#===========================================================================# #===========================================================================# # SETUP INSTALLATIONS #===========================================================================# #===========================================================================# import os import sys def install_packages(): # Atualizar pip os.system(f"pip install --upgrade pip") # Instalar pacotes necessários packages = [ "opencv-python-headless==4.10.0.82", "ultralytics==8.3", "telethon==1.37.0", "cryptography==43.0.3", "nest_asyncio", "torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cpu", "paddlepaddle==2.6.2 -f https://paddlepaddle.org.cn/whl/mkl/avx/stable.html", "paddleocr==2.9.1", "prettytable==3.12", "gradio==5.6", ] for package in packages: print(f"Installing {package}...") os.system(f"pip install {package}") print("All packages installed successfully.") install_packages() #===========================================================================# #===========================================================================# # PLAY THE CLASS #===========================================================================# #===========================================================================# import gradio as gr import numpy as np import cv2 from collections import deque, OrderedDict, defaultdict from ultralytics import YOLO from paddleocr import PaddleOCR import asyncio import threading from telethon import TelegramClient from cryptography.fernet import Fernet import json import nest_asyncio from prettytable import PrettyTable import time # Aplicar nest_asyncio para permitir loops de eventos aninhados nest_asyncio.apply() # Função para obter o caminho de recursos def resource_path(relative_path): return os.path.join(os.getcwd(), relative_path) # Classe adaptada para processar frames individuais class LicensePlateProcessor: def __init__(self): # Carregar modelo YOLO self.last_frame_time = None # Armazena o tempo do último frame processado self.fps = 0 # Inicializa o FPS como zero model_path = resource_path('best.pt') self.model = YOLO(model_path, task='detect') # Carregar PaddleOCR paddleocr_model_dir = resource_path('paddleocr_models') self.ocr = PaddleOCR( use_angle_cls=True, use_gpu=False, lang='en', det_algorithm='DB', rec_algorithm='CRNN', show_log=False, rec_model_dir=os.path.join(paddleocr_model_dir, 'en_PP-OCRv3_rec_infer'), det_model_dir=os.path.join(paddleocr_model_dir, 'en_PP-OCRv3_det_infer'), cls_model_dir=os.path.join(paddleocr_model_dir, 'ch_ppocr_mobile_v2.0_cls_infer') ) # Carregar dados encriptados self.load_encrypted_data() # Inicializar TelegramClient self.telegram_client = TelegramClient(self.session_name, self.api_id, self.api_hash) self.telegram_client.start() # Memória de placas self.plates_memory = deque(maxlen=500) self.last_sixteen_plates = OrderedDict() # Filas para placas aguardando resposta self.waiting_plates = {} # Iniciar loop asyncio em uma thread separada self.loop = asyncio.get_event_loop() self.loop_thread = threading.Thread(target=self.start_loop, daemon=True) self.loop_thread.start() # Iniciar tarefa assíncrona para verificar respostas asyncio.run_coroutine_threadsafe(self.check_responses(), self.loop) def start_loop(self): """Inicia o loop de eventos asyncio.""" asyncio.set_event_loop(self.loop) self.loop.run_forever() def load_encrypted_data(self): """Carrega e decripta os dados sensíveis.""" encrypted_data_path = resource_path('SECRET_DATA.enc') decrypt_key_path = resource_path('decrypt_key.txt') with open(encrypted_data_path, "rb") as f: data_encrypted = f.read() with open(decrypt_key_path, "r") as key_file: key_str = key_file.read().strip() key = key_str.encode('utf-8') cipher = Fernet(key) data_decrypted = cipher.decrypt(data_encrypted) config = json.loads(data_decrypted.decode()) self.api_id = config["api_id"] self.api_hash = config["api_hash"] self.phone_number = config["phone_number"] self.session_name = 'orlandini_hf.session' #resource_path(config["session_name"]) def has_seven(self, plate_text): """Verifica o status de uma placa.""" # Verificar se a placa está na memória for item in self.plates_memory: if item['plate'] == plate_text: return item['has_seven'] # Verificar se está aguardando resposta if plate_text in self.waiting_plates: return self.waiting_plates[plate_text] else: # Enviar placa para o bot do Telegram self.waiting_plates[plate_text] = 'Waiting' asyncio.run_coroutine_threadsafe(self.send_plate(plate_text), self.loop) return 'Waiting' async def