File size: 5,502 Bytes
6d28680
5167fb6
 
 
 
 
 
 
 
 
 
6d28680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5167fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7c1e90
5167fb6
 
 
 
 
 
 
c4e1cc2
 
 
 
647dfc3
5167fb6
f7c1e90
 
 
5167fb6
 
5420ab6
 
 
 
 
 
 
 
5167fb6
 
 
f7c1e90
5167fb6
 
 
 
 
 
 
f7c1e90
 
5167fb6
 
f7c1e90
5167fb6
 
 
 
 
 
cce70f0
5167fb6
 
 
f7c1e90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#%% Import libraries
from transformers import load_tool, ReactCodeAgent, HfApiEngine
from PIL import Image
import torch
import numpy as np
import tempfile
import os
import uuid
import gradio as gr


#%% Methods 
# function to plot and save an AgentImage
def plot_and_save_agent_image(agent_image, save_path=None):
    # Convert AgentImage to a raw PIL Image
    pil_image = agent_image.to_raw()

    # Plot the image using PIL's show method
    pil_image.show()

    # If save_path is provided, save the image
    if save_path:
        pil_image.save(save_path)
        print(f"Image saved to {save_path}")
    else:
        print("No save path provided. Image not saved.")


def generate_prompts_for_object(object_name):
    prompts = {
        "past": f"Show an old version of a {object_name} from its early days.",
        "present": f"Show a {object_name} with from present with current features/design/technology.",
        "future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design."
    }
    return prompts


# Function to generate the car industry history
def generate_object_history(object_name):
    images = []
    
    # Get prompts for the object
    prompts = generate_prompts_for_object(object_name)
    
    # Generate sequential images and display them
    for time_period, frame in prompts.items():
        print(f"Generating {time_period} frame: {frame}")
        result = agent.run(frame)  # The tool generates the image
        
        # Append the image to the list for GIF creation
        images.append(result.to_raw())  # Ensure we're using raw image for GIF

        # Save each image with the appropriate name (past, present, future)
        image_filename = f"{object_name}_{time_period}.png"
        plot_and_save_agent_image(result, save_path=image_filename)
        
        
    # Create GIF from images
    gif_path = f"{object_name}_evolution.gif"
    images[0].save(
        gif_path, 
        save_all=True, 
        append_images=images[1:], 
        duration=1000,  # Duration in milliseconds for each frame
        loop=0          # Infinite loop
    )
    
    # Return images and GIF path
    return images, gif_path


#%% Initialization of tools and AI_Agent
# Import text-to-image tool from Hub 
# m-ric/text-to-image model generates images based on textual descriptions.
image_generation_tool = load_tool("m-ric/text-to-image", cache=False) #cache=False ensures it fetches the latest tool updates directly from the Hub.

# Import search tool from LangChain
#This tool allows the agent to search for and retrieve information from the web.
from transformers.agents.search import DuckDuckGoSearchTool

search_tool = DuckDuckGoSearchTool()

# Qwen2.5-72B-Instruct is a specific, a LLM fine-tuned for instruction-following tasks.
llm_engine = HfApiEngine("Qwen/Qwen2.5-72B-Instruct") 
# Initialize the agent with both tools
agent = ReactCodeAgent(tools=[image_generation_tool, search_tool], llm_engine=llm_engine)



# Gradio interface
def create_gradio_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Object Evolution Generator")
        
        # Add a section for instructions
        gr.Markdown("""
        ## Unlocking the secrets of time!
        This app unveils these mysteries by offering a unique/magic lens that allows us "time travel". 
        Powered by AI agents equipped with cutting-edge tools, it provides the superpower to explore the past, witness the present, and dream up the future like never before.
        
        This system allows you to generate visualizations of how an object/concept, like a bicycle or a car, may have evolved over time. 
        It generates images of the object in the past, present, and future based on your input.
        
        ### Default Example: Evolution of a Car
        Below, you can see a precomputed example of a "car" evolution. Enter another object to generate its evolution.
        """)

        # Paths to the precomputed files
        default_images = [
            ("car_past.png", "Car - Past"),
            ("car_present.png", "Car - Present"),
            ("car_future.png", "Car - Future")
        ]
        default_gif_path = "car_evolution.gif"

        with gr.Row():
            with gr.Column():
                # Textbox for user to input an object name
                object_name_input = gr.Textbox(label="Enter an object name (e.g., bicycle, phone)", 
                                              placeholder="Enter an object name", 
                                              lines=1)

                # Button to trigger the generation of images and GIF
                generate_button = gr.Button("Generate Evolution")
    
                # Gradio Gallery component to display the images
                image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=3, rows=1, 
                                           value=default_images)

                # Output for the generated GIF
                gif_output = gr.Image(label="Generated GIF", show_label=True, value=default_gif_path)
         
        # Set the action when the button is clicked
        generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])
    
    return demo

# Launch the Gradio app 
demo = create_gradio_interface()

# To make it permanent and hosted, we can use Gradio's 'share' argument or host it on a server.
demo.launch(share=True)