from transformers import HfAgent from PIL import Image, ImageDraw, ImageFont import gradio as gr import os #%% Utility Functions def add_label_to_image(image, label): draw = ImageDraw.Draw(image) font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" font_size = 30 try: font = ImageFont.truetype(font_path, font_size) except: font = ImageFont.load_default() text_bbox = draw.textbbox((0, 0), label, font=font) text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1] position = (image.width - text_width - 20, image.height - text_height - 20) rect_margin = 10 rect_position = [ position[0] - rect_margin, position[1] - rect_margin, position[0] + text_width + rect_margin, position[1] + text_height + rect_margin, ] draw.rectangle(rect_position, fill=(0, 0, 0, 128)) draw.text(position, label, fill="white", font=font) return image def plot_and_save_agent_image(image, label, save_path=None): labeled_image = add_label_to_image(image, label) labeled_image.show() if save_path: labeled_image.save(save_path) print(f"Image saved to {save_path}") def generate_prompts_for_object(object_name): return { "past": f"Show an old version of a {object_name} from its early days.", "present": f"Show a {object_name} with current features/design/technology.", "future": f"Show a futuristic version of a {object_name}, predicting advanced features and design." } #%% HF Agent Initialization agent = HfAgent("https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta") #%% Core Generation Function def generate_object_history(object_name): images = [] gif_frames = [] prompts = generate_prompts_for_object(object_name) labels = { "past": f"{object_name} - Past", "present": f"{object_name} - Present", "future": f"{object_name} - Future" } output_image_paths = [] for period, prompt in prompts.items(): print(f"Generating image for: {prompt}") result = agent.run(prompt) # Find first image in result (agent returns a dict) image_path = next((v for v in result.values() if isinstance(v, str) and v.endswith((".png", ".jpg"))), None) if not image_path or not os.path.exists(image_path): raise RuntimeError(f"No valid image generated for {prompt}") image = Image.open(image_path).convert("RGB") labeled_image = add_label_to_image(image, labels[period]) filename = f"{object_name}_{period}.png" labeled_image.save(filename) output_image_paths.append((filename, labels[period])) gif_frames.append(labeled_image) # Save animated GIF gif_path = f"{object_name}_evolution.gif" gif_frames[0].save(gif_path, save_all=True, append_images=gif_frames[1:], duration=1000, loop=0) return output_image_paths, gif_path #%% Gradio Interface def create_gradio_interface(): with gr.Blocks() as demo: gr.Markdown("# TimeMetamorphy: An Object Evolution Generator") gr.Markdown(""" Explore how objects change over time — from past, to present, to future. Enter any object below and let AI visualize its transformation through the ages. """) default_images = [ ("car_past.png", "Car - Past"), ("car_present.png", "Car - Present"), ("car_future.png", "Car - Future") ] default_gif_path = "car_evolution.gif" with gr.Row(): with gr.Column(): object_name_input = gr.Textbox(label="Enter an object name", placeholder="e.g., bicycle, phone") generate_button = gr.Button("Generate Evolution") image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=3, rows=1, value=default_images) gif_output = gr.Image(label="Generated GIF", show_label=True, value=default_gif_path) generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output]) return demo # Launch demo = create_gradio_interface() demo.launch(share=True)