ANASAKHTAR commited on
Commit
9da88f6
·
verified ·
1 Parent(s): a45435e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -7
app.py CHANGED
@@ -3,12 +3,11 @@ import gradio as gr
3
  import json
4
  from transformers import pipeline
5
 
6
- # Load the translation pipeline with eager attention implementation
7
  text_translator = pipeline(
8
- "translation",
9
- model="facebook/nllb-200-distilled-600M",
10
- torch_dtype=torch.bfloat16,
11
- attn_implementation="eager"
12
  )
13
 
14
  # Load the JSON data for language codes
@@ -46,20 +45,20 @@ def translate_text(text, destination_language):
46
  return f"Error: Could not find FLORES code for language {destination_language}"
47
 
48
  try:
 
49
  translation = text_translator(text, src_lang="eng_Latn", tgt_lang=dest_code)
50
  return translation[0]["translation_text"]
51
  except Exception as e:
52
  return f"Error during translation: {str(e)}"
53
 
54
  # Initialize the speech-to-text pipeline (Whisper model)
55
- # Using the appropriate Whisper model for automatic speech recognition
56
  speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-small")
57
 
58
  # Function to transcribe audio to text
59
  def transcribe_audio(audio_file, destination_language):
60
  try:
61
  transcription_result = speech_to_text(audio_file)
62
- print(f"Transcription result: {transcription_result}") # Print the whole response to inspect
63
  if "text" in transcription_result:
64
  transcription = transcription_result["text"]
65
  else:
 
3
  import json
4
  from transformers import pipeline
5
 
6
+ # Load the translation pipeline
7
  text_translator = pipeline(
8
+ "translation",
9
+ model="facebook/nllb-200-distilled-600M",
10
+ torch_dtype=torch.bfloat16
 
11
  )
12
 
13
  # Load the JSON data for language codes
 
45
  return f"Error: Could not find FLORES code for language {destination_language}"
46
 
47
  try:
48
+ # Translation call
49
  translation = text_translator(text, src_lang="eng_Latn", tgt_lang=dest_code)
50
  return translation[0]["translation_text"]
51
  except Exception as e:
52
  return f"Error during translation: {str(e)}"
53
 
54
  # Initialize the speech-to-text pipeline (Whisper model)
 
55
  speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-small")
56
 
57
  # Function to transcribe audio to text
58
  def transcribe_audio(audio_file, destination_language):
59
  try:
60
  transcription_result = speech_to_text(audio_file)
61
+ print(f"Transcription result: {transcription_result}") # Debugging output
62
  if "text" in transcription_result:
63
  transcription = transcription_result["text"]
64
  else: