NORLIE JHON MALAGDAO
commited on
Delete app.py
Browse files
app.py
DELETED
@@ -1,199 +0,0 @@
|
|
1 |
-
|
2 |
-
import gradio as gr
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import numpy as np
|
5 |
-
import os
|
6 |
-
import PIL
|
7 |
-
import tensorflow as tf
|
8 |
-
|
9 |
-
from tensorflow import keras
|
10 |
-
from tensorflow.keras import layers
|
11 |
-
from tensorflow.keras.models import Sequential
|
12 |
-
|
13 |
-
|
14 |
-
from PIL import Image
|
15 |
-
import gdown
|
16 |
-
import zipfile
|
17 |
-
|
18 |
-
import pathlib
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
# Define the Google Drive shareable link
|
27 |
-
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
28 |
-
|
29 |
-
# Extract the file ID from the URL
|
30 |
-
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
|
31 |
-
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
|
32 |
-
|
33 |
-
# Define the local filename to save the ZIP file
|
34 |
-
local_zip_file = 'file.zip'
|
35 |
-
|
36 |
-
# Download the ZIP file
|
37 |
-
gdown.download(direct_download_url, local_zip_file, quiet=False)
|
38 |
-
|
39 |
-
# Directory to extract files
|
40 |
-
extracted_path = 'extracted_files'
|
41 |
-
|
42 |
-
# Verify if the downloaded file is a ZIP file and extract it
|
43 |
-
try:
|
44 |
-
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
|
45 |
-
zip_ref.extractall(extracted_path)
|
46 |
-
print("Extraction successful!")
|
47 |
-
except zipfile.BadZipFile:
|
48 |
-
print("Error: The downloaded file is not a valid ZIP file.")
|
49 |
-
|
50 |
-
# Optionally, you can delete the ZIP file after extraction
|
51 |
-
os.remove(local_zip_file)
|
52 |
-
|
53 |
-
# Convert the extracted directory path to a pathlib.Path object
|
54 |
-
data_dir = pathlib.Path(extracted_path)
|
55 |
-
|
56 |
-
# Print the directory structure to debug
|
57 |
-
for root, dirs, files in os.walk(extracted_path):
|
58 |
-
level = root.replace(extracted_path, '').count(os.sep)
|
59 |
-
indent = ' ' * 4 * (level)
|
60 |
-
print(f"{indent}{os.path.basename(root)}/")
|
61 |
-
subindent = ' ' * 4 * (level + 1)
|
62 |
-
for f in files:
|
63 |
-
print(f"{subindent}{f}")
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
import pathlib
|
68 |
-
# Path to the dataset directory
|
69 |
-
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
70 |
-
data_dir = pathlib.Path(data_dir)
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
bees = list(data_dir.glob('bees/*'))
|
75 |
-
print(bees[0])
|
76 |
-
PIL.Image.open(str(bees[0]))
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
img_height,img_width=180,180
|
81 |
-
batch_size=32
|
82 |
-
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
83 |
-
data_dir,
|
84 |
-
validation_split=0.2,
|
85 |
-
subset="training",
|
86 |
-
seed=123,
|
87 |
-
image_size=(img_height, img_width),
|
88 |
-
batch_size=batch_size)
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
96 |
-
data_dir,
|
97 |
-
validation_split=0.2,
|
98 |
-
subset="validation",
|
99 |
-
seed=123,
|
100 |
-
image_size=(img_height, img_width),
|
101 |
-
batch_size=batch_size)
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
class_names = train_ds.class_names
|
111 |
-
print(class_names)
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
import matplotlib.pyplot as plt
|
117 |
-
|
118 |
-
plt.figure(figsize=(10, 10))
|
119 |
-
for images, labels in train_ds.take(1):
|
120 |
-
for i in range(9):
|
121 |
-
ax = plt.subplot(3, 3, i + 1)
|
122 |
-
plt.imshow(images[i].numpy().astype("uint8"))
|
123 |
-
plt.title(class_names[labels[i]])
|
124 |
-
plt.axis("off")
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
num_classes = 12
|
134 |
-
|
135 |
-
model = Sequential([
|
136 |
-
layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
|
137 |
-
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
138 |
-
layers.MaxPooling2D(),
|
139 |
-
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
140 |
-
layers.MaxPooling2D(),
|
141 |
-
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
142 |
-
layers.MaxPooling2D(),
|
143 |
-
layers.Flatten(),
|
144 |
-
layers.Dense(128, activation='relu'),
|
145 |
-
layers.Dense(num_classes,activation='softmax')
|
146 |
-
])
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
model.compile(optimizer='adam',
|
153 |
-
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
154 |
-
metrics=['accuracy'])
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
epochs=10
|
160 |
-
history = model.fit(
|
161 |
-
train_ds,
|
162 |
-
validation_data=val_ds,
|
163 |
-
epochs=epochs
|
164 |
-
)
|
165 |
-
|
166 |
-
|
167 |
-
import gradio as gr
|
168 |
-
import numpy as np
|
169 |
-
import tensorflow as tf
|
170 |
-
|
171 |
-
def predict_image(img):
|
172 |
-
img = np.array(img)
|
173 |
-
img_resized = tf.image.resize(img, (180, 180))
|
174 |
-
img_4d = tf.expand_dims(img_resized, axis=0)
|
175 |
-
prediction = model.predict(img_4d)[0]
|
176 |
-
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
177 |
-
|
178 |
-
image = gr.Image()
|
179 |
-
label = gr.Label(num_top_classes=5)
|
180 |
-
|
181 |
-
# Define custom CSS for background image
|
182 |
-
custom_css = """
|
183 |
-
body {
|
184 |
-
background-image: url('\extracted_files\Pest_Dataset\bees\bees (444).jpg');
|
185 |
-
background-size: cover;
|
186 |
-
background-repeat: no-repeat;
|
187 |
-
background-attachment: fixed;
|
188 |
-
color: white;
|
189 |
-
}
|
190 |
-
"""
|
191 |
-
|
192 |
-
gr.Interface(
|
193 |
-
fn=predict_image,
|
194 |
-
inputs=image,
|
195 |
-
outputs=label,
|
196 |
-
title="Pest Classification",
|
197 |
-
description="Upload an image of a pest to classify it into one of the predefined categories.",
|
198 |
-
css=custom_css
|
199 |
-
).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|