Muhammad Anas Akhtar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,97 +1,51 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
-
import os
|
6 |
-
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM
|
7 |
import scipy.io.wavfile as wavfile
|
8 |
|
9 |
-
#
|
|
|
|
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
-
print(f"Using device: {device}")
|
12 |
|
13 |
-
#
|
|
|
|
|
|
|
|
|
|
|
14 |
caption_image = pipeline("image-to-text",
|
15 |
-
|
16 |
-
device=device)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
from TTS.api import TTS
|
21 |
-
tts = TTS("tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False)
|
22 |
-
except ImportError:
|
23 |
-
print("Installing TTS...")
|
24 |
-
import subprocess
|
25 |
-
subprocess.check_call(["pip", "install", "TTS"])
|
26 |
-
from TTS.api import TTS
|
27 |
-
tts = TTS("tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
def generate_audio(text):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
print(f"Error generating audio: {str(e)}")
|
50 |
-
raise gr.Error(f"Failed to generate audio: {str(e)}")
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
raise gr.Error("Please upload an image")
|
59 |
-
|
60 |
-
# Generate caption
|
61 |
-
captions = caption_image(images=image)
|
62 |
-
if not captions or len(captions) == 0:
|
63 |
-
raise gr.Error("Could not generate caption for this image")
|
64 |
-
|
65 |
-
caption_text = captions[0]['generated_text']
|
66 |
-
print(f"Generated caption: {caption_text}")
|
67 |
-
|
68 |
-
# Generate audio from caption
|
69 |
-
audio_path = generate_audio(caption_text)
|
70 |
-
|
71 |
-
return [audio_path, caption_text]
|
72 |
-
except Exception as e:
|
73 |
-
print(f"Error in caption_my_image: {str(e)}")
|
74 |
-
raise gr.Error(f"Failed to process image: {str(e)}")
|
75 |
|
76 |
-
# Create the Gradio interface
|
77 |
-
demo = gr.Interface(
|
78 |
-
fn=caption_my_image,
|
79 |
-
inputs=[
|
80 |
-
gr.Image(label="Upload Image", type="pil")
|
81 |
-
],
|
82 |
-
outputs=[
|
83 |
-
gr.Audio(label="Generated Audio"),
|
84 |
-
gr.Textbox(label="Generated Caption")
|
85 |
-
],
|
86 |
-
title="Image Captioning with Audio",
|
87 |
-
description="""
|
88 |
-
Upload an image and the application will:
|
89 |
-
1. Generate a descriptive caption for the image
|
90 |
-
2. Convert the caption to speech
|
91 |
-
""",
|
92 |
-
examples=[],
|
93 |
-
cache_examples=False
|
94 |
-
)
|
95 |
|
96 |
-
if __name__ == "__main__":
|
97 |
-
demo.launch()
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
|
|
|
|
|
|
4 |
import scipy.io.wavfile as wavfile
|
5 |
|
6 |
+
# Use a pipeline as a high-level helper
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
10 |
|
11 |
+
# model_path = ("../Models/models--Salesforce--blip-image-captioning-large"
|
12 |
+
# "/snapshots/2227ac38c9f16105cb0412e7cab4759978a8fd90")
|
13 |
+
#
|
14 |
+
# tts_model_path = ("../Models/models--kakao-enterprise--vits-ljs/snapshots"
|
15 |
+
# "/3bcb8321394f671bd948ebf0d086d694dda95464")
|
16 |
+
|
17 |
caption_image = pipeline("image-to-text",
|
18 |
+
model="Salesforce/blip-image-captioning-large", device=device)
|
|
|
19 |
|
20 |
+
narrator = pipeline("text-to-speech",
|
21 |
+
model="kakao-enterprise/vits-ljs")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# caption_image = pipeline("image-to-text",
|
24 |
+
# model=model_path, device=device)
|
25 |
+
#
|
26 |
+
# narrator = pipeline("text-to-speech",
|
27 |
+
# model=tts_model_path)
|
28 |
|
29 |
def generate_audio(text):
|
30 |
+
# Generate the narrated text
|
31 |
+
narrated_text = narrator(text)
|
32 |
+
|
33 |
+
# Save the audio to a WAV file
|
34 |
+
wavfile.write("output.wav", rate=narrated_text["sampling_rate"],
|
35 |
+
data=narrated_text["audio"][0])
|
36 |
+
# Return the path to the saved audio file
|
37 |
+
return "output.wav"
|
38 |
+
|
39 |
+
|
40 |
+
def caption_my_image(pil_image):
|
41 |
+
semantics = caption_image(images=pil_image)[0]['generated_text']
|
42 |
+
return generate_audio(semantics)
|
|
|
|
|
43 |
|
44 |
+
demo = gr.Interface(fn=caption_my_image,
|
45 |
+
inputs=[gr.Image(label="Select Image",type="pil")],
|
46 |
+
outputs=[gr.Audio(label="Image Caption")],
|
47 |
+
title="@GenAILearniverse Project 8: Image Captioning",
|
48 |
+
description="THIS APPLICATION WILL BE USED TO CAPTION THE IMAGE.")
|
49 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
|
|
|