(len(img_list) - 1):
99
- mid = model.inference(img_list[j], img_list[j + 1])
100
- tmp.append(img_list[j])
101
- tmp.append(mid)
102
- tmp.append(img1)
103
- img_list = tmp
104
-
105
- if not os.path.exists('output'):
106
- os.mkdir('output')
107
- for i in range(len(img_list)):
108
- if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
109
- cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
110
- else:
111
- cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import torch
4
+ import argparse
5
+ from torch.nn import functional as F
6
+ import warnings
7
+
8
+
9
+ def main():
10
+
11
+ warnings.filterwarnings("ignore")
12
+
13
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
+ torch.set_grad_enabled(False)
15
+ if torch.cuda.is_available():
16
+ torch.backends.cudnn.enabled = True
17
+ torch.backends.cudnn.benchmark = True
18
+
19
+ parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
20
+ parser.add_argument('--img', dest='img', nargs=2, required=True)
21
+ parser.add_argument('--exp', default=4, type=int)
22
+ parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
23
+ parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
24
+ parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
25
+ parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
26
+
27
+ args = parser.parse_args()
28
+
29
+ try:
30
+ try:
31
+ try:
32
+ from model.RIFE_HDv2 import Model
33
+ model = Model()
34
+ model.load_model(args.modelDir, -1)
35
+ print("Loaded v2.x HD model.")
36
+ except:
37
+ from train_log.RIFE_HDv3 import Model
38
+ model = Model()
39
+ model.load_model(args.modelDir, -1)
40
+ print("Loaded v3.x HD model.")
41
+ except:
42
+ from model.RIFE_HD import Model
43
+ model = Model()
44
+ model.load_model(args.modelDir, -1)
45
+ print("Loaded v1.x HD model")
46
+ except:
47
+ from model.RIFE import Model
48
+ model = Model()
49
+ model.load_model(args.modelDir, -1)
50
+ print("Loaded ArXiv-RIFE model")
51
+ model.eval()
52
+ model.device()
53
+
54
+ if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
55
+ img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
56
+ img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
57
+ img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
58
+ img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
59
+
60
+ else:
61
+ img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
62
+ img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
63
+ img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
64
+ img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
65
+
66
+ n, c, h, w = img0.shape
67
+ ph = ((h - 1) // 32 + 1) * 32
68
+ pw = ((w - 1) // 32 + 1) * 32
69
+ padding = (0, pw - w, 0, ph - h)
70
+ img0 = F.pad(img0, padding)
71
+ img1 = F.pad(img1, padding)
72
+
73
+
74
+ if args.ratio:
75
+ img_list = [img0]
76
+ img0_ratio = 0.0
77
+ img1_ratio = 1.0
78
+ if args.ratio <= img0_ratio + args.rthreshold / 2:
79
+ middle = img0
80
+ elif args.ratio >= img1_ratio - args.rthreshold / 2:
81
+ middle = img1
82
+ else:
83
+ tmp_img0 = img0
84
+ tmp_img1 = img1
85
+ for inference_cycle in range(args.rmaxcycles):
86
+ middle = model.inference(tmp_img0, tmp_img1)
87
+ middle_ratio = ( img0_ratio + img1_ratio ) / 2
88
+ if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
89
+ break
90
+ if args.ratio > middle_ratio:
91
+ tmp_img0 = middle
92
+ img0_ratio = middle_ratio
93
+ else:
94
+ tmp_img1 = middle
95
+ img1_ratio = middle_ratio
96
+ img_list.append(middle)
97
+ img_list.append(img1)
98
+ else:
99
+ img_list = [img0, img1]
100
+ for i in range(args.exp):
101
+ tmp = []
102
+ for j in range(len(img_list) - 1):
103
+ mid = model.inference(img_list[j], img_list[j + 1])
104
+ tmp.append(img_list[j])
105
+ tmp.append(mid)
106
+ tmp.append(img1)
107
+ img_list = tmp
108
+
109
+ if not os.path.exists('output'):
110
+ os.mkdir('output')
111
+ for i in range(len(img_list)):
112
+ if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
113
+ cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
114
+ else:
115
+ cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
116
+
117
+
118
+ if __name__ == "__main__":
119
+ main()