send_plate(self, plate_text): """Envia a placa para o bot do Telegram.""" chat_identifier = '@LT_BUSCABOT' try: await self.telegram_client.connect() await self.telegram_client.send_message(chat_identifier, plate_text) print(f"Enviado para Telegram: {plate_text}") except Exception as e: print(f"Erro ao enviar placa {plate_text}: {e}") async def check_responses(self): """Verifica respostas do bot do Telegram.""" while True: if not self.waiting_plates: await asyncio.sleep(1) continue chat_identifier = '@LT_BUSCABOT' limit = 20 try: await self.telegram_client.connect() messages = await self.telegram_client.get_messages(chat_identifier, limit=limit) # print(messages) for message in messages: text = message.text # Check if message is a response to one of our plates for plate in list(self.waiting_plates.keys()): if plate.lower() in text.lower(): # Found response for this plate if 'Placa Localizada' in text: self.waiting_plates.pop(plate) self.plates_memory.append({'plate': plate, 'has_seven': False}) elif 'não foi encontrada' in text: self.waiting_plates.pop(plate) self.plates_memory.append({'plate': plate, 'has_seven': True}) elif 'não é uma placa válida' in text: self.waiting_plates.pop(plate) self.plates_memory.append({'plate': plate, 'has_seven': 'Non Valid'}) # Update the plate status in the displayed grid self.update_displayed_plate(plate) except Exception as e: print(f"Error checking responses: {e}") await asyncio.sleep(2) def update_displayed_plate(self, plate): """Atualiza o status da placa exibida na tabela.""" for item in self.plates_memory: if item['plate'] == plate: if item['has_seven'] == 'Non Valid': self.last_sixteen_plates.pop(plate, None) else: self.last_sixteen_plates[plate] = item['has_seven'] break # Manter apenas as últimas 16 placas válidas self.last_sixteen_plates = OrderedDict((p, s) for p, s in self.last_sixteen_plates.items() if s != 'Non Valid') while len(self.last_sixteen_plates) > 16: self.last_sixteen_plates.popitem(last=False) def remove_non_alphanumeric(self, text): """Remove caracteres não alfanuméricos.""" return ''.join(char for char in text if char.isalnum()) def has_number_and_letter(self, text): """Verifica se o texto contém letras e números.""" return text.isalnum() and not text.isalpha() and not text.isdigit() def process_license_plates(self, ocr_result): """Processa o resultado do OCR para identificar placas.""" def is_overlapping(box1, box2): x1_min = min(point[0] for point in box1) x1_max = max(point[0] for point in box1) y1_min = min(point[1] for point in box1) y1_max = max(point[1] for point in box1) x2_min = min(point[0] for point in box2) x2_max = max(point[0] for point in box2) y2_min = min(point[1] for point in box2) y2_max = max(point[1] for point in box2) # Verificar sobreposição em X overlap_x = (x1_max + 2 >= x2_min - 2) and (x1_min - 2 <= x2_max + 2) # Verificar sobreposição em Y overlap_y = (y1_max + 2 >= y2_min - 2) and (y1_min - 2 <= y2_max + 2) return overlap_x and overlap_y # Extrair caixas e textos boxes = [item[0] for item in ocr_result[0]] strings = [item[1][0] for item in ocr_result[0]] # Separar em placas completas e segmentos parciais full_plates = [] partial_segments = [] for box, s in zip(boxes, strings): if len(s) >= 7: full_plates.append((box, s)) elif len(s) in [3, 4]: partial_segments.append((box, s)) # Processar segmentos parciais n = len(partial_segments) parent = list(range(n)) def find(i): while parent[i] != i: parent[i] = parent[parent[i]] i = parent[i] return i def union(i, j): pi = find(i) pj = find(j) if pi != pj: parent[pj] = pi # Construir grupos com base na sobreposição for i in range(n): for j in range(i + 1, n): if is_overlapping(partial_segments[i][0], partial_segments[j][0]): union(i, j) # Agrupar as caixas groups = defaultdict(list) for i in range(n): groups[find(i)].append(partial_segments[i]) # Concatenar textos em cada grupo concatenated_partials = [] for group in groups.values(): # Ordenar com base na coordenada Y mínima (de cima para baixo) sorted_group = sorted(group, key=lambda x: min(point[1] for point in x[0])) concatenated = ''.join([s for box, s in sorted_group]) concatenated_partials.append(concatenated) # Adicionar placas completas all_plates = [s for box, s in full_plates] + concatenated_partials return all_plates def perform_ocr(self, img_array): """Realiza OCR na imagem e retorna os textos detectados.""" if img_array.shape[0] == 0 or img_array.shape[1] == 0: return None result = self.ocr.ocr(img_array, cls=True) if not result[0]: return None return self.process_license_plates(result) def save_plate(self, plate_text): """Salva