Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,32 @@
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
-
from langchain_community.llms
|
3 |
from langchain_community.tools import DuckDuckGoSearchResults
|
4 |
-
from langchain.agents import create_react_agent
|
5 |
-
from
|
|
|
6 |
from PIL import Image, ImageDraw, ImageFont
|
7 |
import tempfile
|
8 |
import gradio as gr
|
9 |
-
import requests
|
10 |
from io import BytesIO
|
|
|
11 |
|
12 |
-
# Your HF API token here (set your actual token)
|
13 |
-
#HF_TOKEN
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
17 |
def add_label_to_image(image, label):
|
18 |
draw = ImageDraw.Draw(image)
|
19 |
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
@@ -22,164 +35,77 @@ def add_label_to_image(image, label):
|
|
22 |
font = ImageFont.truetype(font_path, font_size)
|
23 |
except:
|
24 |
font = ImageFont.load_default()
|
25 |
-
|
26 |
-
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
|
27 |
position = (image.width - text_width - 20, image.height - text_height - 20)
|
28 |
-
|
29 |
-
rect_position = [
|
30 |
-
position[0] - rect_margin,
|
31 |
-
position[1] - rect_margin,
|
32 |
-
position[0] + text_width + rect_margin,
|
33 |
-
position[1] + text_height + rect_margin,
|
34 |
-
]
|
35 |
draw.rectangle(rect_position, fill=(0, 0, 0, 128))
|
36 |
draw.text(position, label, fill="white", font=font)
|
37 |
return image
|
38 |
|
39 |
|
40 |
-
|
41 |
-
# agent_image is a PIL Image already in this refactor
|
42 |
-
pil_image = agent_image
|
43 |
-
|
44 |
-
labeled_image = add_label_to_image(pil_image, label)
|
45 |
-
labeled_image.show()
|
46 |
-
|
47 |
-
if save_path:
|
48 |
-
labeled_image.save(save_path)
|
49 |
-
print(f"Image saved to {save_path}")
|
50 |
-
else:
|
51 |
-
print("No save path provided. Image not saved.")
|
52 |
-
|
53 |
-
|
54 |
def generate_prompts_for_object(object_name):
|
55 |
return {
|
56 |
"past": f"Show an old version of a {object_name} from its early days.",
|
57 |
"present": f"Show a {object_name} with current features/design/technology.",
|
58 |
-
"future": f"Show a futuristic version of a {object_name},
|
59 |
-
}
|
60 |
-
|
61 |
-
|
62 |
-
def generate_object_history(object_name):
|
63 |
-
images = []
|
64 |
-
prompts = generate_prompts_for_object(object_name)
|
65 |
-
labels = {
|
66 |
-
"past": f"{object_name} - Past",
|
67 |
-
"present": f"{object_name} - Present",
|
68 |
-
"future": f"{object_name} - Future"
|
69 |
}
|
70 |
|
71 |
-
for time_period, prompt in prompts.items():
|
72 |
-
print(f"Generating {time_period} frame: {prompt}")
|
73 |
-
result = agent.invoke(prompt) # returns PIL Image or string output
|
74 |
-
|
75 |
-
# result is a PIL Image from our tool, or fallback string - ensure PIL Image
|
76 |
-
if isinstance(result, Image.Image):
|
77 |
-
images.append(result)
|
78 |
-
image_filename = f"{object_name}_{time_period}.png"
|
79 |
-
plot_and_save_agent_image(result, labels[time_period], save_path=image_filename)
|
80 |
-
else:
|
81 |
-
print(f"Unexpected output for {time_period}: {result}")
|
82 |
|
83 |
-
|
84 |
-
if images:
|
85 |
-
images[0].save(
|
86 |
-
gif_path,
|
87 |
-
save_all=True,
|
88 |
-
append_images=images[1:],
|
89 |
-
duration=1000,
|
90 |
-
loop=0
|
91 |
-
)
|
92 |
-
print(f"GIF saved to {gif_path}")
|
93 |
-
else:
|
94 |
-
print("No images generated, GIF not created.")
|
95 |
-
|
96 |
-
return images, gif_path
|
97 |
-
|
98 |
-
|
99 |
-
#%% Initialization of tools and AI_Agent
|
100 |
-
|
101 |
-
# Initialize HuggingFace Inference Client for text-to-image
|
102 |
text_to_image_client = InferenceClient("m-ric/text-to-image")
|
103 |
|
104 |
-
|
105 |
-
outputs = text_to_image_client.text_to_image(prompt)
|
106 |
-
# Assuming outputs returns a list of URLs
|
107 |
-
image_url = outputs[0] if outputs else None
|
108 |
-
if image_url is None:
|
109 |
-
raise ValueError("No image URL returned from the model.")
