Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,9 @@ from transformers import AutoTokenizer,AutoModel
|
|
6 |
import torch
|
7 |
import tensorflow as tf
|
8 |
from keras.models import load_model
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
def predict(new_data):
|
@@ -46,6 +49,44 @@ def highlight(sentence):
|
|
46 |
else:
|
47 |
highlighted_text += f'{words} '
|
48 |
st.markdown(highlighted_text, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
#Load the trained model
|
51 |
with open("biobert_rf.pkl", 'rb') as f:
|
@@ -59,6 +100,13 @@ st.subheader('Named Entity Recoginition System For Oral Medicine ')
|
|
59 |
sentence = st.text_area('Enter a sentence:')
|
60 |
|
61 |
st.write("OR")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
selected_options = st.selectbox(
|
63 |
'Choose a text from dropdown: ',
|
64 |
(" ",
|
@@ -71,6 +119,10 @@ selected_options = st.selectbox(
|
|
71 |
if st.button('Analyze'):
|
72 |
if sentence:
|
73 |
highlight(sentence)
|
|
|
|
|
|
|
|
|
74 |
elif selected_options:
|
75 |
highlight(selected_options)
|
76 |
else:
|
|
|
6 |
import torch
|
7 |
import tensorflow as tf
|
8 |
from keras.models import load_model
|
9 |
+
import re
|
10 |
+
import io
|
11 |
+
import PyPDF2
|
12 |
|
13 |
|
14 |
def predict(new_data):
|
|
|
49 |
else:
|
50 |
highlighted_text += f'{words} '
|
51 |
st.markdown(highlighted_text, unsafe_allow_html=True)
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
def read_uploaded_file(uploaded_file):
|
56 |
+
content = None
|
57 |
+
if uploaded_file is not None:
|
58 |
+
content_type = uploaded_file.type
|
59 |
+
if content_type == 'application/pdf':
|
60 |
+
content = read_pdf_file(uploaded_file)
|
61 |
+
elif content_type == 'text/plain':
|
62 |
+
content = read_text_file(uploaded_file)
|
63 |
+
return content
|
64 |
+
|
65 |
+
def read_pdf_file(uploaded_file):
|
66 |
+
with io.BytesIO(uploaded_file.read()) as f:
|
67 |
+
pdf_reader = PyPDF2.PdfReader(f)
|
68 |
+
text = ''
|
69 |
+
for page_num in range(len(pdf_reader.pages)):
|
70 |
+
page = pdf_reader.pages[page_num]
|
71 |
+
text += page.extract_text()
|
72 |
+
return text
|
73 |
+
|
74 |
+
def read_text_file(uploaded_file):
|
75 |
+
with io.StringIO(uploaded_file.read().decode()) as f:
|
76 |
+
text = f.read()
|
77 |
+
return text
|
78 |
+
|
79 |
+
|
80 |
+
def preprocess(text):
|
81 |
+
# Define a regular expression pattern for URLs, non-alphabetic characters, and user names
|
82 |
+
pattern = re.compile(r'https?://\S+|[^0-9A-Za-z t]|@\w+')
|
83 |
+
# Use the regular expression to find all URLs, non-alphabetic characters, and user names in the text
|
84 |
+
matches = pattern.findall(text)
|
85 |
+
#Replace the URLs, non-alphabetic characters, and user names with an empty string
|
86 |
+
for match in matches:
|
87 |
+
text = text.replace(match, ' ')
|
88 |
+
return text
|
89 |
+
|
90 |
|
91 |
#Load the trained model
|
92 |
with open("biobert_rf.pkl", 'rb') as f:
|
|
|
100 |
sentence = st.text_area('Enter a sentence:')
|
101 |
|
102 |
st.write("OR")
|
103 |
+
uploaded_file = st.file_uploader("Upload a file")
|
104 |
+
|
105 |
+
if uploaded_file is not None:
|
106 |
+
# Do something with the file
|
107 |
+
st.write("File uploaded!")
|
108 |
+
|
109 |
+
st.write("OR")
|
110 |
selected_options = st.selectbox(
|
111 |
'Choose a text from dropdown: ',
|
112 |
(" ",
|
|
|
119 |
if st.button('Analyze'):
|
120 |
if sentence:
|
121 |
highlight(sentence)
|
122 |
+
elif uploaded_file:
|
123 |
+
text=read_uploaded_file(uploaded_file)
|
124 |
+
text=preprocess(text)
|
125 |
+
highlight(text)
|
126 |
elif selected_options:
|
127 |
highlight(selected_options)
|
128 |
else:
|