import gradio as gr import numpy as np from PIL import Image, ImageOps import tensorflow as tf from huggingface_hub import InferenceClient # Load the pre-trained Keras model using TensorFlow's Keras model = tf.keras.models.load_model("keras_model.h5", compile=False) # Load the class labels with open("labels.txt", "r") as file: class_names = [line.strip() for line in file.readlines()] # Initialize the HuggingFace client for the chatbot client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Sample images for the emotion detection examples = [ ["https://firebasestorage.googleapis.com/v0/b/hisia-4b65b.appspot.com/o/a-captivating-ukiyo-e-inspired-poster-featuring-a--wTg7L-f2Tfiy6K8w6aWnKA-KbGU9GSKSDGBbbxrCO65Mg.jpeg?alt=media&token=64590de9-e265-44ac-a766-aeecd455ed5d"], ["https://firebasestorage.googleapis.com/v0/b/hisia-4b65b.appspot.com/o/poster-ai-themed-kenyan-female-silhoutte-written-l-PMIXpNWGQ8KaNNetQRVJuQ-B1TteyL-S5OTPZFXvfGybg.jpeg?alt=media&token=fc10f96d-403e-4f75-bd9c-810e0da36867"], ["https://firebasestorage.googleapis.com/v0/b/hisia-4b65b.appspot.com/o/poster-ai-themed-kenyan-male-silhoutte-written-log-z3fqBD5bQOOj6uqGd_iXLQ-4aBfNy0ZTgmLlTsZh1dzIA.jpeg?alt=media&token=f218f160-d38e-482f-97a9-5442c2f251a7"] ] def classify_image(img): """Classify the image and return the detected emotion and confidence score.""" try: size = (224, 224) image = ImageOps.fit(img, size, Image.Resampling.LANCZOS) image_array = np.asarray(image) normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1 data = normalized_image_array.reshape((1, 224, 224, 3)) # Perform prediction using the model prediction = model.predict(data) index = np.argmax(prediction) class_name = class_names[index] confidence_score = prediction[0][index] return class_name, confidence_score except Exception as e: print(f"Error in classify_image: {e}") return "Error", 0 def respond(message, history, system_message, max_tokens, temperature, top_p): """Generate a response from the chatbot based on the input message and conversation history.""" try: messages = [{"role": "system", "content": system_message}] for user_message, assistant_message in history: if user_message: messages.append({"role": "user", "content": user_message}) if assistant_message: messages.append({"role": "assistant", "content": assistant_message}) messages.append({"role": "user", "content": message}) response = "" for response_message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = response_message.choices[0].delta.content response += token print(f"API Response: {response}") # Debugging: Print the API response return response except Exception as e: print(f"Error in respond: {e}") return "Error generating response" # Define the custom CSS for styling the interface and hiding the footer custom_css = """ body { font-family: 'Arial', sans-serif; background-color: #f4e9e0; color: #2e2e2e; } .gradio-container { border-radius: 12px; padding: 20px; background: linear-gradient(135deg, #f5b8b8, #a0d6a2); box-shadow: 0px 4px 15px rgba(0, 0, 0, 0.2); } .gradio-container h1 { font-family: 'Arial', sans-serif; font-size: 2.2em; text-align: center; color: #1c1c1c; margin-bottom: 20px; } .gradio-container p { font-size: 1em; text-align: center; color: #4a4a4a; } .gradio-button { background-color: #d55a5a; border: none; color: white; padding: 12px 24px; font-size: 1.1em; cursor: pointer; border-radius: 8px; transition: background-color 0.2s ease; } .gradio-button:hover { background-color: #b93e3e; } #output-container { border-radius: 12px; background-color: #ffffff; padding: 20px; color: #2e2e2e; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); } #output-container h3 { font-family: 'Arial', sans-serif; font-size: 1.4em; color: #1c1c1c; } .gr-examples { text-align: center; } .gr-example-img { width: 120px; border-radius: 8px; margin: 5px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); } footer { display: none !important; /* Hides the footer */ } """ def emotion_detection_interface(): """Create and return the Gradio interface with sliders for AI response settings and a single view for emotion detection and recommendations.""" with gr.Blocks(css=custom_css) as demo: gr.Markdown("### HISIA: Emotion Detector and Therapeutic Recommendations") with gr.Row(): with gr.Column(scale=1, min_width=200): image_input = gr.Image(type="pil", label="Upload an Image", elem_id="emotion-image") submit_button = gr.Button("Classify Image", elem_id="classify-button") with gr.Column(scale=2, min_width=300): emotion_output = gr.JSON(label="Emotion Detection Result", elem_id="output-container") ai_response_output = gr.Textbox(label="AI Recommendations", elem_id="output-container", lines=5) # Add sample images gr.Examples(examples, inputs=image_input) # Add sliders for adjusting AI response settings with gr.Row(): max_tokens_slider = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="VERBOSENESS") temperature_slider = gr.Slider(minimum=0.1, maximum=3.0, value=0.7, step=0.1, label="CREATIVITY") top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="BROADNESS") def process_image(image, max_tokens, temperature, top_p): """Process the image and generate emotion detection result and AI recommendations.""" class_name, confidence_score = classify_image(image) emotion_result = {"Detected Emotion": class_name, "Confidence Score": f"{confidence_score:.2f}"} if class_name != "Error": # Generate AI recommendation based on detected emotion recommendation = respond( class_name, history=[], system_message="You are a psychologist that provides therapeutic recommendations based on emotions. Always address the clients in the second pronouns person like your, you, etc", max_tokens=int(max_tokens), temperature=float(temperature), top_p=float(top_p), ) return emotion_result, recommendation else: return {"Detected Emotion": "Error", "Confidence Score": "0"}, "Error generating response" submit_button.click( process_image, inputs=[image_input, max_tokens_slider, temperature_slider, top_p_slider], outputs=[emotion_output, ai_response_output] ) return demo # Launch the combined interface if __name__ == "__main__": emotion_detection_interface().launch()