Spaces:
Sleeping
Sleeping
File size: 18,295 Bytes
036b3a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
# MiniDataAPI Spec
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
The `MiniDataAPI` is a persistence API specification that designed to be
small and relatively easy to implement across a wide range of
datastores. While early implementations have been SQL-based, the
specification can be quickly implemented in key/value stores, document
databases, and more.
<div>
> **Work in Progress**
>
> The MiniData API spec is a work in progress, subject to change. While
> the majority of design is complete, expect there could be breaking
> changes.
</div>
## Why?
The MiniDataAPI specification allows us to use the same API for many
different database engines. Any application using the MiniDataAPI spec
for interacting with its database requires no modification beyond import
and configuration changes to switch database engines. For example, to
convert an application from Fastlite running SQLite to FastSQL running
PostgreSQL, should require only changing these two lines:
<div class="columns">
<div class="column" width="19%"
style="border-right: 1px solid #ccc; padding-right: 10px;">
FastLite version
``` python
from fastlite import *
db = database('test.db')
```
</div>
<div class="column" width="79%" style="padding-left: 10px;">
FastSQL version
``` python
from fastsql import *
db = Database('postgres:...')
```
</div>
</div>
As both libraries adhere to the MiniDataAPI specification, the rest of
the code in the application should remain the same. The advantage of the
MiniDataAPI spec is that it allows people to use whatever datastores
they have access to or prefer.
<div>
> **Note**
>
> Switching databases won’t migrate any existing data between databases.
</div>
### Easy to learn, quick to implement
The MiniDataAPI specification is designed to be easy-to-learn and quick
to implement. It focuses on straightforward Create, Read, Update, and
Delete (CRUD) operations.
MiniDataAPI databases aren’t limited to just row-based systems. In fact,
the specification is closer in design to a key/value store than a set of
records. What’s exciting about this is we can write implementations for
tools like Python dict stored as JSON, Redis, and even the venerable
ZODB.
### Limitations of the MiniDataAPI Specification
> “Mini refers to the lightweightness of specification, not the data.”
>
> – Jeremy Howard
The advantages of the MiniDataAPI come at a cost. The MiniDataAPI
specification focuses a very small set of features compared to what can
be found in full-fledged ORMs and query languages. It intentionally
avoids nuances or sophisticated features.
This means the specification does not include joins or formal foreign
keys. Complex data stored over multiple tables that require joins isn’t
handled well. For this kind of scenario it’s probably for the best to
use more sophisticated ORMs or even direct database queries.
### Summary of the MiniDataAPI Design
- Easy-to-learn
- Relative quick to implement for new database engines
- An API for CRUD operations
- For many different types of databases including row- and
key/value-based designs
- Intentionally small in terms of features: no joins, no foreign keys,
no database specific features
- Best for simpler designs, complex architectures will need more
sophisticated tools.
## Connect/construct the database
We connect or construct the database by passing in a string connecting
to the database endpoint or a filepath representing the database’s
location. While this example is for SQLite running in memory, other
databases such as PostgreSQL, Redis, MongoDB, might instead use a URI
pointing at the database’s filepath or endpoint. The method of
connecting to a DB is *not* part of this API, but part of the underlying
library. For instance, for fastlite:
``` python
db = database(':memory:')
```
Here’s a complete list of the available methods in the API, all
documented below (assuming `db` is a database and `t` is a table):
- `db.create`
- `t.insert`
- `t.delete`
- `t.update`
- `t[key]`
- `t(...)`
- `t.xtra`
## Tables
For the sake of expediency, this document uses a SQL example. However,
tables can represent anything, not just the fundamental construct of a
SQL databases. They might represent keys within a key/value structure or
files on a hard-drive.
### Creating tables
We use a `create()` method attached to `Database` object (`db` in our
example) to create the tables.
``` python
class User: name:str; email: str; year_started:int
users = db.create(User, pk='name')
users
```
<Table user (name, email, year_started)>
``` python
class User: name:str; email: str; year_started:int
users = db.create(User, pk='name')
users
```
<Table user (name, email, year_started)>
If no `pk` is provided, `id` is assumed to be the primary key.
