Spaces:
Runtime error
Runtime error
File size: 5,502 Bytes
6d28680 5167fb6 6d28680 5167fb6 f7c1e90 5167fb6 c4e1cc2 647dfc3 5167fb6 f7c1e90 5167fb6 5420ab6 5167fb6 f7c1e90 5167fb6 f7c1e90 5167fb6 f7c1e90 5167fb6 cce70f0 5167fb6 f7c1e90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
#%% Import libraries
from transformers import load_tool, ReactCodeAgent, HfApiEngine
from PIL import Image
import torch
import numpy as np
import tempfile
import os
import uuid
import gradio as gr
#%% Methods
# function to plot and save an AgentImage
def plot_and_save_agent_image(agent_image, save_path=None):
# Convert AgentImage to a raw PIL Image
pil_image = agent_image.to_raw()
# Plot the image using PIL's show method
pil_image.show()
# If save_path is provided, save the image
if save_path:
pil_image.save(save_path)
print(f"Image saved to {save_path}")
else:
print("No save path provided. Image not saved.")
def generate_prompts_for_object(object_name):
prompts = {
"past": f"Show an old version of a {object_name} from its early days.",
"present": f"Show a {object_name} with from present with current features/design/technology.",
"future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design."
}
return prompts
# Function to generate the car industry history
def generate_object_history(object_name):
images = []
# Get prompts for the object
prompts = generate_prompts_for_object(object_name)
# Generate sequential images and display them
for time_period, frame in prompts.items():
print(f"Generating {time_period} frame: {frame}")
result = agent.run(frame) # The tool generates the image
# Append the image to the list for GIF creation
images.append(result.to_raw()) # Ensure we're using raw image for GIF
# Save each image with the appropriate name (past, present, future)
image_filename = f"{object_name}_{time_period}.png"
plot_and_save_agent_image(result, save_path=image_filename)
# Create GIF from images
gif_path = f"{object_name}_evolution.gif"
images[0].save(
gif_path,
save_all=True,
append_images=images[1:],
duration=1000, # Duration in milliseconds for each frame
loop=0 # Infinite loop
)
# Return images and GIF path
return images, gif_path
#%% Initialization of tools and AI_Agent
# Import text-to-image tool from Hub
# m-ric/text-to-image model generates images based on textual descriptions.
image_generation_tool = load_tool("m-ric/text-to-image", cache=False) #cache=False ensures it fetches the latest tool updates directly from the Hub.
# Import search tool from LangChain
#This tool allows the agent to search for and retrieve information from the web.
from transformers.agents.search import DuckDuckGoSearchTool
search_tool = DuckDuckGoSearchTool()
# Qwen2.5-72B-Instruct is a specific, a LLM fine-tuned for instruction-following tasks.
llm_engine = HfApiEngine("Qwen/Qwen2.5-72B-Instruct")
# Initialize the agent with both tools
agent = ReactCodeAgent(tools=[image_generation_tool, search_tool], llm_engine=llm_engine)
# Gradio interface
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# Object Evolution Generator")
# Add a section for instructions
gr.Markdown("""
## Unlocking the secrets of time!
This app unveils these mysteries by offering a unique/magic lens that allows us "time travel".
Powered by AI agents equipped with cutting-edge tools, it provides the superpower to explore the past, witness the present, and dream up the future like never before.
This system allows you to generate visualizations of how an object/concept, like a bicycle or a car, may have evolved over time.
It generates images of the object in the past, present, and future based on your input.
### Default Example: Evolution of a Car
Below, you can see a precomputed example of a "car" evolution. Enter another object to generate its evolution.
""")
# Paths to the precomputed files
default_images = [
("car_past.png", "Car - Past"),
("car_present.png", "Car - Present"),
("car_future.png", "Car - Future")
]
default_gif_path = "car_evolution.gif"
with gr.Row():
with gr.Column():
# Textbox for user to input an object name
object_name_input = gr.Textbox(label="Enter an object name (e.g., bicycle, phone)",
placeholder="Enter an object name",
lines=1)
# Button to trigger the generation of images and GIF
generate_button = gr.Button("Generate Evolution")
# Gradio Gallery component to display the images
image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=3, rows=1,
value=default_images)
# Output for the generated GIF
gif_output = gr.Image(label="Generated GIF", show_label=True, value=default_gif_path)
# Set the action when the button is clicked
generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])
return demo
# Launch the Gradio app
demo = create_gradio_interface()
# To make it permanent and hosted, we can use Gradio's 'share' argument or host it on a server.
demo.launch(share=True)
|