Spaces:
Running
Running
Apply black
Browse files
app.py
CHANGED
@@ -9,6 +9,28 @@ import altair as alt
|
|
9 |
from altair import X, Y, Scale
|
10 |
import base64
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
@st.cache_data
|
14 |
def render_svg(svg):
|
@@ -36,22 +58,33 @@ model = load_model(constants.MODEL_NAME)
|
|
36 |
|
37 |
|
38 |
def compute_ALDi(sentences):
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
progress_text = "Computing ALDi..."
|
41 |
my_bar = st.progress(0, text=progress_text)
|
42 |
|
43 |
BATCH_SIZE = 4
|
44 |
output_logits = []
|
45 |
-
|
|
|
|
|
|
|
46 |
inputs = tokenizer(
|
47 |
-
|
48 |
return_tensors="pt",
|
49 |
padding=True,
|
50 |
)
|
51 |
outputs = model(**inputs).logits.reshape(-1).tolist()
|
52 |
output_logits = output_logits + [max(min(o, 1), 0) for o in outputs]
|
53 |
my_bar.progress(
|
54 |
-
min((first_index + BATCH_SIZE) / len(
|
|
|
55 |
)
|
56 |
my_bar.empty()
|
57 |
return output_logits
|
@@ -93,7 +126,7 @@ with tab1:
|
|
93 |
|
94 |
print(sent)
|
95 |
with open("logs.txt", "a") as f:
|
96 |
-
f.write(sent+"\n")
|
97 |
|
98 |
with tab2:
|
99 |
file = st.file_uploader("Upload a file", type=["txt"])
|
|
|
9 |
from altair import X, Y, Scale
|
10 |
import base64
|
11 |
|
12 |
+
import re
|
13 |
+
|
14 |
+
|
15 |
+
def preprocess_text(arabic_text):
|
16 |
+
"""Apply preprocessing to the given Arabic text.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
arabic_text: The Arabic text to be preprocessed.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
The preprocessed Arabic text.
|
23 |
+
"""
|
24 |
+
no_urls = re.sub(
|
25 |
+
r"(https|http)?:\/\/(\w|\.|\/|\?|\=|\&|\%)*\b",
|
26 |
+
"",
|
27 |
+
arabic_text,
|
28 |
+
flags=re.MULTILINE,
|
29 |
+
)
|
30 |
+
no_english = re.sub(r"[a-zA-Z]", "", no_urls)
|
31 |
+
|
32 |
+
return no_english
|
33 |
+
|
34 |
|
35 |
@st.cache_data
|
36 |
def render_svg(svg):
|
|
|
58 |
|
59 |
|
60 |
def compute_ALDi(sentences):
|
61 |
+
"""Computes the ALDi score for the given sentences.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
sentences: A list of Arabic sentences.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
A list of ALDi scores for the given sentences.
|
68 |
+
"""
|
69 |
progress_text = "Computing ALDi..."
|
70 |
my_bar = st.progress(0, text=progress_text)
|
71 |
|
72 |
BATCH_SIZE = 4
|
73 |
output_logits = []
|
74 |
+
|
75 |
+
preprocessed_sentences = [preprocess_text(s) for s in sentences]
|
76 |
+
|
77 |
+
for first_index in range(0, len(preprocessed_sentences), BATCH_SIZE):
|
78 |
inputs = tokenizer(
|
79 |
+
preprocessed_sentences[first_index : first_index + BATCH_SIZE],
|
80 |
return_tensors="pt",
|
81 |
padding=True,
|
82 |
)
|
83 |
outputs = model(**inputs).logits.reshape(-1).tolist()
|
84 |
output_logits = output_logits + [max(min(o, 1), 0) for o in outputs]
|
85 |
my_bar.progress(
|
86 |
+
min((first_index + BATCH_SIZE) / len(preprocessed_sentences), 1),
|
87 |
+
text=progress_text,
|
88 |
)
|
89 |
my_bar.empty()
|
90 |
return output_logits
|
|
|
126 |
|
127 |
print(sent)
|
128 |
with open("logs.txt", "a") as f:
|
129 |
+
f.write(sent + "\n")
|
130 |
|
131 |
with tab2:
|
132 |
file = st.file_uploader("Upload a file", type=["txt"])
|