AMfeta99 commited on
Commit
9c6b402
·
verified ·
1 Parent(s): 221a9ee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -78
app.py CHANGED
@@ -1,9 +1,8 @@
1
  from PIL import Image, ImageDraw, ImageFont
2
  import tempfile
3
  import gradio as gr
4
- from smolagents import CodeAgent, InferenceClientModel, TransformersModel
5
  from smolagents import DuckDuckGoSearchTool, Tool
6
- from huggingface_hub import InferenceClient
7
  from diffusers import DiffusionPipeline
8
  import torch
9
 
@@ -64,71 +63,10 @@ def generate_prompts_for_object(object_name):
64
  "future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design."
65
  }
66
 
67
- # =========================================================
68
- # Tool wrapper for m-ric/text-to-image
69
- # =========================================================
70
- '''
71
- class WrappedTextToImageTool(Tool):
72
- name = "text_to_image"
73
- description = "Generates an image from a text prompt using the m-ric/text-to-image tool."
74
- inputs = {
75
- "prompt": {
76
- "type": "string",
77
- "description": "Text prompt to generate an image"
78
- }
79
- }
80
- output_type = "image"
81
-
82
- def __init__(self):
83
- self.client = InferenceClient("m-ric/text-to-image")
84
-
85
- def forward(self, prompt):
86
- return self.client.text_to_image(prompt)
87
-
88
- '''
89
-
90
- '''
91
- class TextToImageTool(Tool):
92
- description = "This tool creates an image according to a prompt, which is a text description."
93
- name = "image_generator"
94
- inputs = {"prompt": {"type": "string", "description": "The image generator prompt. Don't hesitate to add details in the prompt to make the image look better, like 'high-res, photorealistic', etc."}}
95
- output_type = "image"
96
- model_sdxl = "black-forest-labs/FLUX.1-schnell"
97
- client = InferenceClient(model_sdxl, provider="replicate")
98
-
99
-
100
- def forward(self, prompt):
101
- return self.client.text_to_image(prompt)
102
- '''
103
- '''
104
- class TextToImageTool(Tool):
105
- description = "This tool creates an image according to a prompt. Add details like 'high-res, photorealistic'."
106
- name = "image_generator"
107
- inputs = {
108
- "prompt": {
109
- "type": "string",
110
- "description": "The image generation prompt"
111
- }
112
- }
113
- output_type = "image"
114
-
115
- def __init__(self):
116
- super().__init__()
117
- dtype = torch.bfloat16
118
- device = "cuda" if torch.cuda.is_available() else "cpu"
119
- print(f"Using device: {device}")
120
- self.pipe = DiffusionPipeline.from_pretrained(
121
- "aiyouthalliance/Free-Image-Generation-CC0",
122
- torch_dtype=dtype
123
- ).to(device)
124
-
125
- def forward(self, prompt):
126
- image = self.pipe(prompt).images[0]
127
- return image
128
- '''
129
  image_generation_tool = Tool.from_space(
130
  "KingNish/Realtime-FLUX",
131
- api_name="/infer", # Optional if there's only one endpoint
132
  name="image_generator",
133
  description="Generate an image from a prompt"
134
  )
@@ -137,21 +75,9 @@ image_generation_tool = Tool.from_space(
137
  # =========================================================
138
  # Tool and Agent Initialization
139
  # =========================================================
140
- #image_generation_tool= TextToImageTool()
141
- #image_generation_tool = WrappedTextToImageTool()
142
  search_tool = DuckDuckGoSearchTool()
143
- #print('iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii')
144
  #llm_engine = InferenceClientModel("Qwen/Qwen2.5-72B-Instruct")
145
- #llm_engine = TransformersModel(
146
- # model_id="Qwen/Qwen2.5-72B-Instruct",
147
- # device="cuda",
148
- # max_new_tokens=5000,
149
- #)
150
-
151
- #from smolagents import LiteLLMModel
152
-
153
- #llm_engine = LiteLLMModel(model_id="Qwen/Qwen2.5-72B-Instruct", temperature=0.2, max_tokens=5000)
154
- #llm_engine=InferenceClientModel()
155
 
156
  llm_engine = InferenceClientModel("Qwen/Qwen2.5-Coder-32B-Instruct")
157
  agent = CodeAgent(tools=[image_generation_tool, search_tool], model=llm_engine)
 
1
  from PIL import Image, ImageDraw, ImageFont
2
  import tempfile
3
  import gradio as gr
4
+ from smolagents import CodeAgent, InferenceClientModel
5
  from smolagents import DuckDuckGoSearchTool, Tool
 
6
  from diffusers import DiffusionPipeline
7
  import torch
8
 
 
63
  "future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design."
64
  }
65
 
66
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  image_generation_tool = Tool.from_space(
68
  "KingNish/Realtime-FLUX",
69
+ api_name="/predict", # Optional if there's only one endpoint
70
  name="image_generator",
71
  description="Generate an image from a prompt"
72
  )
 
75
  # =========================================================
76
  # Tool and Agent Initialization
77
  # =========================================================
78
+
 
79
  search_tool = DuckDuckGoSearchTool()
 
80
  #llm_engine = InferenceClientModel("Qwen/Qwen2.5-72B-Instruct")
 
 
 
 
 
 
 
 
 
 
81
 
82
  llm_engine = InferenceClientModel("Qwen/Qwen2.5-Coder-32B-Instruct")
83
  agent = CodeAgent(tools=[image_generation_tool, search_tool], model=llm_engine)