Regardless of whether you mark a class as a dataclass or not, it will be
turned into one – specifically into a
[`flexiclass`](https://fastcore.fast.ai/xtras.html#flexiclass).
``` python
@dataclass
class Todo: id: int; title: str; detail: str; status: str; name: str
todos = db.create(Todo)
todos
```
<Table todo (id, title, detail, status, name)>
### Compound primary keys
The MiniData API spec supports compound primary keys, where more than
one column is used to identify records. We’ll also use this example to
demonstrate creating a table using a dict of keyword arguments.
``` python
class Publication: authors: str; year: int; title: str
publications = db.create(Publication, pk=('authors', 'year'))
```
### Transforming tables
Depending on the database type, this method can include transforms - the
ability to modify the tables. Let’s go ahead and add a password field
for our table called `pwd`.
``` python
class User: name:str; email: str; year_started:int; pwd:str
users = db.create(User, pk='name', transform=True)
users
```
<Table user (name, email, year_started, pwd)>
## Manipulating data
The specification is designed to provide as straightforward CRUD API
(Create, Read, Update, and Delete) as possible. Additional features like
joins are out of scope.
### .insert()
Add a new record to the database. We want to support as many types as
possible, for now we have tests for Python classes, dataclasses, and
dicts. Returns an instance of the new record.
Here’s how to add a record using a Python class:
``` python
users.insert(User(name='Braden', email='[email protected]', year_started=2018))
```
User(name='Braden', email='[email protected]', year_started=2018, pwd=None)
We can also use keyword arguments directly:
``` python
users.insert(name='Alma', email='[email protected]', year_started=2019)
```
User(name='Alma', email='[email protected]', year_started=2019, pwd=None)
And now Charlie gets added via a Python dict.
``` python
users.insert({'name': 'Charlie', 'email': '[email protected]', 'year_started': 2018})
```
User(name='Charlie', email='[email protected]', year_started=2018, pwd=None)
And now TODOs. Note that the inserted row is returned:
``` python
todos.insert(Todo(title='Write MiniDataAPI spec', status='open', name='Braden'))
todos.insert(title='Implement SSE in FastHTML', status='open', name='Alma')
todo = todos.insert(dict(title='Finish development of FastHTML', status='closed', name='Charlie'))
todo
```
Todo(id=3, title='Finish development of FastHTML', detail=None, status='closed', name='Charlie')
Let’s do the same with the `Publications` table.
``` python
publications.insert(Publication(authors='Alma', year=2019, title='FastHTML'))
publications.insert(authors='Alma', year=2030, title='FastHTML and beyond')
publication= publications.insert((dict(authors='Alma', year=2035, title='FastHTML, the early years')))
publication
```
Publication(authors='Alma', year=2035, title='FastHTML, the early years')
### Square bracket search \[\]
Get a single record by entering a primary key into a table object within
square brackets. Let’s see if we can find Alma.
``` python
user = users['Alma']
user
```
User(name='Alma', email='[email protected]', year_started=2019, pwd=None)
If no record is found, a `NotFoundError` error is raised. Here we look
for David, who hasn’t yet been added to our users table.
``` python
try: users['David']
except NotFoundError: print(f'User not found')
```
User not found
Here’s a demonstration of a ticket search, demonstrating how this works
with non-string primary keys.
``` python
todos[1]
```
Todo(id=1, title='Write MiniDataAPI spec', detail=None, status='open', name='Braden')
Compound primary keys can be supplied in lists or tuples, in the order
they were defined. In this case it is the `authors` and `year` columns.
Here’s a query by compound primary key done with a `list`:
``` python
publications[['Alma', 2019]]
```
Publication(authors='Alma', year=2019, title='FastHTML')
Here’s the same query done directly with index args.
``` python
publications['Alma', 2030]
```
Publication(authors='Alma', year=2030, title='FastHTML and beyond')
### Parentheses search ()
Get zero to many records by entering values with parentheses searches.
If nothing is in the parentheses, then everything is returned.
