Spaces:
Runtime error
Runtime error
File size: 5,054 Bytes
5167fb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
from transformers import load_tool, ReactCodeAgent, HfApiEngine
from PIL import Image
import torch
import numpy as np
import tempfile
import os
import uuid
import gradio as gr
# function to plot and save an AgentImage
def plot_and_save_agent_image(agent_image, save_path=None):
# Convert AgentImage to a raw PIL Image
pil_image = agent_image.to_raw()
# Plot the image using PIL's show method
pil_image.show()
# If save_path is provided, save the image
if save_path:
pil_image.save(save_path)
print(f"Image saved to {save_path}")
else:
print("No save path provided. Image not saved.")
def generate_prompts_for_object(object_name):
prompts = {
"past": f"Show an old version of a {object_name} from its early days.",
"present": f"Show a modern {object_name} with its current design and technology.",
"future": f"Show a futuristic version of a {object_name} with advanced features and futuristic design."
}
return prompts
# Function to generate the car industry history
def generate_object_history(object_name):
images = []
# Get prompts for the object
prompts = generate_prompts_for_object(object_name)
# Generate sequential images and display them
for time_period, frame in prompts.items():
print(f"Generating {time_period} frame: {frame}")
result = agent.run(frame) # The tool generates the image
# Append the image to the list for GIF creation
images.append(result.to_raw()) # Ensure we're using raw image for GIF
# Save each image with the appropriate name (past, present, future)
image_filename = f"{object_name}_{time_period}.png"
plot_and_save_agent_image(result, save_path=image_filename)
# Create GIF from images
gif_path = f"{object_name}_evolution.gif"
images[0].save(
gif_path,
save_all=True,
append_images=images[1:],
duration=1000, # Duration in milliseconds for each frame
loop=0 # Infinite loop
)
# Return images and GIF path
return images, gif_path
# Import text-to-image tool from Hub
# m-ric/text-to-image model generates images based on textual descriptions.
image_generation_tool = load_tool("m-ric/text-to-image", cache=False) #cache=False ensures it fetches the latest tool updates directly from the Hub.
# Import search tool from LangChain
#This tool allows the agent to search for and retrieve information from the web.
from transformers.agents.search import DuckDuckGoSearchTool
search_tool = DuckDuckGoSearchTool()
# Qwen2.5-72B-Instruct is a specific, a LLM fine-tuned for instruction-following tasks.
llm_engine = HfApiEngine("Qwen/Qwen2.5-72B-Instruct")
# Initialize the agent with both tools
agent = ReactCodeAgent(tools=[image_generation_tool, search_tool], llm_engine=llm_engine)
# Your existing generate_object_history function goes here
# Gradio interface
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# Object Evolution Generator")
# Add a section for instructions
gr.Markdown("""
## Welcome to the Object Evolution Generator!
This app allows you to generate visualizations of how an object, like a bicycle or a car, may have evolved over time.
It generates images of the object in the past, present, and future based on your input.
### How to use:
- Enter the name of an object (e.g., "bicycle", "car", "phone").
- Click "Generate Evolution" to generate the evolution of the object across three time periods: past, present, and future.
- View the generated images and a GIF showing the evolution of the object.
### Example:
Try entering an object name like "car" and see how it has evolved!
""")
with gr.Row():
with gr.Column():
# Textbox for user to input an object name
object_name_input = gr.Textbox(label="Enter an object name (e.g., car)",
placeholder="Enter an object name",
lines=1)
# Button to trigger the generation of images and GIF
generate_button = gr.Button("Generate Evolution")
# Gradio Gallery component to display the images
image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=3, rows=1)
# Output for the generated GIF
gif_output = gr.Image(label="Generated GIF", show_label=True)
# Set the action when the button is clicked
generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])
return demo
# Launch the Gradio app (permanently)
demo = create_gradio_interface()
# To make it permanent and hosted, we can use Gradio's 'share' argument or host it on a server.
demo.launch(share=True) |