|
110 |
-
response = requests.get(image_url)
|
111 |
-
img = Image.open(BytesIO(response.content)).convert("RGB")
|
112 |
-
return img
|
113 |
-
|
114 |
-
# Custom LangChain tool wrapper for text-to-image
|
115 |
-
class TextToImageTool(BaseTool):
|
116 |
-
name = "text-to-image"
|
117 |
-
description = "Generates an image from a prompt using HuggingFace model"
|
118 |
-
|
119 |
-
def _run(self, prompt: str):
|
120 |
-
return run_text_to_image(prompt)
|
121 |
|
122 |
-
async def _arun(self, prompt: str):
|
123 |
-
raise NotImplementedError()
|
124 |
-
|
125 |
-
image_generation_tool = TextToImageTool()
|
126 |
-
|
127 |
-
# DuckDuckGo Search Tool from LangChain
|
128 |
search_tool = DuckDuckGoSearchResults()
|
129 |
|
130 |
-
|
131 |
-
llm_engine = HuggingFaceHub(
|
132 |
repo_id="Qwen/Qwen2.5-72B-Instruct",
|
133 |
-
|
134 |
-
model_kwargs={"temperature": 0.7}
|
135 |
)
|
136 |
|
137 |
-
|
138 |
-
|
139 |
|
140 |
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
def create_gradio_interface():
|
143 |
with gr.Blocks() as demo:
|
144 |
-
gr.Markdown("# TimeMetamorphy:
|
145 |
-
|
146 |
-
gr.Markdown("""
|
147 |
-
## Unlocking the secrets of time!
|
148 |
-
This app unveils these mysteries by offering a unique/magic lens that allows us "time travel".
|
149 |
-
Powered by AI agents equipped with cutting-edge tools, it provides the superpower to explore the past, witness the present, and dream up the future like never before.
|
150 |
-
|
151 |
-
This system allows you to generate visualizations of how an object/concept, like a bicycle or a car, may have evolved over time.
|
152 |
-
It generates images of the object in the past, present, and future based on your input.
|
153 |
-
|
154 |
-
### Default Example: Evolution of a Car
|
155 |
-
Below, you can see a precomputed example of a "car" evolution. Enter another object to generate its evolution.
|
156 |
-
""")
|
157 |
-
|
158 |
-
default_images = [
|
159 |
-
("car_past.png", "Car - Past"),
|
160 |
-
("car_present.png", "Car - Present"),
|
161 |
-
("car_future.png", "Car - Future")
|
162 |
-
]
|
163 |
-
default_gif_path = "car_evolution.gif"
|
164 |
|
165 |
with gr.Row():
|
166 |
with gr.Column():
|
167 |
-
|
168 |
-
label="Enter an object name (e.g., bicycle, phone)",
|
169 |
-
placeholder="Enter an object name",
|
170 |
-
lines=1
|
171 |
-
)
|
172 |
generate_button = gr.Button("Generate Evolution")
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
|
178 |
-
generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])
|
179 |
-
|
180 |
return demo
|
181 |
|
182 |
|
183 |
-
# Launch
|
184 |
demo = create_gradio_interface()
|
185 |
demo.launch(share=True)
|
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
+
from langchain_community.llms import HuggingFaceHub
|
3 |
from langchain_community.tools import DuckDuckGoSearchResults
|
4 |
+
from langchain.agents import create_react_agent, AgentExecutor
|
5 |
+
from langchain_core.tools import BaseTool
|
6 |
+
from pydantic import Field
|
7 |
from PIL import Image, ImageDraw, ImageFont
|
8 |
import tempfile
|
9 |
import gradio as gr
|
|
|
10 |
from io import BytesIO
|
11 |
+
from typing import Optional
|
12 |
|
|
|
|
|
13 |
|
14 |
+
# === Image generation tool ===
|
15 |
+
class TextToImageTool(BaseTool):
|
16 |
+
name: str = "text_to_image"
|
17 |
+
description: str = "Generate an image from a text prompt."
|
18 |
+
client: InferenceClient = Field(exclude=True)
|
19 |
+
|
20 |
+
def _run(self, prompt: str) -> Image.Image:
|
21 |
+
print(f"[Tool] Generating image for prompt: {prompt}")
|
22 |
+
image_bytes = self.client.text_to_image(prompt)
|
23 |
+
return Image.open(BytesIO(image_bytes))
|
24 |
+
|
25 |
+
def _arun(self, prompt: str):
|
26 |
+
raise NotImplementedError("This tool does not support async.")
