Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,14 @@
|
|
1 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
2 |
import gradio as gr
|
3 |
-
from smolagents import CodeAgent, InferenceClientModel
|
4 |
-
from
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
description = "Generate an image from a text prompt using m-ric/text-to-image."
|
10 |
-
|
11 |
-
inputs = {
|
12 |
-
"prompt": {
|
13 |
-
"type": "string",
|
14 |
-
"description": "Text prompt to generate the image"
|
15 |
-
}
|
16 |
-
}
|
17 |
-
|
18 |
-
output_type = "image"
|
19 |
-
|
20 |
-
def __init__(self):
|
21 |
-
super().__init__()
|
22 |
-
self.client = Client("m-ric/text-to-image")
|
23 |
-
|
24 |
-
def run(self, prompt): # Must explicitly match 'inputs' keys
|
25 |
-
return self.client.predict(prompt, api_name="/predict")
|
26 |
|
27 |
-
#%% Utility functions
|
28 |
def add_label_to_image(image, label):
|
29 |
draw = ImageDraw.Draw(image)
|
30 |
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
@@ -33,25 +17,33 @@ def add_label_to_image(image, label):
|
|
33 |
font = ImageFont.truetype(font_path, font_size)
|
34 |
except:
|
35 |
font = ImageFont.load_default()
|
|
|
36 |
text_bbox = draw.textbbox((0, 0), label, font=font)
|
37 |
-
text_width = text_bbox[2] - text_bbox[0]
|
38 |
-
text_height = text_bbox[3] - text_bbox[1]
|
39 |
position = (image.width - text_width - 20, image.height - text_height - 20)
|
|
|
40 |
rect_margin = 10
|
41 |
rect_position = [
|
42 |
-
position[0] - rect_margin,
|
43 |
-
position[
|
|
|
|
|
44 |
]
|
45 |
draw.rectangle(rect_position, fill=(0, 0, 0, 128))
|
46 |
draw.text(position, label, fill="white", font=font)
|
47 |
return image
|
48 |
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
labeled_image.show()
|
52 |
if save_path:
|
53 |
labeled_image.save(save_path)
|
54 |
print(f"Image saved to {save_path}")
|
|
|
|
|
|
|
55 |
|
56 |
def generate_prompts_for_object(object_name):
|
57 |
return {
|
@@ -60,7 +52,43 @@ def generate_prompts_for_object(object_name):
|
|
60 |
"future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design."
|
61 |
}
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def generate_object_history(object_name):
|
|
|
64 |
prompts = generate_prompts_for_object(object_name)
|
65 |
labels = {
|
66 |
"past": f"{object_name} - Past",
|
@@ -68,33 +96,29 @@ def generate_object_history(object_name):
|
|
68 |
"future": f"{object_name} - Future"
|
69 |
}
|
70 |
|
71 |
-
images = []
|
72 |
for time_period, prompt in prompts.items():
|
73 |
print(f"Generating {time_period} frame: {prompt}")
|
74 |
-
result = agent.run(prompt)
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
plot_and_save_agent_image(result, labels[time_period], save_path=f"{object_name}_{time_period}.png")
|
79 |
|
80 |
gif_path = f"{object_name}_evolution.gif"
|
81 |
images[0].save(gif_path, save_all=True, append_images=images[1:], duration=1000, loop=0)
|
82 |
-
return
|
83 |
-
|
84 |
-
|
85 |
-
image_generation_tool = TextToImageTool()
|
86 |
-
search_tool = DuckDuckGoSearchTool()
|
87 |
-
llm_engine = InferenceClientModel("Qwen/Qwen2.5-72B-Instruct")
|
88 |
|
89 |
-
|
|
|
|
|
90 |
|
91 |
-
#%% Gradio Interface
|
92 |
def create_gradio_interface():
|
93 |
with gr.Blocks() as demo:
|
94 |
-
gr.Markdown("# TimeMetamorphy:
|
95 |
gr.Markdown("""
|
96 |
-
|
97 |
-
|
98 |
""")
|
99 |
|
100 |
default_images = [
|
@@ -106,14 +130,18 @@ def create_gradio_interface():
|
|
106 |
|
107 |
with gr.Row():
|
108 |
with gr.Column():
|
109 |
-
object_name_input = gr.Textbox(label="Enter an object name", placeholder="e.g
|
110 |
generate_button = gr.Button("Generate Evolution")
|
111 |
image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, value=default_images)
|
112 |
gif_output = gr.Image(label="Generated GIF", value=default_gif_path)
|
113 |
|
114 |
generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])
|
|
|
115 |
return demo
|
116 |
|
117 |
-
#
|
|
|
|
|
|
|
118 |
demo = create_gradio_interface()
|
119 |
demo.launch(share=True)
|
|
|
1 |
from PIL import Image, ImageDraw, ImageFont
|
2 |
+
import tempfile
|
3 |
import gradio as gr
|
4 |
+
from smolagents import CodeAgent, InferenceClientModel
|
5 |
+
from smolagents import DuckDuckGoSearchTool, Tool
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
|
8 |
+
# =========================================================
|
9 |
+
# Utility functions
|
10 |
+
# =========================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
12 |
def add_label_to_image(image, label):
|
13 |
draw = ImageDraw.Draw(image)
|
14 |
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
|
|
17 |
font = ImageFont.truetype(font_path, font_size)
|
18 |
except:
|
19 |
font = ImageFont.load_default()
|
20 |
+
|
21 |
text_bbox = draw.textbbox((0, 0), label, font=font)
|
22 |
+
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
|
|
|
23 |
position = (image.width - text_width - 20, image.height - text_height - 20)
|
24 |
+
|
25 |
rect_margin = 10
|
26 |
rect_position = [
|
27 |
+
position[0] - rect_margin,
|
28 |
+
position[1] - rect_margin,
|
29 |
+
position[0] + text_width + rect_margin,
|
30 |
+
position[1] + text_height + rect_margin,
|
31 |
]
|
32 |
draw.rectangle(rect_position, fill=(0, 0, 0, 128))
|
33 |
draw.text(position, label, fill="white", font=font)
|
34 |
return image
|
35 |
|
36 |
+
|
37 |
+
def plot_and_save_agent_image(agent_image, label, save_path=None):
|
38 |
+
pil_image = agent_image.to_raw()
|
39 |
+
labeled_image = add_label_to_image(pil_image, label)
|
40 |
labeled_image.show()
|
41 |
if save_path:
|
42 |
labeled_image.save(save_path)
|
43 |
print(f"Image saved to {save_path}")
|
44 |
+
else:
|
45 |
+
print("No save path provided. Image not saved.")
