File size: 1,418 Bytes
5aa525a
 
 
 
 
 
 
 
 
 
 
 
 
 
0f3d4bc
5aa525a
0f3d4bc
 
 
 
5aa525a
 
cad7c07
5aa525a
 
 
92cca2a
5aa525a
 
 
 
 
 
 
 
 
 
 
af96bbe
5aa525a
 
 
 
 
 
 
898c8a2
 
 
 
 
ed78754
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
@author: idoia lerchundi
"""
import os
import streamlit as st
from huggingface_hub import InferenceClient

# Load the API token from an environment variable
api_key = os.getenv("HF_TOKEN")

# Instantiate the InferenceClient
client = InferenceClient(api_key=api_key)

# Streamlit app title
st.title("Serverless Inference API") 

# Ensure the full_text key is initialized in session state
if "full_text" not in st.session_state:
    st.session_state["full_text"] = ""
    
# Create a text input area for user prompts
with st.form("my_form"):
    text = st.text_area("Enter text:", "Tell me a short joke to make me laugh.")
    submitted = st.form_submit_button("Submit")

# Initialize the full_text variable
full_text = " "

if submitted:
    messages = [
        {"role": "user", "content": text}
    ]
    
    # Create a new stream for each submission
    stream = client.chat.completions.create(
        model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
        messages=messages,
        temperature=0.5,
        max_tokens=300,
        top_p=0.7,
        stream=True
    )

    # Concatenate chunks to form the full response
    for chunk in stream:
        full_text += chunk.choices[0].delta.content
        
    # Update session state with the full response
    st.session_state["full_text"] = full_text
    
# Display the full response
if st.session_state["full_text"]:
    st.info(st.session_state["full_text"])