""" @author: idoia lerchundi """ import os import time import streamlit as st from huggingface_hub import InferenceClient import random # Load the API token from an environment variable api_key = os.getenv("HF_TOKEN") # Instantiate the InferenceClient client = InferenceClient(api_key=api_key) # Function to simulate some process and return the elapsed time def process_with_timing(): start_time = time.time() # Simulate a process with sleep time.sleep(2.345) # Change this value to simulate different processing times end_time = time.time() elapsed_time = end_time - start_time minutes, seconds = divmod(elapsed_time, 60) milliseconds = (seconds - int(seconds)) * 1000 return minutes, int(seconds), milliseconds # Streamlit app title st.title("Text-generation model using Streamlit from Inference API (serverless) feature.") # Ensure the full_text key is initialized in session state if "full_text" not in st.session_state: st.session_state["full_text"] = "" # Model selection dropdown model_options = [ "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "gpt2", "facebook/opt-1.3b", "EleutherAI/gpt-neo-2.7B","meta-llama/Llama-Llama-3-8B-Instruct", "meta-llama/Llama-Llama-3.1-1B-Instruct", "meta-llama/Llama-Llama-3.2-3B-Instruct", "meta-llama/Llama-Llama-3.2-8B-Instruct", "Qwen/Qwen2.5-1.5B-Instruct", "openai-community/gpt2", "google/gemma-1.1-7b-it", "google/gemma-1.27b-it", "google/gemma-1.2b-it", "google/gemma-1.9b-it", "google/gemma-2.2b-it", "HuggingFaceH4/starchat7b-beta", "distilbert/distilgpt2", "facebook/opt-1.3b", "distributed/optimized=gpt2-1b" ] selected_model = st.selectbox("Choose a model:", model_options) # Create a text input area for user prompts with st.form("my_form"): text = st.text_area("JOKER (TinyLlama is not great at joke telling.) (using model TinyLlama/TinyLlama-1.1B-Chat-v1.0):", "Tell me a clever and funny joke in exactly 4 sentences. It should make me laugh really hard. Don't repeat the topic in your joke. Be creative and concise.") submitted = st.form_submit_button("Submit") # Initialize the full_text variable full_text = " " # Generate a random temperature between 0.5 and 1.0 temperature = random.uniform(0.5, 1.0) if submitted: messages = [ {"role": "user", "content": text} ] # Create a new stream for each submission stream = client.chat.completions.create( model=selected_model, messages=messages, # Generate a random temperature between 0.5 and 1.0 temperature = random.uniform(0.5, 1.0), max_tokens=300, top_p=random.uniform(0.7, 1.0), stream=True ) minutes, seconds, milliseconds = process_with_timing() st.write(f"Elapsed Time: {int(minutes)} minutes, {seconds} seconds, and {milliseconds:.2f} milliseconds") # Concatenate chunks to form the full response for chunk in stream: full_text += chunk.choices[0].delta.content # Update session state with the full response st.session_state["full_text"] = full_text # Display the full response if st.session_state["full_text"]: st.info(st.session_state["full_text"])