``` python
users()
```
[User(name='Braden', email='[email protected]', year_started=2018, pwd=None),
User(name='Alma', email='[email protected]', year_started=2019, pwd=None),
User(name='Charlie', email='[email protected]', year_started=2018, pwd=None)]
We can order the results.
``` python
users(order_by='name')
```
[User(name='Alma', email='[email protected]', year_started=2019, pwd=None),
User(name='Braden', email='[email protected]', year_started=2018, pwd=None),
User(name='Charlie', email='[email protected]', year_started=2018, pwd=None)]
We can filter on the results:
``` python
users(where="name='Alma'")
```
[User(name='Alma', email='[email protected]', year_started=2019, pwd=None)]
Generally you probably want to use placeholders, to avoid SQL injection
attacks:
``` python
users("name=?", ('Alma',))
```
[User(name='Alma', email='[email protected]', year_started=2019, pwd=None)]
We can limit results with the `limit` keyword:
``` python
users(limit=1)
```
[User(name='Braden', email='[email protected]', year_started=2018, pwd=None)]
If we’re using the `limit` keyword, we can also use the `offset` keyword
to start the query later.
``` python
users(limit=5, offset=1)
```
[User(name='Alma', email='[email protected]', year_started=2019, pwd=None),
User(name='Charlie', email='[email protected]', year_started=2018, pwd=None)]
### .update()
Update an existing record of the database. Must accept Python dict,
dataclasses, and standard classes. Uses the primary key for identifying
the record to be changed. Returns an instance of the updated record.
Here’s with a normal Python class:
``` python
user
```
User(name='Alma', email='[email protected]', year_started=2019, pwd=None)
``` python
user.year_started = 2099
users.update(user)
```
User(name='Alma', email='[email protected]', year_started=2099, pwd=None)
Or use a dict:
``` python
users.update(dict(name='Alma', year_started=2199, email='[email protected]'))
```
User(name='Alma', email='[email protected]', year_started=2199, pwd=None)
Or use kwargs:
``` python
users.update(name='Alma', year_started=2149)
```
User(name='Alma', email='[email protected]', year_started=2149, pwd=None)
If the primary key doesn’t match a record, raise a `NotFoundError`.
John hasn’t started with us yet so doesn’t get the chance yet to travel
in time.
``` python
try: users.update(User(name='John', year_started=2024, email='[email protected]'))
except NotFoundError: print('User not found')
```
User not found
### .delete()
Delete a record of the database. Uses the primary key for identifying
the record to be removed. Returns a table object.
Charlie decides to not travel in time. He exits our little group.
``` python
users.delete('Charlie')
```
<Table user (name, email, year_started, pwd)>
If the primary key value can’t be found, raises a `NotFoundError`.
``` python
try: users.delete('Charlies')
except NotFoundError: print('User not found')
```
User not found
In John’s case, he isn’t time travelling with us yet so can’t be
removed.
``` python
try: users.delete('John')
except NotFoundError: print('User not found')
```
User not found
Deleting records with compound primary keys requires providing the
entire key.
``` python
publications.delete(['Alma' , 2035])
```
<Table publication (authors, year, title)>
### `in` keyword
Are `Alma` and `John` contained `in` the Users table? Or, to be
technically precise, is the item with the specified primary key value
`in` this table?
``` python
'Alma' in users, 'John' in users
```
(True, False)
Also works with compound primary keys, as shown below. You’ll note that
the operation can be done with either a `list` or `tuple`.
``` python
['Alma', 2019] in publications
```
True
And now for a `False` result, where John has no publications.
``` python
('John', 1967) in publications
```
False
### .xtra()
If we set fields within the `.xtra` function to a particular value, then
indexing is also filtered by those. This applies to every database
method except for record creation. This makes it easier to limit users
(or other objects) access to only things for which they have permission.
This is a one-way operation, once set it can’t be undone for a
particular table object.
For example, if we query all our records below without setting values
via the `.xtra` function, we can see todos for everyone. Pay special
attention to the `id` values of all three records, as we are about to
filter most of them away.
