Created this so that i have a backup in case my friend crashes my other site
Browse files
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import faiss
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import requests
|
7 |
+
import torch
|
8 |
+
import re
|
9 |
+
import time
|
10 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
from langdetect import detect
|
13 |
+
|
14 |
+
HF_REPO = "AKKI-AFK/deepshelf-data"
|
15 |
+
|
16 |
+
books_file = hf_hub_download(repo_id=HF_REPO, filename="booksummaries.txt", repo_type="dataset")
|
17 |
+
faiss_file = hf_hub_download(repo_id=HF_REPO, filename="faiss_index.bin", repo_type="dataset")
|
18 |
+
|
19 |
+
df = pd.read_csv(books_file, delimiter="\t")
|
20 |
+
index = faiss.read_index(faiss_file)
|
21 |
+
|
22 |
+
encoder = SentenceTransformer("sentence-transformers/paraphrase-mpnet-base-v2")
|
23 |
+
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2")
|
24 |
+
|
25 |
+
request_times = [] # Track request timestamps
|
26 |
+
|
27 |
+
@st.cache_data
|
28 |
+
def recommend_books(query):
|
29 |
+
query = sanitize_input(query)
|
30 |
+
if len(query) > 200:
|
31 |
+
st.warning("β οΈ Query is too long. Please keep it under 200 characters.")
|
32 |
+
return []
|
33 |
+
|
34 |
+
if len(query) < 3:
|
35 |
+
st.warning("β οΈ Query is too short. Please provide more details.")
|
36 |
+
return []
|
37 |
+
|
38 |
+
try:
|
39 |
+
lang = detect(query)
|
40 |
+
if lang != "en":
|
41 |
+
st.warning("β οΈ Non-English query detected. Results may not be accurate.")
|
42 |
+
except:
|
43 |
+
st.warning("β οΈ Could not detect language. Ensure proper input.")
|
44 |
+
|
45 |
+
search_vector = encoder.encode(query)
|
46 |
+
search_vector = np.array([search_vector])
|
47 |
+
faiss.normalize_L2(search_vector)
|
48 |
+
|
49 |
+
distances, ann = index.search(search_vector, k=50)
|
50 |
+
results = pd.DataFrame({'distances': distances[0], 'ann': ann[0]})
|
51 |
+
merge = pd.merge(results, df, left_on='ann', right_index=True)
|
52 |
+
merge['Query'] = query
|
53 |
+
|
54 |
+
pairs = list(zip(merge['Query'], merge['summary']))
|
55 |
+
scores = cross_encoder.predict(pairs) # Running synchronously
|
56 |
+
merge['score'] = scores
|
57 |
+
|
58 |
+
df_sorted = merge.iloc[merge["score"].argsort()][::-1]
|
59 |
+
return df_sorted[["title", "summary"]][:5].to_dict(orient="records")
|
60 |
+
|
61 |
+
def sanitize_input(text):
|
62 |
+
"""Sanitize input by removing special characters and excessive spaces."""
|
63 |
+
text = re.sub(r'[^\w\s]', '', text) # Remove special characters
|
64 |
+
text = re.sub(r'\s+', ' ', text).strip() # Normalize spaces
|
65 |
+
return text
|
66 |
+
|
67 |
+
def rate_limit():
|
68 |
+
"""Rate-limiting function to prevent excessive queries."""
|
69 |
+
global request_times
|
70 |
+
current_time = time.time()
|
71 |
+
request_times = [t for t in request_times if current_time - t < 10] # Keep only recent requests within 10 seconds
|
72 |
+
if len(request_times) >= 5:
|
73 |
+
st.error("β οΈ Too many requests. Please wait a few seconds before trying again.")
|
74 |
+
return False
|
75 |
+
request_times.append(current_time)
|
76 |
+
return True
|
77 |
+
|
78 |
+
st.set_page_config(page_title="DeepShelf", page_icon="π", layout="wide")
|
79 |
+
|
80 |
+
st.markdown("""
|
81 |
+
<style>
|
82 |
+
body {background-color: #1E1E1E; color: white;}
|
83 |
+
.title {text-align: center; font-size: 3em; font-weight: bold; color: #E6A400;}
|
84 |
+
.subtext {text-align: center; font-size: 1.2em; color: #AAAAAA;}
|
85 |
+
.recommend-btn {text-align: center;}
|
86 |
+
.book-container {border-radius: 10px; padding: 20px; margin: 10px; background: #2E2E2E; box-shadow: 2px 2px 10px #00000050;}
|
87 |
+
.book-title {font-size: 1.5em; font-weight: bold; color: #FFD700;}
|
88 |
+
.book-summary {font-size: 1em; color: #CCCCCC;}
|
89 |
+
</style>
|
90 |
+
""", unsafe_allow_html=True)
|
91 |
+
|
92 |
+
st.markdown('<div class="title">π DeepShelf</div>', unsafe_allow_html=True)
|
93 |
+
st.markdown('<div class="subtext">Find the best books based on your preferences!</div>', unsafe_allow_html=True)
|
94 |
+
|
95 |
+
query = st.text_input("π Enter a book description (e.g., 'A dark fantasy with drama')", max_chars=200, help="Use keywords to describe your ideal book!")
|
96 |
+
button_disabled = not (3 <= len(query) <= 200) # Disable button if query length is invalid
|
97 |
+
|
98 |
+
button_placeholder = st.empty()
|
99 |
+
|
100 |
+
if button_placeholder.button("β¨ Recommend Books", disabled=button_disabled, help="Click to get personalized book recommendations!"):
|
101 |
+
if rate_limit():
|
102 |
+
button_placeholder.button("β¨ Processing...", disabled=True) # Disable button while processing
|
103 |
+
with st.spinner("π Searching for the best books..."):
|
104 |
+
recommendations = recommend_books(query)
|
105 |
+
|
106 |
+
button_placeholder.button("β¨ Recommend Books", disabled=False) # Re-enable button after processing
|
107 |
+
|
108 |
+
st.markdown("## π Recommended Books:")
|
109 |
+
for rec in recommendations:
|
110 |
+
st.markdown(f"""
|
111 |
+
<div class="book-container">
|
112 |
+
<div class="book-title">π {rec["title"]}</div>
|
113 |
+
<div class="book-summary">{rec["summary"]}</div>
|
114 |
+
</div>
|
115 |
+
""", unsafe_allow_html=True)
|