|
46 |
+
|
47 |
|
48 |
def generate_prompts_for_object(object_name):
|
49 |
return {
|
|
|
52 |
"future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design."
|
53 |
}
|
54 |
|
55 |
+
# =========================================================
|
56 |
+
# Tool wrapper for m-ric/text-to-image
|
57 |
+
# =========================================================
|
58 |
+
|
59 |
+
class WrappedTextToImageTool(Tool):
|
60 |
+
name = "text_to_image"
|
61 |
+
description = "Generates an image from a text prompt using the m-ric/text-to-image tool."
|
62 |
+
inputs = {
|
63 |
+
"prompt": {
|
64 |
+
"type": "string",
|
65 |
+
"description": "Text prompt to generate an image"
|
66 |
+
}
|
67 |
+
}
|
68 |
+
output_type = "image"
|
69 |
+
|
70 |
+
def __init__(self):
|
71 |
+
self.client = InferenceClient("m-ric/text-to-image")
|
72 |
+
|
73 |
+
def forward(self, prompt):
|
74 |
+
return self.client.text_to_image(prompt)
|
75 |
+
|
76 |
+
# =========================================================
|
77 |
+
# Tool and Agent Initialization
|
78 |
+
# =========================================================
|
79 |
+
|
80 |
+
image_generation_tool = WrappedTextToImageTool()
|
81 |
+
search_tool = DuckDuckGoSearchTool()
|
82 |
+
llm_engine = InferenceClientModel("Qwen/Qwen2.5-72B-Instruct")
|
83 |
+
|
84 |
+
agent = CodeAgent(tools=[image_generation_tool, search_tool], model=llm_engine)
|
85 |
+
|
86 |
+
# =========================================================
|
87 |
+
# Main logic for image generation
|
88 |
+
# =========================================================
|
89 |
+
|
90 |
def generate_object_history(object_name):
|
91 |
+
images = []
|
92 |
prompts = generate_prompts_for_object(object_name)
|
93 |
labels = {
|
94 |
"past": f"{object_name} - Past",
|
|
|
96 |
"future": f"{object_name} - Future"
|
97 |
}
|
98 |
|
|
|
99 |
for time_period, prompt in prompts.items():
|
100 |
print(f"Generating {time_period} frame: {prompt}")
|
101 |
+
result = agent.run(prompt)
|
102 |
+
images.append(result.to_raw())
|
103 |
+
image_filename = f"{object_name}_{time_period}.png"
|
104 |
+
plot_and_save_agent_image(result, labels[time_period], save_path=image_filename)
|
|
|
105 |
|
106 |
gif_path = f"{object_name}_evolution.gif"
|
107 |
images[0].save(gif_path, save_all=True, append_images=images[1:], duration=1000, loop=0)
|
108 |
+
return [(f"{object_name}_past.png", labels["past"]),
|
109 |
+
(f"{object_name}_present.png", labels["present"]),
|
110 |
+
(f"{object_name}_future.png", labels["future"])], gif_path
|
|
|
|
|
|
|
111 |
|
112 |
+
# =========================================================
|
113 |
+
# Gradio Interface
|
114 |
+
# =========================================================
|
115 |
|
|
|
116 |
def create_gradio_interface():
|
117 |
with gr.Blocks() as demo:
|
118 |
+
gr.Markdown("# TimeMetamorphy: An Object Evolution Generator")
|
119 |
gr.Markdown("""
|
120 |
+
Explore how everyday objects evolved over time. Enter an object name like "phone", "car", or "bicycle"
|
121 |
+
and see its past, present, and future visualized with AI!
|
122 |
""")
|
123 |
|
124 |
default_images = [
|
|
|
130 |
|
131 |
with gr.Row():
|
132 |
with gr.Column():
|
133 |
+
object_name_input = gr.Textbox(label="Enter an object name", placeholder="e.g. bicycle, car, phone")
|
134 |
generate_button = gr.Button("Generate Evolution")
|
135 |
image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, value=default_images)
|
136 |
gif_output = gr.Image(label="Generated GIF", value=default_gif_path)
|
137 |
|
138 |
generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])
|
139 |
+
|
140 |
return demo
|
141 |
|
142 |
+
# =========================================================
|
143 |
+
# Run the app
|
144 |
+
# =========================================================
|
145 |
+
|
146 |
demo = create_gradio_interface()
|
147 |
demo.launch(share=True)
|