__all__ = ['is_real', 'learn', 'virtual staging', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf']import pathlib temp = pathlib.PosixPath pathlib.PosixPath = pathlib.WindowsPath #|export #fastai has to be available, i.e. fastai folder from fastai.vision.all import * import gradio as gr def is_real(x): return x[0].isupper() # Cell learn = load_learner('model.pkl') #|export categories =('Virtual Staging','Real') def classify_image(img): pred,idx,probs = learn.predict(im) return dict(zip(categories,map(float,probs))) #*** We have to cast to float above because KAGGLE does not return number on the answer it returns tensors, and Gradio does not deal with numpy so we have to cast to float #|export image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = ['virtual.jpg','real.jpg','dunno.jpg'] intf = gr.Interface(fn=classify_image,inputs=image,outputs=label,examples=examples) intf.launch(inline=False)