Muhammad Anas Akhtar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from diffusers import
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def image_generation(prompt):
|
|
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
pipeline.enable_model_cpu_offload()
|
14 |
-
|
15 |
-
|
16 |
image = pipeline(
|
17 |
prompt=prompt,
|
18 |
negative_prompt="blurred, ugly, watermark, low resolution, blurry",
|
@@ -21,17 +34,17 @@ def image_generation(prompt):
|
|
21 |
width=1024,
|
22 |
guidance_scale=9.0
|
23 |
).images[0]
|
24 |
-
|
25 |
return image
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
interface= gr.Interface(
|
30 |
fn=image_generation,
|
31 |
-
inputs
|
32 |
-
outputs
|
33 |
-
title
|
34 |
-
description="This application
|
35 |
)
|
36 |
|
37 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionPipeline
|
4 |
+
from huggingface_hub import hf_api
|
5 |
|
6 |
+
# Retrieve the Hugging Face token stored in Hugging Face Spaces secrets
|
7 |
+
HUGGINGFACE_TOKEN = hf_api.get_secret("keyss")
|
8 |
+
|
9 |
+
if not HUGGINGFACE_TOKEN:
|
10 |
+
raise ValueError("Hugging Face token not found! Make sure it's added in the Hugging Face Secrets.")
|
11 |
|
12 |
def image_generation(prompt):
|
13 |
+
# Check if GPU is available
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
|
16 |
+
# Load the Stable Diffusion 3 pipeline
|
17 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
18 |
+
"stabilityai/stable-diffusion-3-medium-diffusers",
|
19 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
20 |
+
use_auth_token=HUGGINGFACE_TOKEN, # Use the Hugging Face token for authentication
|
21 |
+
text_encoder_3=None,
|
22 |
+
tokenizer_3=None
|
23 |
+
)
|
24 |
+
|
25 |
+
# Enable efficient model execution
|
26 |
pipeline.enable_model_cpu_offload()
|
27 |
+
|
28 |
+
# Generate an image based on the prompt
|
29 |
image = pipeline(
|
30 |
prompt=prompt,
|
31 |
negative_prompt="blurred, ugly, watermark, low resolution, blurry",
|
|
|
34 |
width=1024,
|
35 |
guidance_scale=9.0
|
36 |
).images[0]
|
37 |
+
|
38 |
return image
|
39 |
|
40 |
+
# Define the Gradio interface
|
41 |
+
interface = gr.Interface(
|
|
|
42 |
fn=image_generation,
|
43 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your Prompt..."),
|
44 |
+
outputs=gr.Image(type="pil"),
|
45 |
+
title="Image Creation using Stable Diffusion 3 Model",
|
46 |
+
description="This application generates awesome images using the Stable Diffusion 3 model."
|
47 |
)
|
48 |
|
49 |
+
# Launch the Gradio app
|
50 |
+
interface.launch()
|