vvolhejn's picture
Rename to brand-sheriff
56a0dce
raw
history blame
2.5 kB
from brander import prompting
import gradio as gr
import openai
def greet(topic: str):
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "system",
"content": prompting.PROMPT_TEMPLATE.format(topic=topic),
},
{"role": "user", "content": prompting.EXAMPLE_INPUT},
{"role": "assistant", "content": prompting.EXAMPLE_OUTPUT},
{"role": "user", "content": topic},
],
)
return completion.choices[0].message.content
# interface = gr.Interface(fn=greet, inputs="text", outputs="text")
# interface.launch()
def gradio_history_to_openai_history(gradio_history: list[list[str]]):
openai_history = [
{
"role": "system",
"content": prompting.PROMPT_TEMPLATE,
},
{"role": "user", "content": prompting.EXAMPLE_INPUT},
{"role": "assistant", "content": prompting.EXAMPLE_OUTPUT},
]
for gradio_message in gradio_history:
openai_history.append({"role": "user", "content": gradio_message[0]})
if gradio_message[1]:
openai_history.append({"role": "assistant", "content": gradio_message[1]})
return openai_history
def bot(history: list[list[str]]):
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=gradio_history_to_openai_history(history),
stream=True,
)
except Exception as e:
# An openai.error.RateLimitError can happen,
# but we can also catch other exceptions just in case
history[-1][1] = f"[ERROR] {type(e)}: {e}"
return history
history[-1][1] = ""
for chunk in response:
choice = chunk.choices[0]
if choice.finish_reason is not None:
break
# The first chunk just says that the role is "assistant"
# and doesn't have any content (text)
if hasattr(choice.delta, "content"):
history[-1][1] += choice.delta.content
yield history
with gr.Blocks() as interface:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
interface.queue()
# demo.launch()