from huggingface_hub import InferenceClient from langchain_community.tools import DuckDuckGoSearchResults from langchain.agents import create_react_agent, AgentExecutor from langchain_core.tools import BaseTool from pydantic import Field from PIL import Image, ImageDraw, ImageFont from functools import lru_cache import gradio as gr from io import BytesIO from transformers import pipeline from langchain_core.language_models.llms import LLM import os # === Global Model Setup === # Preload image generation inference client image_client = InferenceClient("m-ric/text-to-image") # Preload text generation model via HuggingFace Transformers text_gen_pipeline = pipeline("text-generation", model="Qwen/Qwen2.5-72B-Instruct", max_new_tokens=512) # === LangChain Wrapper for Pipeline === class PipelineLLM(LLM): def _call(self, prompt, stop=None): return text_gen_pipeline(prompt)[0]["generated_text"] @property def _llm_type(self): return "pipeline_llm" llm = PipelineLLM() # === Image Tool === class TextToImageTool(BaseTool): name: str = "text_to_image" description: str = "Generate an image from a text prompt." client: InferenceClient = Field(default=image_client, exclude=True) def _run(self, prompt: str) -> Image.Image: print(f"[Tool] Generating image for prompt: {prompt}") image_bytes = self.client.text_to_image(prompt) return Image.open(BytesIO(image_bytes)) def _arun(self, prompt: str): raise NotImplementedError("This tool does not support async.") # Instantiate tools text_to_image_tool = TextToImageTool() search_tool = DuckDuckGoSearchResults() # Create LangChain agent agent = create_react_agent(llm=llm, tools=[text_to_image_tool, search_tool]) agent_executor = AgentExecutor(agent=agent, tools=[text_to_image_tool, search_tool], verbose=True) # === Utility: Add Label to Image === def add_label_to_image(image, label): draw = ImageDraw.Draw(image) font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" try: font = ImageFont.truetype(font_path, 30) except: font = ImageFont.load_default() text_width, text_height = draw.textsize(label, font=font) position = (image.width - text_width - 20, image.height - text_height - 20) rect_position = [position[0] - 10, position[1] - 10, position[0] + text_width + 10, position[1] + text_height + 10] draw.rectangle(rect_position, fill=(0, 0, 0, 128)) draw.text(position, label, fill="white", font=font) return image # === Prompt Generator === @lru_cache(maxsize=128) def generate_prompts_for_object(object_name): return { "past": f"Show an old version of a {object_name} from its early days.", "present": f"Show a {object_name} with current features/design/technology.", "future": f"Show a futuristic version of a {object_name}, predicting future features/designs.", } # === History Generator === @lru_cache(maxsize=64) def generate_image_for_prompt(prompt, label): img = text_to_image_tool._run(prompt) return add_label_to_image(img, label) def generate_object_history(object_name: str): prompts = generate_prompts_for_object(object_name) images = [] file_paths = [] for period, prompt in prompts.items(): label = f"{object_name} - {period.capitalize()}" labeled_image = generate_image_for_prompt(prompt, label) file_path = f"/tmp/{object_name}_{period}.png" labeled_image.save(file_path) images.append((file_path, label)) file_paths.append(file_path) # Create GIF gif_path = f"/tmp/{object_name}_evolution.gif" pil_images = [Image.open(p) for p in file_paths] pil_images[0].save(gif_path, save_all=True, append_images=pil_images[1:], duration=1000, loop=0) return images, gif_path # === Gradio UI === def create_gradio_interface(): with gr.Blocks() as demo: gr.Markdown("# TimeMetamorphy: Evolution Visualizer") with gr.Row(): with gr.Column(): object_input = gr.Textbox(label="Enter Object (e.g., car, phone)") generate_button = gr.Button("Generate Evolution") gallery = gr.Gallery(label="Generated Images").style(grid=3) gif_display = gr.Image(label="Generated GIF") generate_button.click(fn=generate_object_history, inputs=object_input, outputs=[gallery, gif_display]) return demo # === Launch App === if __name__ == "__main__": demo = create_gradio_interface() demo.launch(share=True)