|
27 |
|
28 |
+
|
29 |
+
# === Labeling Function ===
|
30 |
def add_label_to_image(image, label):
|
31 |
draw = ImageDraw.Draw(image)
|
32 |
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
|
|
35 |
font = ImageFont.truetype(font_path, font_size)
|
36 |
except:
|
37 |
font = ImageFont.load_default()
|
38 |
+
text_width, text_height = draw.textsize(label, font=font)
|
|
|
39 |
position = (image.width - text_width - 20, image.height - text_height - 20)
|
40 |
+
rect_position = [position[0] - 10, position[1] - 10, position[0] + text_width + 10, position[1] + text_height + 10]
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
draw.rectangle(rect_position, fill=(0, 0, 0, 128))
|
42 |
draw.text(position, label, fill="white", font=font)
|
43 |
return image
|
44 |
|
45 |
|
46 |
+
# === Prompt Generator ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
def generate_prompts_for_object(object_name):
|
48 |
return {
|
49 |
"past": f"Show an old version of a {object_name} from its early days.",
|
50 |
"present": f"Show a {object_name} with current features/design/technology.",
|
51 |
+
"future": f"Show a futuristic version of a {object_name}, predicting future features/designs.",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
}
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# === Agent Setup ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
text_to_image_client = InferenceClient("m-ric/text-to-image")
|
57 |
|
58 |
+
text_to_image_tool = TextToImageTool(client=text_to_image_client)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
search_tool = DuckDuckGoSearchResults()
|
61 |
|
62 |
+
llm = HuggingFaceHub(
|
|
|
63 |
repo_id="Qwen/Qwen2.5-72B-Instruct",
|
64 |
+
model_kwargs={"temperature": 0.7, "max_new_tokens": 512},
|
|
|
65 |
)
|
66 |
|
67 |
+
agent = create_react_agent(llm=llm, tools=[text_to_image_tool, search_tool])
|
68 |
+
agent_executor = AgentExecutor(agent=agent, tools=[text_to_image_tool, search_tool], verbose=True)
|
69 |
|
70 |
|
71 |
+
# === History Generator ===
|
72 |
+
def generate_object_history(object_name: str):
|
73 |
+
prompts = generate_prompts_for_object(object_name)
|
74 |
+
images = []
|
75 |
+
labels = {
|
76 |
+
"past": f"{object_name} - Past",
|
77 |
+
"present": f"{object_name} - Present",
|
78 |
+
"future": f"{object_name} - Future"
|
79 |
+
}
|
80 |
+
for period, prompt in prompts.items():
|
81 |
+
result = text_to_image_tool._run(prompt)
|
82 |
+
labeled = add_label_to_image(result, labels[period])
|
83 |
+
file_path = f"{object_name}_{period}.png"
|
84 |
+
labeled.save(file_path)
|
85 |
+
images.append((file_path, labels[period]))
|
86 |
+
gif_path = f"{object_name}_evolution.gif"
|
87 |
+
pil_images = [Image.open(img[0]) for img in images]
|
88 |
+
pil_images[0].save(gif_path, save_all=True, append_images=pil_images[1:], duration=1000, loop=0)
|
89 |
+
return images, gif_path
|
90 |
+
|
91 |
+
|
92 |
+
# === Gradio UI ===
|
93 |
def create_gradio_interface():
|
94 |
with gr.Blocks() as demo:
|
95 |
+
gr.Markdown("# TimeMetamorphy: Evolution Visualizer")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
with gr.Row():
|
98 |
with gr.Column():
|
99 |
+
object_input = gr.Textbox(label="Enter Object (e.g., car, phone)")
|
|
|
|
|
|
|
|
|
100 |
generate_button = gr.Button("Generate Evolution")
|
101 |
+
gallery = gr.Gallery(label="Generated Images").style(grid=3)
|
102 |
+
gif_display = gr.Image(label="Generated GIF")
|
103 |
+
|
104 |
+
generate_button.click(fn=generate_object_history, inputs=object_input, outputs=[gallery, gif_display])
|
105 |
|
|
|
|
|
106 |
return demo
|
107 |
|
108 |
|
109 |
+
# === Launch App ===
|
110 |
demo = create_gradio_interface()
|
111 |
demo.launch(share=True)
|