o status da placa.""" # Verificar se a placa está na memória for item in self.plates_memory: if item['plate'] == plate_text: return item['has_seven'] # Obter o status a partir da função has_seven has_seven = self.has_seven(plate_text) if has_seven != 'Waiting': self.plates_memory.append({'plate': plate_text, 'has_seven': has_seven}) return has_seven def process_frame(self, frame): """Processa um frame individual da webcam.""" current_time = time.time() # Calcula a diferença temporal e o FPS if self.last_frame_time: time_diff = current_time - self.last_frame_time if time_diff > 0: # Evita divisão por zero self.fps = 1 / time_diff # Atualiza o tempo do último frame self.last_frame_time = current_time print(f"FPS: {self.fps:.2f}") img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Detectar placas usando YOLO results = self.model.predict(img, imgsz=256, conf=0.5) plates_list = [] for res in results[0].boxes.data: x1, y1, x2, y2 = int(res[0]), int(res[1]), int(res[2]), int(res[3]) # Ajustar o recorte para incluir padding if (y2 - y1) > 0 and (x2 - x1) > 0: prod = img.shape[0] * img.shape[1] adj = round(5 * prod / 315000) y1_adj = max(y1 - adj, 0) y2_adj = min(y2 + adj, img.shape[0]) x1_adj = max(x1 - adj, 0) x2_adj = min(x2 + adj, img.shape[1]) crop = img[y1_adj:y2_adj, x1_adj:x2_adj] # Redimensionar o recorte scale_factor = 3 new_size = (int(crop.shape[1] * scale_factor), int(crop.shape[0] * scale_factor)) resized_crop = cv2.resize(crop, new_size, interpolation=cv2.INTER_LINEAR) # Realizar OCR text_list = self.perform_ocr(resized_crop) if text_list is None: continue for text in text_list: text = self.remove_non_alphanumeric(text) if text and self.has_number_and_letter(text): has_seven = self.save_plate(text) plates_list.append((text, has_seven)) if text not in self.last_sixteen_plates and has_seven != 'Non Valid': if len(self.last_sixteen_plates) >= 16: self.last_sixteen_plates.popitem(last=False) self.last_sixteen_plates[text] = has_seven # Atualizar a exibição return self.get_display_table() def get_display_table(self): """Retorna a tabela das últimas 16 placas detectadas.""" if not self.last_sixteen_plates: return "Nenhuma placa detectada ainda." else: table = PrettyTable() table.field_names = ["Placa", "Status"] for plate, status in self.last_sixteen_plates.items(): if status != 'Waiting' and status != 'Non Valid': status_text = 'Okay' if status == True else '!EITA!' table.add_row([plate, status_text]) return table.get_string() #===========================================================================# #===========================================================================# # PLAY GRADIO #===========================================================================# #===========================================================================# def js_to_prefere_the_back_camera_of_mobilephones(): custom_html = """ """ return custom_html # Instanciar o processador processor = LicensePlateProcessor() # # Função para ser chamada pelo Gradio # def process_webcam_frame(frame): # return processor.process_frame(frame) # Modificar a função process_webcam_frame def process_webcam_frame(frame, resize_factor): if frame is None: return "Frame não detectado" # Redimensionar o frame com o fator fornecido original_size = frame.shape[:2] # Altura e largura originais new_size = ( int(original_size[1] * resize_factor), int(original_size[0] * resize_factor), ) resized_frame = cv2.resize(frame, new_size, interpolation=cv2.INTER_LINEAR) # Printar as dimensões do frame processado print(f"Original frame size: {original_size}, Resized frame size: {new_size}") # Processar o frame redimensionado return processor.process_frame(resized_frame) # resize_factor = gr.Slider( # minimum=0.1, maximum=3.0, step=0.1, value=1.0, label="Fator de Redimensionamento" # ) with gr.Blocks(head=js_to_prefere_the_back_camera_of_mobilephones()) as demo: with gr.Row(): with gr.Column(): # Criar entrada para webcam input_img = gr.Image( label="Webcam", sources="webcam", streaming=True, mirror_webcam=False ) # Associar o slider ao layout resize_factor_input = gr.Slider(minimum=0.1, maximum=1.1, step=0.01, value=1.0, label="Fator de Redimensionamento") with gr.Column(): # Caixa de texto para saída output_text = gr.Textbox( label="Últimas 16 Placas Detectadas", lines=20 ) # Atualizar stream para incluir o novo input input_img.stream( process_webcam_frame, inputs=[input_img, resize_factor_input], outputs=output_text, time_limit=None, stream_every=0.2, concurrency_limit=None ) demo.launch() # demo.launch(debug=True, share=True)