``` python
todos()
```
[Todo(id=1, title='Write MiniDataAPI spec', detail=None, status='open', name='Braden'),
Todo(id=2, title='Implement SSE in FastHTML', detail=None, status='open', name='Alma'),
Todo(id=3, title='Finish development of FastHTML', detail=None, status='closed', name='Charlie')]
Let’s use `.xtra` to constrain results just to Charlie. We set the
`name` field in Todos, but it could be any field defined for this table.
``` python
todos.xtra(name='Charlie')
```
We’ve now set a field to a value with `.xtra`, if we loop over all the
records again, only those assigned to records with a `name` of `Charlie`
will be displayed.
``` python
todos()
```
[Todo(id=3, title='Finish development of FastHTML', detail=None, status='closed', name='Charlie')]
The `in` keyword is also affected. Only records with a `name` of Charlie
will evaluate to be `True`. Let’s demonstrate by testing it with a
Charlie record:
``` python
ct = todos[3]
ct
```
Todo(id=3, title='Finish development of FastHTML', detail=None, status='closed', name='Charlie')
Charlie’s record has an ID of 3. Here we demonstrate that Charlie’s TODO
can be found in the list of todos:
``` python
ct.id in todos
```
True
If we try `in` with the other IDs the query fails because the filtering
is now set to just records with a name of Charlie.
``` python
1 in todos, 2 in todos
```
(False, False)
``` python
try: todos[2]
except NotFoundError: print('Record not found')
```
Record not found
We are also constrained by what records we can update. In the following
example we try to update a TODO not named ‘Charlie’. Because the name is
wrong, the `.update` function will raise a `NotFoundError`.
``` python
try: todos.update(Todo(id=1, title='Finish MiniDataAPI Spec', status='closed', name='Braden'))
except NotFoundError as e: print('Record not updated')
```
Record not updated
Unlike poor Braden, Charlie isn’t filtered out. Let’s update his TODO.
``` python
todos.update(Todo(id=3, title='Finish development of FastHTML', detail=None, status='closed', name='Charlie'))
```
Todo(id=3, title='Finish development of FastHTML', detail=None, status='closed', name='Charlie')
Finally, once constrained by `.xtra`, only records with Charlie as the
name can be deleted.
``` python
try: todos.delete(1)
except NotFoundError as e: print('Record not updated')
```
Record not updated
Charlie’s TODO was to finish development of FastHTML. While the
framework will stabilize, like any good project it will see new features
added and the odd bug corrected for many years to come. Therefore,
Charlie’s TODO is nonsensical. Let’s delete it.
``` python
todos.delete(ct.id)
```
<Table todo (id, title, detail, status, name)>
When a TODO is inserted, the `xtra` fields are automatically set. This
ensures that we don’t accidentally, for instance, insert items for
others users. Note that here we don’t set the `name` field, but it’s
still included in the resultant row:
``` python
ct = todos.insert(Todo(title='Rewrite personal site in FastHTML', status='open'))
ct
```
Todo(id=3, title='Rewrite personal site in FastHTML', detail=None, status='open', name='Charlie')
If we try to change the username to someone else, the change is ignored,
due to `xtra`:
``` python
ct.name = 'Braden'
todos.update(ct)
```
Todo(id=3, title='Rewrite personal site in FastHTML', detail=None, status='open', name='Charlie')
## SQL-first design
``` python
users = None
User = None
```
``` python
users = db.t.user
users
```
<Table user (name, email, year_started, pwd)>
(This section needs to be documented properly.)
From the table objects we can extract a Dataclass version of our tables.
Usually this is given an singular uppercase version of our table name,
which in this case is `User`.
``` python
User = users.dataclass()
```
``` python
User(name='Braden', email='[email protected]', year_started=2018)
```
User(name='Braden', email='[email protected]', year_started=2018, pwd=UNSET)
## Implementations
### Implementing MiniDataAPI for a new datastore
For creating new implementations, the code examples in this
specification are the test case for the API. New implementations should
pass the tests in order to be compliant with the specification.
### Implementations
- [fastlite](https://github.com/AnswerDotAI/fastlite) - The original
implementation, only for Sqlite
- [fastsql](https://github.com/AnswerDotAI/fastsql) - An SQL database
agnostic implementation based on the excellent SQLAlchemy library.
|