Update app.py
Browse files
app.py
CHANGED
@@ -7,52 +7,54 @@ from PIL import Image, ImageDraw, ImageFont
|
|
7 |
from functools import lru_cache
|
8 |
import gradio as gr
|
9 |
from io import BytesIO
|
10 |
-
from transformers import pipeline
|
11 |
-
from langchain_core.language_models.llms import LLM
|
12 |
import os
|
13 |
|
14 |
-
# ===
|
|
|
|
|
15 |
|
16 |
-
# Preload image generation inference client
|
17 |
image_client = InferenceClient("m-ric/text-to-image")
|
|
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
return "pipeline_llm"
|
30 |
-
|
31 |
-
llm = PipelineLLM()
|
32 |
|
33 |
-
# === Image
|
34 |
class TextToImageTool(BaseTool):
|
35 |
name: str = "text_to_image"
|
36 |
description: str = "Generate an image from a text prompt."
|
37 |
client: InferenceClient = Field(default=image_client, exclude=True)
|
38 |
|
39 |
def _run(self, prompt: str) -> Image.Image:
|
40 |
-
print(f"[Tool] Generating image for prompt: {prompt}")
|
41 |
image_bytes = self.client.text_to_image(prompt)
|
42 |
return Image.open(BytesIO(image_bytes))
|
43 |
|
44 |
def _arun(self, prompt: str):
|
45 |
-
raise NotImplementedError("
|
46 |
|
47 |
-
#
|
48 |
text_to_image_tool = TextToImageTool()
|
|
|
49 |
search_tool = DuckDuckGoSearchResults()
|
50 |
|
51 |
-
# Create
|
52 |
-
agent = create_react_agent(llm=
|
53 |
agent_executor = AgentExecutor(agent=agent, tools=[text_to_image_tool, search_tool], verbose=True)
|
54 |
|
55 |
-
# ===
|
56 |
def add_label_to_image(image, label):
|
57 |
draw = ImageDraw.Draw(image)
|
58 |
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
@@ -68,7 +70,7 @@ def add_label_to_image(image, label):
|
|
68 |
draw.text(position, label, fill="white", font=font)
|
69 |
return image
|
70 |
|
71 |
-
# === Prompt
|
72 |
@lru_cache(maxsize=128)
|
73 |
def generate_prompts_for_object(object_name):
|
74 |
return {
|
@@ -77,12 +79,13 @@ def generate_prompts_for_object(object_name):
|
|
77 |
"future": f"Show a futuristic version of a {object_name}, predicting future features/designs.",
|
78 |
}
|
79 |
|
80 |
-
# ===
|
81 |
@lru_cache(maxsize=64)
|
82 |
def generate_image_for_prompt(prompt, label):
|
83 |
img = text_to_image_tool._run(prompt)
|
84 |
return add_label_to_image(img, label)
|
85 |
|
|
|
86 |
def generate_object_history(object_name: str):
|
87 |
prompts = generate_prompts_for_object(object_name)
|
88 |
images = []
|
@@ -120,7 +123,7 @@ def create_gradio_interface():
|
|
120 |
|
121 |
return demo
|
122 |
|
123 |
-
# === Launch
|
124 |
if __name__ == "__main__":
|
125 |
demo = create_gradio_interface()
|
126 |
demo.launch(share=True)
|
|
|
7 |
from functools import lru_cache
|
8 |
import gradio as gr
|
9 |
from io import BytesIO
|
|
|
|
|
10 |
import os
|
11 |
|
12 |
+
# === Setup Inference Clients ===
|
13 |
+
# Use your Hugging Face token if necessary:
|
14 |
+
# client = InferenceClient(repo_id="model", token="YOUR_HF_TOKEN")
|
15 |
|
|
|
16 |
image_client = InferenceClient("m-ric/text-to-image")
|
17 |
+
text_client = InferenceClient("Qwen/Qwen2.5-72B-Instruct")
|
18 |
|
19 |
+
# === LangChain wrapper using InferenceClient for text generation ===
|
20 |
+
class InferenceClientLLM(BaseTool):
|
21 |
+
name: str = "inference_text_generator"
|
22 |
+
description: str = "Generate text using HF Inference API."
|
23 |
+
client: InferenceClient = Field(default=text_client, exclude=True)
|
24 |
|
25 |
+
def _run(self, prompt: str) -> str:
|
26 |
+
print(f"[LLM] Generating text for prompt: {prompt}")
|
27 |
+
response = self.client.text_generation(prompt)
|
28 |
+
# response is usually a dict with 'generated_text'
|
29 |
+
return response.get("generated_text", "")
|
30 |
|
31 |
+
def _arun(self, prompt: str):
|
32 |
+
raise NotImplementedError("Async not supported.")
|
|
|
|
|
|
|
33 |
|
34 |
+
# === Image generation tool ===
|
35 |
class TextToImageTool(BaseTool):
|
36 |
name: str = "text_to_image"
|
37 |
description: str = "Generate an image from a text prompt."
|
38 |
client: InferenceClient = Field(default=image_client, exclude=True)
|
39 |
|
40 |
def _run(self, prompt: str) -> Image.Image:
|
41 |
+
print(f"[Image Tool] Generating image for prompt: {prompt}")
|
42 |
image_bytes = self.client.text_to_image(prompt)
|
43 |
return Image.open(BytesIO(image_bytes))
|
44 |
|
45 |
def _arun(self, prompt: str):
|
46 |
+
raise NotImplementedError("Async not supported.")
|
47 |
|
48 |
+
# === Initialize tools ===
|
49 |
text_to_image_tool = TextToImageTool()
|
50 |
+
text_gen_tool = InferenceClientLLM()
|
51 |
search_tool = DuckDuckGoSearchResults()
|
52 |
|
53 |
+
# === Create agent ===
|
54 |
+
agent = create_react_agent(llm=text_gen_tool, tools=[text_to_image_tool, search_tool])
|
55 |
agent_executor = AgentExecutor(agent=agent, tools=[text_to_image_tool, search_tool], verbose=True)
|
56 |
|
57 |
+
# === Image labeling ===
|
58 |
def add_label_to_image(image, label):
|
59 |
draw = ImageDraw.Draw(image)
|
60 |
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
|
|
70 |
draw.text(position, label, fill="white", font=font)
|
71 |
return image
|
72 |
|
73 |
+
# === Prompt generation with caching ===
|
74 |
@lru_cache(maxsize=128)
|
75 |
def generate_prompts_for_object(object_name):
|
76 |
return {
|
|
|
79 |
"future": f"Show a futuristic version of a {object_name}, predicting future features/designs.",
|
80 |
}
|
81 |
|
82 |
+
# === Cache generated images ===
|
83 |
@lru_cache(maxsize=64)
|
84 |
def generate_image_for_prompt(prompt, label):
|
85 |
img = text_to_image_tool._run(prompt)
|
86 |
return add_label_to_image(img, label)
|
87 |
|
88 |
+
# === Main generation function ===
|
89 |
def generate_object_history(object_name: str):
|
90 |
prompts = generate_prompts_for_object(object_name)
|
91 |
images = []
|
|
|
123 |
|
124 |
return demo
|
125 |
|
126 |
+
# === Launch app ===
|
127 |
if __name__ == "__main__":
|
128 |
demo = create_gradio_interface()
|
129 |
demo.launch(share=True)
|