Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
from PIL import Image, ImageOps | |
import tensorflow as tf | |
from huggingface_hub import InferenceClient | |
# Load the pre-trained Keras model using TensorFlow's Keras | |
model = tf.keras.models.load_model("keras_model.h5", compile=False) | |
# Load the class labels | |
with open("labels.txt", "r") as file: | |
class_names = [line.strip() for line in file.readlines()] | |
# Initialize the HuggingFace client for the chatbot | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Sample images for the emotion detection | |
examples = [ | |
["https://firebasestorage.googleapis.com/v0/b/hisia-4b65b.appspot.com/o/a-captivating-ukiyo-e-inspired-poster-featuring-a--wTg7L-f2Tfiy6K8w6aWnKA-KbGU9GSKSDGBbbxrCO65Mg.jpeg?alt=media&token=64590de9-e265-44ac-a766-aeecd455ed5d"], | |
["https://firebasestorage.googleapis.com/v0/b/hisia-4b65b.appspot.com/o/poster-ai-themed-kenyan-female-silhoutte-written-l-PMIXpNWGQ8KaNNetQRVJuQ-B1TteyL-S5OTPZFXvfGybg.jpeg?alt=media&token=fc10f96d-403e-4f75-bd9c-810e0da36867"], | |
["https://firebasestorage.googleapis.com/v0/b/hisia-4b65b.appspot.com/o/poster-ai-themed-kenyan-male-silhoutte-written-log-z3fqBD5bQOOj6uqGd_iXLQ-4aBfNy0ZTgmLlTsZh1dzIA.jpeg?alt=media&token=f218f160-d38e-482f-97a9-5442c2f251a7"] | |
] | |
def classify_image(img): | |
"""Classify the image and return the detected emotion and confidence score.""" | |
try: | |
size = (224, 224) | |
image = ImageOps.fit(img, size, Image.Resampling.LANCZOS) | |
image_array = np.asarray(image) | |
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1 | |
data = normalized_image_array.reshape((1, 224, 224, 3)) | |
# Perform prediction using the model | |
prediction = model.predict(data) | |
index = np.argmax(prediction) | |
class_name = class_names[index] | |
confidence_score = prediction[0][index] | |
return class_name, confidence_score | |
except Exception as e: | |
print(f"Error in classify_image: {e}") | |
return "Error", 0 | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
"""Generate a response from the chatbot based on the input message and conversation history.""" | |
try: | |
messages = [{"role": "system", "content": system_message}] | |
for user_message, assistant_message in history: | |
if user_message: | |
messages.append({"role": "user", "content": user_message}) | |
if assistant_message: | |
messages.append({"role": "assistant", "content": assistant_message}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for response_message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = response_message.choices[0].delta.content | |
response += token | |
print(f"API Response: {response}") # Debugging: Print the API response | |
return response | |
except Exception as e: | |
print(f"Error in respond: {e}") | |
return "Error generating response" | |
# Define the custom CSS for styling the interface and hiding the footer | |
custom_css = """ | |
body { | |
font-family: 'Arial', sans-serif; | |
background-color: #f4e9e0; | |
color: #2e2e2e; | |
} | |
.gradio-container { | |
border-radius: 12px; | |
padding: 20px; | |
background: linear-gradient(135deg, #f5b8b8, #a0d6a2); | |
box-shadow: 0px 4px 15px rgba(0, 0, 0, 0.2); | |
} | |
.gradio-container h1 { | |
font-family: 'Arial', sans-serif; | |
font-size: 2.2em; | |
text-align: center; | |
color: #1c1c1c; | |
margin-bottom: 20px; | |
} | |
.gradio-container p { | |
font-size: 1em; | |
text-align: center; | |
color: #4a4a4a; | |
} | |
.gradio-button { | |
background-color: #d55a5a; | |
border: none; | |
color: white; | |
padding: 12px 24px; | |
font-size: 1.1em; | |
cursor: pointer; | |
border-radius: 8px; | |
transition: background-color 0.2s ease; | |
} | |
.gradio-button:hover { | |
background-color: #b93e3e; | |
} | |
#output-container { | |
border-radius: 12px; | |
background-color: #ffffff; | |
padding: 20px; | |
color: #2e2e2e; | |
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); | |
} | |
#output-container h3 { | |
font-family: 'Arial', sans-serif; | |
font-size: 1.4em; | |
color: #1c1c1c; | |
} | |
.gr-examples { | |
text-align: center; | |
} | |
.gr-example-img { | |
width: 120px; | |
border-radius: 8px; | |
margin: 5px; | |
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); | |
} | |
footer { | |
display: none !important; /* Hides the footer */ | |
} | |
""" | |
def emotion_detection_interface(): | |
"""Create and return the Gradio interface with sliders for AI response settings and a single view for emotion detection and recommendations.""" | |
with gr.Blocks(css=custom_css) as demo: | |
gr.Markdown("### HISIA: Emotion Detector and Therapeutic Recommendations") | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=200): | |
image_input = gr.Image(type="pil", label="Upload an Image", elem_id="emotion-image") | |
submit_button = gr.Button("Classify Image", elem_id="classify-button") | |
with gr.Column(scale=2, min_width=300): | |
emotion_output = gr.JSON(label="Emotion Detection Result", elem_id="output-container") | |
ai_response_output = gr.Textbox(label="AI Recommendations", elem_id="output-container", lines=5) | |
# Add sample images | |
gr.Examples(examples, inputs=image_input) | |
# Add sliders for adjusting AI response settings | |
with gr.Row(): | |
max_tokens_slider = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="VERBOSENESS") | |
temperature_slider = gr.Slider(minimum=0.1, maximum=3.0, value=0.7, step=0.1, label="CREATIVITY") | |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="BROADNESS") | |
def process_image(image, max_tokens, temperature, top_p): | |
"""Process the image and generate emotion detection result and AI recommendations.""" | |
class_name, confidence_score = classify_image(image) | |
emotion_result = {"Detected Emotion": class_name, "Confidence Score": f"{confidence_score:.2f}"} | |
if class_name != "Error": | |
# Generate AI recommendation based on detected emotion | |
recommendation = respond( | |
class_name, | |
history=[], | |
system_message="You are a psychologist that provides therapeutic recommendations based on emotions. Always address the clients in the second pronouns person like your, you, etc", | |
max_tokens=int(max_tokens), | |
temperature=float(temperature), | |
top_p=float(top_p), | |
) | |
return emotion_result, recommendation | |
else: | |
return {"Detected Emotion": "Error", "Confidence Score": "0"}, "Error generating response" | |
submit_button.click( | |
process_image, | |
inputs=[image_input, max_tokens_slider, temperature_slider, top_p_slider], | |
outputs=[emotion_output, ai_response_output] | |
) | |
return demo | |
# Launch the combined interface | |
if __name__ == "__main__": | |
emotion_detection_interface().launch() | |